首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of phosphatidylinositol kinase (EC 2.7.1.67) and phosphatidylinositol 4-phosphate (PtdIns4P) kinase (EC 2.7.1.68) was investigated in highly enriched plasma-membrane and cytosolic fractions derived from cloned rat pituitary (GH3) cells. In plasma membranes, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] added exogenously enhanced incorporation of [32P]phosphate from [gamma-32P]MgATP2- into PtdIns(4,5)P2 and PtdIns4P to 150% of control; half-maximal effect occurred with 0.03 mM exogenous PtdIns(4,5)P2. Exogenous PtdIns4P and phosphatidylinositol (PtdIns) had no effect. When plasma membranes prepared from cells prelabelled to isotopic steady state with [3H]inositol were used, there was a MgATP2- dependent increase in the content of [3H]PtdIns(4,5)P2 and [3H]PtdIns4P that was enhanced specifically by exogenous PtdIns(4,5)P2 also. Degradation of 32P- and 3H-labelled PtdIns(4,5)P2 and PtdIns4P within the plasma-membrane fraction was not affected by exogenous PtdIns(4,5)P2. Phosphoinositide kinase activities in the cytosolic fraction were assayed by using exogenous substrates. Phosphoinositide kinase activities in cytosol were inhibited by exogenously added PtdIns(4,5)P2. These findings demonstrate that exogenously added PtdIns(4,5)P2 enhances phosphoinositide kinase activities (and formation of polyphosphoinositides) in plasma membranes, but decreases these kinase activities in cytosol derived from GH3 cells. These data suggest that flux of PtdIns to PtdIns4P to PtdIns(4,5)P2 in the plasma membrane cannot be increased simply by release of membrane-associated phosphoinositide kinases from product inhibition as PtdIns(4,5)P2 is hydrolysed.  相似文献   

2.
1. By rapid fractionation of blood platelet lysates on Percoll density gradients at alkaline pH (9.6), a very pure plasma-membrane fraction was obtained, as well as discrimination between endoplasmic reticulum and lysosomes. 2. Labelling of intact platelets with [32P]Pi followed by subcellular fractionation showed an exclusive localization of all inositol lipids in the plasma membrane. 3. Preincubation of whole platelets with myo-[3H]inositol in a buffer containing 1 mM-MnCl2 allowed incorporation of the label into PtdIns (phosphatidylinositol) of both plasma and endoplasmic-reticulum membrane, whereas [3H]PtdIns4P (phosphatidylinositol 4-phosphate) and [3H]PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) were exclusively found on the plasma membrane. 4. It is concluded that PtdIns4P and PtdIns(4,5)P2 are exclusively localized in the plasma membrane, whereas PtdIns is present in both plasma and endoplasmic-reticulum membranes. This could provide an explanation for previously reported data on hormone-sensitive and -insensitive inositol lipid pools.  相似文献   

3.
Stimulation of the human T cell line, Jurkat, by the addition of monoclonal antibodies reactive with the T cell antigen receptor complex (CD3/Ti) leads to sustained increases in levels of inositol 1,4,5-trisphosphate. To investigate the possibility that the production of polyphosphoinositides is regulated during CD3/Ti stimulation, we studied Jurkat cells whose inositol phospholipids had been labeled to steady state with [3H]inositol, as well as Jurkat cells during nonequilibrium labeling with [32P]orthophosphate. The addition of CD3 monoclonal antibodies led to a 4-5-fold increase in [3H]inositol trisphosphate that was sustained for greater than 20 min. Within 60 s of CD3/Ti stimulation, [3H] phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and [3H]phosphatidylinositol 4-phosphate (PtdIns4P) decreased by 65 and 35%, respectively. This change in [3H]PtdIns(4,5)P2 persisted for greater than 20 min. The decrease in [3H]PtdIns4P, however, was transient, and, after 5 min, the levels of [3H]PtdIns4P were comparable in stimulated and unstimulated cells. To examine the rate of flux through inositol phospholipids, we measured the CD3/Ti-stimulated changes in the ratio, 32P cpm/3H cpm, in each inositol phospholipid. CD3/Ti stimulation led to accelerated fluxes through PtdIns(4,5)P2 and phosphatidylinositol (PtdIns) that were maintained for greater than 20 min. After the initial 30 s, however, there was no detectable effect of anti-CD3 on flux through Ptsins4p. This observation suggested that, during CD3/Ti stimulation, production of PtdIns(4,5)P2 from PtdIns might occur via a small pool of PtdIns4P with a very high turnover. The existence of such a pool was established by determining that, in stimulated cells, the 32P-specific activity of the 1-position phosphate of PtdIns(4,5)P2 was 8-10-fold that of PtdIns4P. We conclude that, during the initial 60 s of CD3/Ti stimulation, there is a substantial depletion of cellular PtdIns(4,5)P2 and PtdIns4P. Thereafter, a CD3/Ti-regulated pathway generates PtdIns(4,5)P2 from PtdIns through a small, but highly labile, pool of PtdIns4P.  相似文献   

