首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenylalanine hydroxylase was purified from crude extracts of human livers which show enzyme activity by usine two different methods: (a) affinity chromatography and (b) immunoprecipitation with an antiserum against highly purified monkey liver phenylalanine hydroxylase. Purified human liver phenylalanine hydroxylase has an estimated mol. wt. of 275 000, and subunit mol. wts. of approx. 50 000 and 49 000. These two molecular-weight forms are designated H and L subunits. On two-dimensional polyacrylamide gel under dissociating conditions, enzyme purified by the two methods revealed at least six subunit species, which were resolved into two size classes. Two of these species have a molecular weight corresponding to that of the H subunit, whereas the other four have a molecular weight corresponding to that of the L subunit. This evidence indicates that active phenylalanine hydroxylase purified from human liver is composed of a mixture of sununits which are different in charge and size. None of the subunit species could be detected in crude extracts of livers from two patients with classical phenylketonuria by either the affinity or the immunoprecipitation method. However, they were present in liver from a patient with malignant hyperphenylalaninaemia with normal activity of dihydropteridine reductase.  相似文献   

2.
The primary structure of phenylalanine hydroxylase purified from rat liver was investigated with high speed gel filtration chromatography, cyanogen bromide cleavage and end group analyses of polypeptides derived from the enzyme. On gel filtration in the presence of 6M guanidine hydrochloride, the enzyme gave a single peak corresponding to a molecular weight of 52,000. In the same system the enzyme that had been cleaved with cyanogen bromide gave two peptides (CB1, Mr = 32,800 and CB2, Mr = 20,400). Sequence studies showed that the alignment of these two peptides was CB1 - CB2. Furthermore, in experiments using 32P phosphorylated enzyme, the site of phosphorylation by cAMP-dependent protein kinase was found to be located on the CB1 peptide. The NH2-terminus of this enzyme, which was found to be blocked, was shown to be N-acetylalanine. By both carboxypeptidase A digestion and hydrazinolysis, the carboxyl terminus was identified as serine. These data indicate that the phenylalanine hydroxylase molecule from rat liver is composed of subunits which are homogenous or, at least, very similar in their primary structure.  相似文献   

3.
Cryptic trehalase from Saccharomyces cerevisiae was purified about 3000-fold. The recovery of 970% of the original "activity" indicated the removal of an inhibitor of the enzyme. Active trehalase, obtained through phosphorylation of cryptic trehalase by cAMP-dependent protein kinase, was isolated by chromatography on DEAE-cellulose. A major phosphorylated protein, with an apparent Mr of 86,000, was detected after SDS-polyacrylamide gel electrophoresis. This protein band correlated exactly with the elution profile of trehalase activity and 32Pi incorporation into the enzyme on DEAE-cellulose chromatography. Partially purified active trehalase showed absolute specificity towards trehalose with an apparent Km of 4.79 X 10(-3) M. Both forms of the enzyme showed an apparent molecular weight of 160,000, by gel filtration. Centrifugation on a glycerol density gradient indicated multiple forms of trehalase-c, with Mr of 320,000, 160,000, and 80,000. After activation of each of these forms by protein kinase, a single form of trehalase-a was observed, with a Mr of 160,000. Trehalase-c appears to be a totally inactive form of the enzyme. The only mechanism of activation seems to be phosphorylation by cAMP-dependent protein kinase. When the protein kinase concentration was varied, at a fixed trehalase-c concentration, a sigmoidal activation plot was obtained. This result suggests the occurrence of multiple forms of cryptic trehalase.  相似文献   

4.
The state of phosphorylation of phenylalanine hydroxylase was determined in isolated intact rat hepatocytes. 32P-labeled phenylalanine hydroxylase was immunoisolated from cells loaded with 32Pi or from cell extracts 'back-phosphorylated' with [gamma-32P]ATP by cAMP-dependent protein kinase. The rate of phenylalanine hydroxylase phosphorylation in cells with elevated cAMP was similar to that observed for the isolated enzyme phosphorylated by homogeneous cAMP-dependent protein kinase. The phosphorylation rate in cAMP-stimulated cells was increased up to four times (reaching 0.018 s-1) by the presence of phenylalanine, the phosphate content (mol/mol hydroxylase) increasing to 0.5 from the basal level (0.17) in 50 s. The half maximal effect of phenylalanine was obtained at a physiologically relevant concentration (110 microM). The synthetic phenylalanine hydroxylase cofactor dimethyltetrahydropterin also enhanced the cAMP-stimulated phosphorylation of phenylalanine hydroxylase, presumably by displacing the endogenous cofactor, tetrahydrobiopterin. Phenylalanine was a negative modulator of the phosphorylation of phenylalanine hydroxylase induced by incubating cells with vasopressin or with the phosphatase inhibitor okadaic acid. The same site on the phenylalanine hydroxylase was phosphorylated in response to these two agents as in response to elevated cAMP. The available evidence suggested that not only vasopressin, but also okadaic acid, acted by stimulating the multifunctional Ca2+/calmodulin-dependent protein kinase II or a kinase with closely resembling properties.  相似文献   