4.
Phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] of turkey erythrocytes were labelled by using either [32P]Pi or [3H]inositol. Although there was little basal release of inositol phosphates from membranes purified from labelled cells, in the presence of guanosine 5'-[gamma-thio]triphosphate (GTP[S]) the rate of accumulation of inositol bis-, tris- and tetrakis-phosphate (InsP2, InsP3 and InsP4) was increased 20-50-fold. The enhanced rate of accumulation of 3H-labelled inositol phosphates was linear for up to 20 min; owing to decreases in 32P specific radioactivity of phosphoinositides during incubation of membranes with unlabelled ATP, the accumulation of 32P-labelled inositol phosphates was linear for only 5 min. In the absence of ATP and a nucleotide-regenerating system, no InsP4 was formed, and the overall inositol phosphate response to GTP[S] was decreased. Analyses of phosphoinositides during incubation with ATP indicated that interconversions of PtdIns to PtdIns4P and PtdIns4P to PtdIns(4,5)P2 occurred to maintain PtdIns(4,5)P2 concentrations; GTP[S]-induced inositol phosphate formation was accompanied by a corresponding decrease in 32P- and 3H-labelled PtdIns, PtdIns4P and PtdIns(4,5)P2. In the absence of ATP, only GTP[S]-induced decreases in PtdIns(4,5)P2 occurred. Since inositol monophosphate was not formed under any condition, PtdIns is not a substrate for the phospholipase C. The production of InsP2 was decreased markedly, but not blocked, under conditions where Ins(1,4,5)P3 5-phosphomonoesterase activity in the preparation was inhibited. Thus the predominant substrate of the GTP[S]-activated phospholipase C of turkey erythrocyte membranes is PtdIns(4,5)P2. Ins(1,4,5)P3 was the major product of this reaction; only a small amount of Ins(1:2-cyclic, 4,5)P3 was released. The effects of ATP on inositol phosphate formation apparently involve the contributions of two phenomena. First, the P2-receptor agonist 2-methylthioadenosine triphosphate (2MeSATP) greatly increased inositol phosphate formation and decreased [3H]PtdIns4P and [3H]PtdIns(4,5)P2 in the presence of a low (0.1 microM) concentration of GTP[S]. ATP over the concentration range 0-100 microM produced effects in the presence of 0.1 microM-GTP[S] essentially identical with those observed with 2MeSATP, suggesting that the effects of low concentrations of ATP are also explained by a stimulation of P2-receptors. Higher concentrations of ATP also increase inositol phosphate formation, apparently by supporting the synthesis of substrate phospholipids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
We studied the possibility that hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] may be the initiating event for the increase in [32P]Pi incorporation into phosphatidic acid (PtdA) and phosphatidylinositol (PtdIns) during carbachol and pancreozymin (cholecystokinin-octapeptide) action in the rat pancreas. After prelabelling acini for 2h, [32P]Pi incorporation into PtdA, PtdIns(4,5)P2 and phosphatidylinositol 4-phosphate (PtdIns4P) had reached equilibrium. Subsequent addition of carbachol or pancreozymin caused 32P in PtdIns(4,5)P2 to decrease by 30-50% within 10-15 s, and this was followed by sequential increases in [32P]Pi incorporation into PtdA and PtdIns. Similar changes in 32P-labelling of PtdIns4P were not consistently observed. Confirmation that the decrease in 32P in chromatographically-purified PtdIns(4,5)P2 reflected an actual decrease in this substance was provided by the fact that similar results were obtained (a) when PtdIns(4,5)P2 was prelabelled with [2-3H]inositol, and (b) when PtdIns(4,5)P2 was measured as its specific product (glycerophosphoinositol bisphosphate) after methanolic alkaline hydrolysis and ion-exchange chromatography. The secretogogue-induced breakdown of PtdIns(4,5)P2 was not inhibited by Ca2+ deficiency (severe enough to inhibit amylase secretion and Ca2+-dependent hydrolysis of PtdIns), and ionophore A23187 treatment did not provoke PtdIns(4,5)P2 hydrolysis. The increase in the hydrolysis of PtdIns(4,5)P2 and the increase in [32P]Pi incorporation into PtdA commenced at the same concentration of carbachol in dose-response studies. Our findings suggest that the hydrolysis of PtdIns(4,5)P2 is an early event in the action of pancreatic secretogogues that mobilize Ca2+, and it is possible that this hydrolysis may initiate the Ca2+-independent labelling of PtdA and PtdIns. Ca2+ mobilization may follow these responses, and subsequently cause Ca2+-dependent hydrolysis of PtdIns and exocytosis.  相似文献   