5.
Immunochemical properties and subunit structure of an antigen were characterized in autopsy specimens of human liver and brain, using antiserum against human phenylalanine hydroxylase. An identical antigen was revealed in extracts of organs by immunoelectrophoresis. Its content was 1.5-2.0 mg/g tissue in the liver and 20-40 micrograms/g tissue in the brain. One L enzyme subunit and two H subunits were identified in the liver extracts after two-dimensional electrophoresis followed by immunoblotting. Subunit structure of phenylalanine hydroxylase in the brain was similar to that in the liver. The molecular weight of L subunit was 55,000 and it was located in the same area as albumin isoforms. The molecular weight of H subunits was 57,000 and they differed from L subunits in pI. The antigen was purified from crude extracts of biopsy liver by affinity chromatography on immunoadsorbent to phenylalanine hydroxylase and showed phenylalanine hydroxylase activity. An antigen with similar molecular weight was also purified from the brain extract by the same method. These data suggest that phenylalanine hydroxylase can be present in the human brain.  相似文献   

6.
Immunoprecipitation of the phenylalanine hydroxylase formed by translation of rat liver RNA in a rabbit reticulocyte cell-free protein synthesis system was used to examine the origin of the molecular weight heterogeneity of the enzyme. Sodium dodecyl sulfate-polyacrylamide electrophoresis of the immunoprecipitated products showed that in most cases a single specifically immunoprecipitated polypeptide was produced which corresponded to the higher molecular weight (H) form of phenylalanine hydroxylase (Mr = 50,000). The identity of the product was confirmed by immunological competition and peptide mapping. RNA from other rats, however, coded for both the H-form and the lower molecular weight (L) form of phenylalanine hydroxylase or for only the L-form. The evidence suggests that the L-form derives from a different mRNA, rather than by proteolysis of the H-form, an interpretation which is supported by the isolation of the lower form of phenylalanine hydroxylase from livers of some rats.  相似文献   

7.
We report here the identification of a cultured human hepatoma cell line which possesses an active phenylalanine hydroxylase system. Phenylalanine hydroxylation was established by growth of cells in a tyrosine-free medium and by the ability of a cell-free extract to convert [14C]phenylalanine to [14C]tyrosine in an enzyme assay system. This enzyme activity was abolished by the presence in the assay system of p-chlorophenylalanine but no significant effect on the activity was observed with 3-iodotyrosine and 6-fluorotryptophan. Use of antisera against pure monkey or human liver phenylalanine hydroxylase has detected a cross-reacting material in this cell line which is antigenically identical to the human liver enzyme. Phenylalanine hydroxylase purified from this cell line by affinity chromatography revealed a multimeric molecular weight (estimated 275,000) and subunit molecular weights (estimated 50,000 and 49,000) which are similar to those of phenylalanine hydroxylase purified from a normal human liver. This cell line should be a useful tool for the study of the human phenylalanine hydroxylase system.  相似文献   