6.
Secretagogue-induced phosphoinositide metabolism in human leucocytes.   总被引:17,自引:7,他引:10       下载免费PDF全文
The relationship between receptor binding of the formylated peptide chemoattractant formylmethionylleucylphenylalanine (fMet-Leu-Phe), lysosomal enzyme secretion and metabolism of membrane phospholipids was evaluated in both human polymorphonuclear leucocytes (PMN) and the dimethyl sulphoxide (Me2SO)-stimulated human myelomonocytic HL-60 leukaemic cell line. In both cell types, exposure to fMet-Leu-Phe (100 nM) induced rapid lysosomal enzyme secretion (maximal release less than 30 s) and marked changes in the 32P-labelling of the inositol lipids phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate (PtdIns4P), phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] as well as phosphatidic acid (PtdA). Specifically, levels of [32P]PtdIns and [32P]PtdIns(4,5)P2 decreased rapidly (peak decrease at 10-15s), with a subsequent increase at 30 s and later. PtdIns4P and PtdA showed only an increase. In Me2SO-differentiated HL-60 cells prelabelled with [3H]inositol for 20 h, fMet-Leu-Phe caused a net increase in the cellular content of [3H]inositol phosphates, including a rapid increase in [3H]inositol 1,4,5-trisphosphate, suggesting that PtdIns(4,5)P2 breakdown occurs by a phospholipase C mechanism. Both lysosomal enzyme secretion and changes in phospholipid metabolism occur over the same agonist concentration range with a similar time course. Binding of [3H]fMet-Leu-Phe, although occurring over the same concentration range, exhibited markedly slower kinetics. Although depletion of extracellular Ca2+ had no effect on ligand-induced polyphosphoinositide turnover, PtdIns turnover, PtdA labelling and lysosomal enzyme secretion were severely curtailed. These studies demonstrate a receptor-mediated enhancement of phospholipid turnover that correlates with a specific biological response to fMet-Leu-Phe. Further, the results are consistent with the idea that phospholipase C-mediated degradation of PtdIns(4,5)P2, which results in the formation of inositol trisphosphate, is an early step in the stimulus-secretion coupling pathway of the neutrophil. The lack of correlation between these two responses and the equilibrium-binding condition suggests that either these parameters are responsive to the rate of ligand-receptor interaction or only fractional occupation is required for a full biological response.  相似文献   

7.
The rectal gland of the dogfish is rich in inositol lipids. Total phospholipids from the gland contained 9.1 mol% of phosphatidylinositol (PtdIns), 1.0 mol% of phosphatidylinositol 4-phosphate (PtdIns4P) and 0.9 mol% of phosphatidylinositol 4,5-biphosphate (PtdIns4,5P2). [32P]Orthophosphate was readily incorporated into PtdIns, phosphatidic acid (PtdA) and especially into PtdIns4P and PtdIns4,5P2 in salt gland slices incubated in elasmobranch Ringer with glucose and no other additions over a 2 hr period. The calcium ionophore A23187 stimulated incorporation into PtdIns and PtdA, but not into PtdIns4P or PtdIns4,5P2. Oxygen uptake by rectal gland slices was maximally stimulated by 0.08mM forskolin, 2.5mM 8-chlorophenylthio cyclic AMP, 2.0mM dibutyryl cyclic AMP and 0.25mM theophylline. Stimulated oxygen uptake was inhibited by 0.1mM ouabain in all cases. Incorporation of [32P]orthophosphate into PtdIns, PtdA, PtdIns4P and PtdIns4,5P2 was inhibited by 0.08mM forskolin and 2.0mM dibutyryl cyclic AMP over a 2 hr period. The results are discussed in relation to the control of salt secretion by the rectal gland.  相似文献   