8.
The photoaffinity label 8-azido[32P]adenosine 3':5'-monophosphate (8-azido-cyclic [32P]AMP) was used to analyze both the cAMP-binding component of the purified cAMP-dependent protein kinase, and the cAMP-binding proteins present in crude tissue extracts of bovine cardiac muscle. 8-Azido-cyclic [32P]AMP reacted specifically and in stoichiometric amounts with the cAMP-binding proteins of bovine cardiac muscle. Upon phosphorylation, the purified cAMP-binding protein from bovine cardiac muscle changed its electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels from an apparent molecular weight of 54,000 to an apparent molecular weight of 56,000. In tissue extracts of bovine cardiac muscle, most of the 8-azido-cyclic [32P]AMP was incorporated into a protein band with an apparent molecular weight of 56,000 which shifted to 54,000 upon treatment with a phosphoprotein phosphatase. Thus a substantial amount of the cAMP-binding protein appeared to be in the phosphorylated form. Autoradiograms following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both the pure and impure cAMP-binding proteins labeled with 8-azido-cyclic [32P]AMP revealed another binding component with a molecular weight of 52,000 which incorporated 32P from [gamma-32P]ATP without changing its electrophoretic mobility. Limited proteolysis of the 56,000- and 52,000-dalton proteins labeled with 32P from either [gamma-32P]ATP.Mg2+ or 8-azido-cyclic [32P]AMP showed patterns indicating homology. On the other hand, peptide maps of the major 8-azido-cyclic [32P]AMP-labeled proteins from tissue extracts of bovine cardiac muscle (Mr = 56,000) and rabbit skeletal muscle (Mr = 48,000) displayed completely different patterns as expected for the cAMP-binding components of types II and I protein kinases. Both phospho- and dephospho-cAMP-binding components from the purified bovine cardiac muscle protein kinase were also resolved by isoelectric focusing on polyacrylamide slab gels containing 8 M urea. The phosphorylated forms labeled with 32P from either [gamma-32P]ATP or 8-azido-cyclic [32P]AMP migrated as a doublet with a pI of 5.35. The 8-azido-cyclic [32P]AMP-labeled dephosphorylated form also migrated as a doublet with a pI of 5.40. The phosphorylated and dephosphorylated cAMP-binding proteins migrated with molecular weights of 56,000 and 54,000, respectively, following a second dimension electrophoresis in sodium dodecyl sulfate. The lower molecular weight cAMP-binding component (Mr = 52,000) was also apparent in these gels. Similar experiments with the cAMP-binding proteins present in tissue extracts of bovine cardiac muscle indicate that they are predominantly in the phosphorylated form.  相似文献   

9.
Pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) type L was partly purified from rat kidney. During the last two purification steps, the incorporation of [32P]phosphate into protein on incubation with [32P]ATP and cyclic 3',5'-AMP-dependent protein kinase was found to parallel the pyruvate kinase activity. After phosphorylation of the enzyme, a major radioactive band with a molecular weight of 57 000 was found on polyacrylamide gel electrophoresis [32P]Phosphorylserine was isolated from the kidney pyruvate kinase. Immunological identity was found between the liver and kidney pyruvate kinases type L. By autoradiography of high-voltage electropherograms after partial acid hydrolysis of the phosphorylated rat liver and kidney pyruvate kinases type L, identical results were obtained. The affinity for phosphoenolpyruvate was found to be decreased by phosphorylation of the enzyme with a change in the apparent Km from 0.15 mM to 0.35 mM. After incubation of the phosphorylated kidney pyruvate kinase with phosphatase the phosphoenolpyruvate saturation curve was found to be identical to that for the unphosphorylated enzyme. Thus, the activity of the rat kidney pyruvate kinase type L is with all probability regulated by a reversible phosphorylation-dephosphorylation reaction, thereby indicating that hormonal regulation of gluconeogenesis via cyclic AMP may be of importance in the renal cortex.  相似文献   

10.
Monoclonal antibody PH7 has specificity for the phosphorylated form of the human liver phenylalanine hydroxylase and negligible reactivity towards the dephosphorylated form of the native enzyme by enzyme-linked immunoassay. PH7 binds specifically to the phosphorylated form of the liver enzyme after SDS/polyacrylamide-gel electrophoresis and transfer to nitrocellulose. Competitive blocking assays have been applied in conjunction with reversed-phase h.p.l.c. of purified tryptic fragments of human liver phenylalanine hydroxylase to localize the epitope. The major immunoreactive tryptic peptide cross-reacting with PH7 had an amino acid analysis corresponding to the first 41 amino acids of the human liver phenylalanine hydroxylase sequence and included the serine residue that is thought to be the phosphorylation site. The monoclonal antibody recognized the phosphorylated form of the synthetic decapeptide corresponding to the local phosphorylation-site sequence Gly-Leu-Gly-Arg-Lys-Leu-Ser(P)-Asp-Phe-Gly, but not the dephosphodecapeptide. Thermolysin digestion of the peptide demonstrated the monoclonal antibody bound to the pentapeptide Leu-Ser(P)-Asp-Phe-Gly. Monoclonal antibody PH7 recognized the phosphodecapeptide at concentrations 10(3)-fold higher than with phenylalanine hydroxylase, compared with 10(4)-10(7)-fold higher for other phosphopeptides and phosphoproteins. The results demonstrate that monoclonal antibody PH7 has specificity for the phosphorylated form of phenylalanine hydroxylase at the phosphorylation site.  相似文献   