8.
The metabolism of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] in rat parotid acinar cells was investigated, particularly with regard to the effects of receptor-active agonists. Stimulation of cholinergic-muscarinic receptors with methacholine provoked a rapid disappearance of 40--50% of [32P]PtdIns(4,5)P2, but had no effect on PtdIns4P. Adrenaline, acting on alpha-adrenoceptors, and Substance P also stimulated net loss of PtdIns(4,5)P2. The beta-adrenoceptor agonist, isoprenaline, and the Ca2+ ionophore, ionomycin, failed to affect labelled PtdIns(4,5)P2 or PtdIns4P. By chelation of extracellular Ca2+ with excess EGTA, and by an experimental protocol that eliminates cellular Ca2+ release, it was demonstrated that the agonist-induced decrease in PtdIns(4,5)P2 is independent of both Ca2+ influx and Ca2+ release. These results may suggest that net PtdIns(4,5)P2 breakdown is an early event in the stimulus-response pathway of the parotid acinar cell and could be directly involved in the mechanism of agonist-induced Ca2+ release from the plasma membrane.  相似文献   

9.
The metabolic activity of the polyphosphoinositol lipids in unstimulated human platelets was studied by short-term labelling with [32P]Pi, by replacement of [32P]Pi from pre-labelled platelets with unlabelled phosphate, and by depriving the cells of metabolic ATP. Under short-term labelling conditions, the 4- and 5-phosphate groups of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] had the same specific 32P radioactivity as the gamma-phosphate of metabolic ATP. The specific 32P radioactivity of the 1-phosphates of phosphatidylinositol, PtdIns4P and PtdIns(4,5)P2 was similar, but only 4-13% compared to that of the ATP-gamma-phosphate. When [32P]Pi pre-labelled platelets were incubated with up to 25 mM of unlabelled phosphate, the displacement of the 32P label from PtdIns4P, PtdIns(4,5)P2 and metabolic ATP followed similar kinetics. Inhibition of ATP regeneration in platelets pre-labelled with [32P]Pi resulted in a rapid fall in metabolic ATP with a much slower fall in [32P]PtdIns(4,5)P2, whereas [32P]PtdIns4P increased initially. However, ATP turnover was not abolished, as indicated by the marked (25% of the control) incorporation of extracellular [32P]Pi into PtdIns4P and PtdIns(4,5)P2 in metabolically inhibited platelets. This low phosphate turnover may explain the relative resistance of PtdIns4P and PtdIns(4,5)P2 to metabolic inhibition. We conclude that PtdIns4P and PtdIns(4,5)P2 are present as a single metabolic pool in human platelets. Turnover of the 4- and 5-phosphates of PtdIns4P and PtdIns(4,5)P2 in unstimulated platelets is as rapid as that of the gamma-phosphate of metabolic ATP, and accounts for about 7% of basal ATP consumption.  相似文献   

10.
Stimulated hydrolysis of the inositol phospholipids phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] was investigated by studying the phosphoinositides produced in a suspended preparation of plasma membranes by transference of 32P from [gamma-32P]ATP. At basal Ca2+ concentration (calculated free Ca2+, 150 nM) phospholipid hydrolysis was stimulated either by the muscarinic agonists carbamoylcholine and bethanecol or by the addition of the non-hydrolysable analogue of GTP, guanosine 5'-[beta gamma-imido]triphosphate [p(NH)ppG]. GTP was without effect on basal hyrolysis. Both GTP and p(NH)ppG enhanced the rapid (within 10 s) hydrolysis of PtdIns4P and PtdIns(4,5)P2 induced by carbamoylcholine in a dose-dependent manner. A rightward shift in the competition curve of carbamoylcholine for bound L-[3H]quinuclidinyl benzilate was seen on addition of GTP or p(NH)ppG (100 microM) under phosphorylating conditions. Pretreatment of intact islet cells with Bordetella pertussis toxin, islet-activating protein (IAP) or treatment of membranes with IAP under conditions which elicited ADP-ribosylation of a protein of Mr 41,000 was without effect on muscarinic binding, phosphoinositide phosphorylation or subsequent hydrolysis by carbamoylcholine. The findings indicate the involvement of a GTP-binding protein in the coupling of the muscarinic receptor to phosphoinositide hydrolysis in the islet cell and suggest that this is distinct from the GTP-binding regulatory component of adenylate cyclase which is covalently modified by IAP.  相似文献   

11.
The turnover of phosphomonoester groups of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] was investigated in human erythrocytes by short-term labelling with [32P]Pi. The procedure applied ensured a quantitative extraction of erythrocyte polyphosphoinositides as well as their reliable separation for the determinations of pool sizes and specific radioactivities. The pool sizes of phosphatidylinositol (PtdIns), PtdIns4P and PtdIns(4,5)P2 are 25, 11 and 44 nmol/ml of cells respectively. Under steady-state conditions, the phosphorylation fluxes from [gamma-32P]ATP into PtdIns4P and PtdIns(4,5)P2 are in the ranges 14-22 and 46-94 nmol X h-1 X ml of cells-1 respectively. Only 25-60% of total PtdIns4P and 6-10% of total PtdIns(4,5)P2 take part in the rapid tracer exchange, i.e. are compartmentalized. In isolated erythrocyte ghosts, the turnover of PtdIns4P approximately corresponds to that in intact erythrocytes, although any compartmentation can be excluded in this preparation. Under the conditions of incubation employed, the turnover of PtdIns(4,5)P2 is more than one order of magnitude smaller in isolated ghosts than that obtained for intact erythrocytes.  相似文献   

12.
Rabbit iris smooth muscle was prelabelled with myo-[3H]inositol for 90 min and the effect of carbachol on the accumulation of inositol phosphates from phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol (PtdIns) was monitored with anion-exchange chromatography. Carbachol stimulated the accumulation of inositol phosphates and this was blocked by atropine, a muscarinic antagonist, and it was unaffected by 2-deoxyglucose. The data presented demonstrate that, in the iris, carbachol (50 microM) stimulates the rapid breakdown of PtdIns(4,5)P2 into [3H]inositol trisphosphate (InsP3) and diacylglycerol, measured as phosphatidate, and that the accumulation of InsP3 precedes that of [3H]inositol bisphosphate (InsP2) and [3H]inositol phosphate (InsP). This conclusion is based on the following findings. Time course experiments with myo-[3H]inositol revealed that carbachol increased the accumulation of InsP3 by 12% in 15s and by 23% in 30s; in contrast, a significant increase in InsP release was not observed until about 2 min. Time-course experiments with 32P revealed a 10% loss of radioactivity from PtdIns(4,5)P2 and a corresponding 10% increase in phosphatidate labelling by carbachol in 15s; in contrast a significant increase in PtdIns labelling occurred in 5 min. Dose-response studies revealed that 5 microM-carbachol significantly increased (16%) the accumulation of InsP3 whereas a significant increase in accumulation of InsP2 and InsP was observed only at agonist concentrations greater than 10 microM. Studies on the involvement of Ca2+ in the agonist-stimulated breakdown of PtdIns(4,5)P2 in the iris revealed the following. Marked stimulation (58-78%) of inositol phosphates accumulation by carbachol in 10 min was observed in the absence of extracellular Ca2+. Like the stimulatory effect of noradrenaline, the ionophore A23187-stimulated accumulation of InsP3 was inhibited by prazosin, an alpha 1-adrenergic blocker, thus suggesting that the ionophore stimulation of PtdIns(4,5)P2 breakdown we reported previously [Akhtar & Abdel-Latif (1978) J. Pharmacol. Exp. Ther. 204, 655-688; Akhtar & Abdel-Latif (1980) Biochem. J. 192, 783-791] was secondary to the release of noradrenaline by the ionophore. The carbachol-stimulated accumulation of inositol phosphates was inhibited by EGTA (0.25 mM) and this inhibition was reversed by excess Ca2+ (1.5 mM), suggesting that EGTA treatment of the tissue chelates extracellular Ca2+ required for polyphosphoinositide phosphodiesterase activity. K+ depolarization, which causes influx of extracellular Ca2+ in smooth muscle, did not change the level of InsP3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Experiments were carried out to assess the effects of secretagogues on the polyphosphoinositides phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] on preparations of exocrine pancreas in vitro. Carbachol and caerulein provoked a rapid (less than 1 min) breakdown of 15-20% of [32P]PtdIns(4,5)P2 in isolated pancreatic acini, but did not affect [32P]PtdIns4P. In contrast, the Ca2+ ionophore ionomycin had no immediate effect on the levels of either inositide but caused a parallel fall in both lipids after 5-10 min. A similar decrease in [32P]PtdIns(4,5)P2 due to carbachol was obtained with isolated acini and isolated cells, despite the fact that the secretory response of isolated cells was considerably less than that of isolated acini. Loss of [32P]PtdIns(4,5)P2 elicited by carbachol or caerulein was unaffected either by the addition of EGTA in excess of extracellular Ca2+ or when a protocol was employed that eliminated caerulein-induced intracellular Ca2+-release. These results suggest that agonist-induced PtdIns(4,5)P2 breakdown in the exocrine pancreas may be an early step in the stimulus-response coupling pathway and also suggest that this breakdown is not dependent on Ca2+-mobilization.  相似文献   