11.
Phosphorylation of pure fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase from bovine heart by cAMP-dependent protein kinase and protein kinase C was investigated. The major enzyme form (subunit Mr of 58,000) was rapidly phosphorylated by both cAMP-dependent protein kinase and protein kinase C, incorporating 0.8 and 1.0 mol/mol of subunit, respectively. The rate of phosphorylation of the heart enzyme by cAMP-dependent protein kinase was 10 times faster than that of the rat liver enzyme. The minor enzyme (subunit Mr of 54,000), however, was phosphorylated only by protein kinase C and was phosphorylated much more slowly with a phosphate incorporation of less than 0.1 mol/mol of subunit. Phosphorylation by either cAMP-dependent protein kinase or protein kinase C activated the enzyme, but each phosphorylation affected different kinetic parameters. Phosphorylation by cAMP-dependent protein kinase lowered the Km value for fructose 6-phosphate from 87 to 42 microM without affecting the Vmax, whereas the phosphorylation by protein kinase C increased the Vmax value from 55 to 85 milliunits/mg without altering the Km value. The phosphorylated peptides were isolated, and their amino acid sequences were determined. The phosphorylation sites for both cAMP-dependent protein kinase and protein kinase C were located in a single peptide whose sequence was Arg-Arg-Asn-Ser-(P)-Phe-Thr-Pro-Leu-Ser-Ser-Ser-Asn-Thr(P)-Ile-Arg-Arg-Pro. The seryl residue nearest the N terminus was the residue specifically phosphorylated by cAMP-dependent protein kinase, whereas the threonine residue nearest the C terminus was phosphorylated by protein kinase C.  相似文献   

12.
A monoclonal antibody (PH 7), which recognizes the phosphorylated form of phenylalanine hydroxylase from human liver, has been used for the analysis of the enzyme in crude cell extracts from rat. In immunoblot analyses of rat liver cell extracts, the extent of binding of PH 7 closely correlates with the phosphorylation state of phenylalanine hydroxylase, as judged by [32P]Pi incorporation. These observations have made possible the rapid non-radioactive quantification of hormonal effects on phenylalanine hydroxylase phosphorylation state. In particular, the glucagon-dependent phosphorylation of phenylalanine hydroxylase in liver cells was investigated. Epidermal growth factor was shown to modulate this process. In addition, this technique was used to demonstrate, for the first time, that dibutyryl cyclic AMP, unlike the Ca2+ ionophore A23187, stimulates the phosphorylation of phenylalanine hydroxylase in isolated kidney tubules from rat.  相似文献   

13.
Rat liver L-type pyruvate kinase was phosphorylated in vitro by a Ca2+/calmodulin-dependent protein kinase purified from rabbit liver. The calmodulin (CaM)-dependent kinase catalyzed incorporation of up to 1.7 mol of 32P/mol of pyruvate kinase subunit; maximum phosphorylation was associated with a 3.0-fold increase in the K0.5 for P-enolpyruvate. This compares to incorporation of 0.7 to 1.0 mol of 32P/mol catalyzed by the cAMP-dependent protein kinase with a 2-fold increase in K0.5 for P-enolpyruvate. When [32P]pyruvate kinase, phosphorylated by the CaM-dependent protein kinase, was subsequently incubated with 5 mM ADP and cAMP-dependent protein kinase (kinase reversal conditions), 50-60% of the 32PO4 was removed from pyruvate kinase, but the K0.5 for P-enolpyruvate decreased only 20-30%. Identification of 32P-amino acids after partial acid hydrolysis showed that the CaM-dependent protein kinase phosphorylated both threonyl and seryl residues (ratio of 1:2, respectively) whereas the cAMP-dependent protein kinase phosphorylated only seryl groups. The two phosphorylation sites were present in the same 3-4-kDa CNBr fragment located near the amino terminus of the enzyme subunit. These results indicate that the CaM-dependent protein kinase catalyzed phosphorylation of L-type pyruvate kinase at two discrete sites. One site is apparently the same serine which is phosphorylated by the cAMP-dependent protein kinase. The second site is a unique threonine residue whose phosphorylation also inactivates pyruvate kinase by elevating the K0.5 for P-enolpyruvate. These results may account for the Ca2+-dependent phosphorylation of pyruvate kinase observed in isolated hepatocytes.  相似文献   