14.
In pancreatic acinar cells prelabeled with either 32Pi or myo-[3H]inositol, arachidonic acid (10-50 microM) rapidly decreased the steady-state levels of [32P]phosphatidylinositol 4',5'-bisphosphate [( 32P]PtdIns4,5P2) and inhibited carbachol-stimulated accumulation of [3H]inositol trisphosphate [( 3H]InsP3). Both actions of arachidonic acid were rapidly reversed by bovine serum albumin (BSA). Indomethacin and nordihydoguaiaretic acid failed to block the inhibitory effects of arachidonic acid on [32P]PtdIns4,5P2 levels. Arachidonic acid (10-50 microM) also caused a prompt depletion of cellular ATP which was rapidly reversed by BSA. The ATP-depleting action of arachidonate paralleled in terms of concentration dependence and time course its inhibitory effects on [32P]PtdIns4,5P2 and [3H]InsP3 levels. Exposure of acinar cells to 50 microM arachidonic acid produced an increase in oxygen consumption which exceeded that elicited by either carbachol or ionomycin. Arachidonic acid (10-50 microM) also caused a concentration-dependent rise in cytosolic Ca2+, which was partially obtunded by Ca2+ deprivation. A proposed mechanism involving arachidonic acid as a negative feedback regulator of polyphosphoinositide turnover in exocrine pancreas is discussed.  相似文献   

15.
Experiments with washed platelets from rabbits demonstrate that stimulation with a low concentration of thrombin (0.1 unit/ml) that causes maximal aggregation and partial release of granule contents does not significantly decrease the amount of phosphatidylinositol 4,5-bisphosphate [ PtdIns (4,5)P2] at 10s; this contrasts with ADP stimulation. The amount of PtdIns (4,5)P2 was significantly decreased by a higher concentration of thrombin (0.3 unit/ml). Increased turnover of the PtdIns (4,5)P2 at 60s was indicated by changes in labelling with [3H]glycerol in platelets stimulated with both concentrations of thrombin. An unexpected observation with the lower thrombin concentration was a significant increase in the amount of phosphatidylinositol ( PtdIns ) at 10s. This contrasts with data from other laboratories, which indicate that thrombin causes a significant decrease in PtdIns . At 60s, with the lower concentration of thrombin, PtdIns was significantly decreased. With the higher concentration of thrombin there was a significant decrease in the amount of PtdIns at 10s, in keeping with the data from other laboratories. The initial increase in PtdIns may not have been observed by other investigators because higher concentrations of thrombin were used. The reaction involved in this initial increase in the amount of PtdIns does not appear to be increased degradation of PtdIns4P or PtdIns (4,5)P2, since their total amount was unchanged at 10s. The magnitude of the increase in PtdIns is such that more than the existing pool of phosphatidic acid would have to be converted into PtdIns to account for the increase. It is suggested that synthesis of phosphatidic acid de novo from dihydroxyacetone phosphate and glycerol 3-phosphate might be the source of phosphatidic acid, which leads to increased PtdIns at 10s with the lower concentration of thrombin. Thus it appears that the initial response of platelets to thrombin does not require an early change in PtdIns (4,5)P2 and may involve stimulation of synthesis de novo of PtdIns via phosphatidic acid.  相似文献   

16.
The agonist-dependent hydrolysis of inositol phospholipids was investigated by studying the breakdown of prelabelled lipid or by measuring the accumulation of inositol phosphates. Stimulation of insect salivary glands with 5-hydroxytryptamine for 6 min provoked a rapid disappearance of [3H]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and [3H]phosphatidylinositol 4-phosphate (PtdIns4P) but had no effect on the level of [3H]phosphatidylinositol (PtdIns). The breakdown of PtdIns(4,5)P2 was associated with a very rapid release of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], which reached a peak 5 1/2 times that of the resting level after 5 s of stimulation. This high level was not maintained but declined to a lower level, perhaps reflecting the disappearance of PtdIns(4,5)P2. 5-Hydroxytryptamine also induced a rapid and massive accumulation of inositol 1,4-bisphosphate [Ins(1,4)P2]. The fact that these increases in Ins(1,4,5)P3 and Ins(1,4)P2 precede in time any increase in the level of inositol 1-phosphate or inositol provides a clear indication that the primary action of 5-hydroxytryptamine is to stimulate the hydrolysis of PtdIns(4,5)P2 to yield diacylglycerol and Ins(1,4,5)P3. The latter is then hydrolysed by a series of phosphomonoesterases to produce Ins(1,4)P2, Ins1P and finally inositol. The very rapid agonist-dependent increases in Ins(1,4,5)P3 and Ins(1,4)P2 suggests that they could function as second messengers, perhaps to control the release of calcium from internal pools. The PtdIns(4,5)P2 that is used by the receptor mechanism represents a small hormone-sensitive pool that must be constantly replenished by phosphorylation of PtdIns. Small changes in the size of this small energy-dependent pool of polyphosphoinositide will alter the effectiveness of the receptor mechanism and could account for phenomena such as desensitization and super-sensitivity.  相似文献   

17.
Human platelets were labelled with [32P]Pi and [3H]glycerol before gel filtration. In unstimulated cells, the specific 32P radioactivity in phosphatidic acid (PtdOH) was similar to that of phosphatidylinositol (PtdIns) but only 4% of that of the gamma-phosphate of ATP. Upon 3 min of stimulation with 0.5 U/ml of thrombin, there was a 20-fold increase in specific 32P radioactivity of PtdOH which approached that of the ATP gamma-phosphate. Based on constant rates of synthesis and removal, this thrombin-induced increase in specific 32P radioactivity in PtdOH allowed us to calculate the flux of phosphate through PtdOH upon stimulation. Synthesis and removal occurred at rates of 107 and 52 nmol min-1/10(11) cells, respectively. The specific [3H]glycerol radioactivity was similar in PtdIns, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in unstimulated platelets. In PtdOH, it was 50% of that of the inositol phospholipids. Thrombin stimulation induced no changes in the specific 3H radioactivity of the inositol phospholipids whereas specific [3H]PtdOH increased to the level of these lipids. It is concluded that PtdIns, PtdInsP and PtdInsP2 exist in a metabolic homogenous pool in human platelets.  相似文献   

18.
1. A Hepes-based medium has been devised which allows rapid Pi exchange across the plasma membrane of the human erythrocyte. This allows the metabolically labile phosphate pools of human erythrocytes to come to equilibrium with [32P]Pi in the medium after only 5 h in vitro. 2. After 5-7 h incubation with [32P]Pi in this medium, only three phospholipids, phosphatidic acid (PtdOH), phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) are radioactively labelled. The concentrations of PtdIns4P and PtdIns4,5P2 remain constant throughout the incubation, so this labelling process is a reflection of the steady-state turnover of their monoester phosphate groups. 3. During such incubations, the specific radioactivities of the monoesterified phosphates of PtdIns4, PtdIns4,5P2 and PtdOH come to a steady value after 5 h that is only 25-30% of the specific radioactivity of the gamma-phosphate of ATP at that time. We suggest that this is a consequence of metabolic heterogeneity. This heterogeneity is not a result of the heterogeneous age distribution of the erythrocytes in human blood. Thus it appears that there is metabolic compartmentation of these lipids within cells, such that within a time-scale of a few hours only 25-30% of these three lipids are actively metabolized. 4. The phosphoinositidase C of intact human erythrocytes, when activated by Ca2+-ionophore treatment, only hydrolyses 50% of the total PtdIns4,5P2 and 50% of 32P-labelled PtdIns4,5P2 present in the cells: this enzyme does not discriminate between the metabolically active and inactive compartments of lipids in the erythrocyte membrane. Hence at least four metabolic pools of PtdIns4P and PtdIns4,5P2 are distinguishable in the human erythrocyte plasma membrane. 5. The mechanisms by which multiple non-mixing metabolic pools of PtdOH, PtdIns4P and PtdIns4,5P2 are sustained over many hours in the plasma membranes of intact erythrocytes are unknown, although some possible explanations are considered.  相似文献   