14.
Rap 1B is a low molecular weight G protein which is phosphorylated by cAMP-dependent protein kinase. In order to identify the site of phosphorylation by cAMP-dependent protein kinase, purified rap 1B from human platelets was phosphorylated and subjected to limited proteolysis with trypsin. Single digestion fragment containing the phosphorylation site was obtained and purified by reversed-phase HPLC. Sequence analysis of the phosphorylated digestion fragment demonstrated that the sequence of the phosphorylation site was -Lys-Lys-Ser-Ser-. This sequence is near the carboxy terminus and is adjacent to the site of membrane attachment of the protein.  相似文献   

15.
Suspension cultures of purified bovine adrenal chromaffin cells incorporated 32P from exogenous 32Pi into a protein of approximately M4 = 60,000 (isolated by discontinuous, sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis). Phosphorylated tyrosine hydroxylase, purified from chromaffin cell supernatants by immunoprecipitation, co-migrated with the Mr = 60,000 band. Tryptic fragments prepared fom either the Mr congruent to 60,000 band or the immunoprecipitated tyrosine hydroxylase band were analyzed after separation with two-dimensional electrophoresis/chromatography. Two distinct 32P-peptides were present in either sample. After a 2-3-min lag period. 32P incorporation into both peptides was relatively linear with time for at least 20 min. In the presence of calcium, exogenous acetylcholine (100 microM) increased 32P incorporation into both of the 32P-labeled tryptic peptides whereas 8-bromo-cAMP (1 mM) increased 32P incorporation into only one of the two. Ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and MnCl2 inhibited the acetylcholine-induced phosphorylation of both tryptic peptides. Thus, tyrosine hydroxylase is phosphorylated in situ at more than one site, and the phosphorylation of these sites is affected differently by acetylcholine and 8-bromo-cAMP. The data imply that kinase activity other than (or in addition to) cAMP-dependent protein kinase activity attends tyrosine hydroxylase in the intact chromaffin cells and that multiple kinase activities may be involved in the short term regulation of catecholamine biosynthesis by afferent activity.  相似文献   

16.
A cytoskeletal extract of pure axoplasm, highly enriched with neurofilaments (ANF), was prepared from the giant axon of the squid. This ANF preparation also contained potent kinase activities which phosphorylated the Mr greater than 400,000 (high molecular weight) and Mr 220,000 squid neurofilament protein subunits. High salt (1 M) extraction of this ANF preparation solubilized most of the neurofilament proteins and kinase activities and gel filtration on an AcA 44 column separated these two components. The neurofilaments eluted in the void volume of the column while the kinase activities eluted in the 17-44-kDa range of the column. Two major kinase activities were measured in this peak of activity. One of these strongly phosphorylated the phosphate acceptor peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) and was completely inhibited by the selective inhibitor of cAMP-dependent kinase Thr-Thr-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ala-Ile- NH2 (Wiptide). Since addition of cAMP did not stimulate activity, this suggested that this kinase was a free catalytic subunit of cAMP-dependent kinase associated with the neurofilaments. The second kinase activity most effectively phosphorylated alpha-casein, and this activity was not affected by Wiptide. The alpha-casein phosphorylating activity (ANF kinase) was the principal activity responsible for neurofilament protein phosphorylation, and was not inhibited by various inhibitors against second messenger regulated kinases, suggesting it was related to the casein kinase family. Four lines of evidence indicate ANF kinase was similar to casein kinase I. These were: 1) the apparent molecular weight determined by gel filtration and the chromatographic elution profile on phosphocellulose column corresponded to casein kinase I; 2) heparin, an inhibitor of casein kinase II at 2-5 micrograms/ml, stimulated both ANF kinase and purified casein kinase I at these concentrations, while CKI-7, a relatively selective inhibitor of casein kinase I, inhibited ANF kinase in a comparable dose-response fashion; 3) purified casein kinase I strongly phosphorylated both ANF protein subunits (like ANF kinase) whereas casein kinase II was relatively ineffective; and 4) tryptic peptide maps of the HMW and Mr 220,000 neurofilament proteins after phosphorylation by ANF kinase or purified casein kinase I showed similar 32P-peptide patterns.  相似文献   