19.
Rat hepatocytes rapidly incorporate [32P]Pi into phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]; their monoester phosphate groups approach isotopic equilibrium with the cellular precursor pools within 1 h. Upon stimulation of these prelabelled cells with Ca2+-mobilizing stimuli (V1-vasopressin, angiotensin, alpha 1-adrenergic, ATP) there is a rapid fall in the labelling of PtdIns4P and PtdIns(4,5)P2. Pharmacological studies suggest that each of the four stimuli acts at a different population of receptors. Insulin, glucagon and prolactin do not provoke disappearance of labelled PtdIns4P and PtdIns(4,5)P2. The labelling of PtdIns4P and PtdIns(4,5)P2 in cells stimulated with vasopressin or angiotensin initially declines at a rate of 0.5-1.0% per s, reaches a minimum after 1-2 min and then returns towards the initial value. The dose-response curves for the vasopressin- and angiotensin-stimulated responses lie close to the respective receptor occupation curves, rather than at the lower hormone concentrations needed to evoke activation of glycogen phosphorylase. Disappearance of labelled PtdIns4P and PtdIns(4,5)P2 is not observed when cells are incubated with the ionophore A23187. The hormone-stimulated polyphosphoinositide disappearance is reduced, but not abolished, in Ca2+-depleted cells. These hormonal effects are not modified by 8-bromo cyclic GMP, cycloheximide or delta-hexachlorocyclohexane. The absolute rate of polyphosphoinositide breakdown in stimulated cells is similar to the rate previously reported for the disappearance of phosphatidylinositol [Kirk, Michell & Hems (1981) Biochem. J. 194, 155-165]. It seems likely that these changes in polyphosphoinositide labelling are caused by hormonal activation of the breakdown of PtdIns(4,5)P2 (and may be also PtdIns4P) by the action of a polyphosphoinositide phosphodiesterase. We therefore suggest that the initial response to hormones is breakdown of PtdIns(4,5)P2 (and PtdIns4P?), and that the simultaneous disappearance of phosphatidylinositol might be a result of its consumption for the continuing synthesis of polyphosphoinositides.  相似文献   

20.
The effect of the GTP analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]) on the polyphosphoinositide phospholipase C (PLC) of rat liver was examined by using exogenous [3H]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. GTP[S] stimulated the membrane-bound PLC up to 20-fold, with a half-maximal effect at approx. 100 nM. Stimulation was also observed with guanosine 5'-[beta gamma-imido]triphosphate, but not with adenosine 5'-[gamma-thio]triphosphate, and was inhibited by guanosine 5'-[beta-thio]diphosphate. Membrane-bound PLC was entirely Ca2+-dependent, and GTP[S] produced both a decrease in the Ca2+ requirement and an increase in activity at saturating [Ca2+]. The stimulatory action of GTP[S] required millimolar Mg2+. [8-arginine]Vasopressin (100 nM) stimulated the PLC activity approx. 2-fold in the presence of 10 nM-GTP[S], but had no effect in the absence of GTP[S] or at 1 microM-GTP[S]. The hydrolysis of PtdIns(4,5)P2 by membrane-bound PLC was increased when the substrate was mixed with phosphatidylethanolamine, phosphatidylcholine or various combinations of these with phosphatidylserine. With PtdIns(4,5)P2, alone or mixed with phosphatidylcholine, GTP[S] evoked little or no stimulation of the PLC activity. However, maximal stimulation by GTP[S] was observed in the presence of a 2-fold molar excess of phosphatidylserine or various combinations of phosphatidylethanolamine and phosphatidylserine. Hydrolysis of [3H]phosphatidylinositol 4-phosphate by membrane-bound PLC was also increased by GTP[S]. However, [3H]phosphatidylinositol was a poor substrate, and its hydrolysis was barely affected by GTP[S]. Cytosolic PtdIns(4,5)P2-PLC exhibited a Ca2+-dependence similar to that of the membrane-bound activity, but was unaffected by GTP[S]. It is concluded that rat liver plasma membranes possess a Ca2+-dependent polyphosphoinositide PLC that is activated by hormones and GTP analogues, depending on the Mg2+ concentration and phospholipid environment. It is proposed that GTP analogues and hormones, acting through a guanine nucleotide-binding protein, activate the enzyme mainly by lowering its Ca2+ requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号