17.
A method is described which separates the various phosphorylation sites in glycogen synthase based on reverse phase high-performance liquid chromatography (HPLC) of tryptic 32P-peptides. Using this method we studied the phosphorylation site specificities of the kinases which act on glycogen synthase. The cAMP-dependent protein kinase phosphorylated sites 1a, 1b, and 2, whereas casein kinase II phosphorylated only site 5. Two calcium, calmodulin-dependent kinases, phosphorylase kinase and liver calmodulin-dependent synthase kinase, both phosphorylated site 2, and the latter enzyme also phosphorylated site 1b. A cAMP-independent kinase (kinase 4) purified from liver also specifically phosphorylated site 2. Synthase kinase 3 catalyzed the phosphorylation of only site 3. This HPLC method was also used to establish that all of these sites were subject to phosphorylation in vivo.  相似文献   

18.
The phosphorylation of canine cardiac and skeletal muscle ryanodine receptors by the catalytic subunit of cAMP-dependent protein kinase has been studied. A high-molecular-weight protein (Mr 400,000) in cardiac microsomes was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. A monoclonal antibody against the cardiac ryanodine receptor immunoprecipitated this phosphoprotein. In contrast, high-molecular-weight proteins (Mr 400,000-450,000) in canine skeletal microsomes isolated from extensor carpi radialis (fast) or superficial digitalis flexor (slow) muscle fibers were not significantly phosphorylated. In agreement with these findings, the ryanodine receptor purified from cardiac microsomes was also phosphorylated by cAMP-dependent protein kinase. Phosphorylation of the cardiac ryanodine receptor in microsomal and purified preparations occurred at the ratio of about one mol per mol of ryanodine-binding site. Upon phosphorylation of the cardiac ryanodine receptor, the levels of [3H]ryanodine binding at saturating concentrations of this ligand increased by up to 30% in the presence of Ca2+ concentrations above 1 microM in both cardiac microsomes and the purified cardiac ryanodine receptor preparation. In contrast, the Ca2+ concentration dependence of [3H]ryanodine binding did not change significantly. These results suggest that phosphorylation of the ryanodine receptor by cAMP-dependent protein kinase may be an important regulatory mechanism for the calcium release channel function in the cardiac sarcoplasmic reticulum.  相似文献   

19.
Caldesmon is a widely distributed calmodulin- and actin-binding protein which occurs in different forms depending on the tissue or cell type under examination. On the basis of molecular weight, caldesmon species can be divided into two classes: caldesmon77 (Mr 70,000-80,000) and caldesmon150 (Mr 140,000-150,000). We have examined the phosphorylation of caldesmon77 by protein kinase C (the Ca2+/phospholipid-dependent enzyme) in vitro and in intact platelets. Caldesmon77, purified from bovine liver, could be phosphorylated by purified rat brain protein kinase C to a level of approximately 1.0 mol of phosphate per mol of caldesmon77 monomer. Two-dimensional tryptic peptide mapping and phosphoamino acid analysis reveals that caldesmon77 is phosphorylated at two major sites exclusively on serine residues. Following treatment of platelets with tumor-promoting phorbol ester, caldesmon77 phosphorylation was elevated 4-fold. Tryptic peptide mapping of phosphorylated platelet caldesmon77 demonstrates that phosphorylation is most significantly enhanced on two peptides which had migration patterns identical with those of the two major phosphopeptides of bovine liver caldesmon77 phosphorylated in vitro. The results of this study indicate that protein kinase C can phosphorylate caldesmon77 in vitro and in intact platelets, suggesting a role for protein kinase C in the regulation of caldesmon77 function or localization.  相似文献   

20.
Phosphorylation of the chicken progesterone receptor   总被引:3,自引:0,他引:3  
We have examined the phosphorylation of the chicken progesterone receptor in tissue slices and in vitro. The receptor is phosphorylated in tissue slices and this phosphorylation is stimulated by progesterone. As others have reported, partially purified receptor preparations contain a kinase activity which phosphorylates histones and receptor. We have shown that this activity can be separated from the receptor. The receptor is a substrate for several kinases, including the catalytic subunit of the cAMP-dependent protein kinase and PPdPK, a polypeptide-dependent protein kinase. Phosphorylation by the cAMP-dependent protein kinase results in an apparent increase in the molecular weight of the receptor when the receptor is analyzed by SDS-PAGE. These results are consistent with apparent changes in molecular weight observed for rabbit and human progesterone receptor upon treatment of tissue or cells with hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号