首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blue native electrophoresis is used widely for the analysis of non-dissociated protein complexes with respect to composition, oligomeric state and molecular mass. However, the effects of detergent or dye binding on the mass and stability of the integral membrane proteins have not been studied. By comparison with analytical ultracentrifugation, we have evaluated whether the oligomeric state of membrane transport proteins is reflected reliably with blue native electrophoresis. For the analysis we have used two well-characterized transporters, that is, the major facilitator superfamily protein LacS and the phosphotransferase system EII(Mtl). For another member of the major facilitator superfamily, the xyloside transporter XylP from Lactobacillus pentosus, the complete analysis of the quaternary structure determined by analytical ultracentrifugation and freeze-fracture electron microscopy is presented.Our experiments show that during blue native electrophoresis the detergent bound to the proteins is replaced by the amphipathic Coomassie brilliant blue (CBB) dye. The mass of the bound CBB dye was quantified. Provided this additional mass of bound CBB dye is accounted for and care is taken in the choice and concentration of the detergent used, the mass of LacS, XylP and EII(Mtl) and four other membrane (transport) proteins could be deduced within 10 % error. Our data underscore the fact that the oligomeric state of many membrane transport proteins is dimeric.  相似文献   

2.
The Major Facilitator Superfamily lactose transport protein (LacS) undergoes reversible self-association in the detergent-solubilized state, and is present in the membrane as a dimer. We determined the functional unit for proton motive force (Deltap)-driven lactose uptake and lactose/methyl-beta-D-galactopyranoside equilibrium exchange in a proteoliposomal system in which a single cysteine mutant, LacS-C67, defective in Deltap-driven uptake, was co-reconstituted with fully functional cysteine-less protein, LacS-cl. From the quadratic relationship between the uptake activity and the ratio of LacS-C67/LacS-cl, we conclude that the dimeric state of LacS is required for Deltap-driven uptake. N-ethylmaleimide (NEM) treatment of proteoliposomes abolished the LacS-C67 exchange activity but left the LacS-cl unaffected. After NEM treatment, the exchange activity decreased linearly with increasing ratios of LacS-C67/LacS-cl, suggesting that the monomeric state of LacS is sufficient for this mode of transport. We propose that the two subunits of LacS are functionally coupled in the step associated with conformational reorientation of the empty binding site, a step unique for Deltap-driven uptake.  相似文献   

3.
Although the quaternary state has been assessed in detail for only a few members of the major facilitator superfamily (MFS), it is clear that multiple oligomeric states are represented within the MFS. One of its members, the lactose transporter LacS from Streptococcus thermophilus assumes a dimeric structure in the membrane and in vitro analysis showed functional interactions between both subunits when proton motive force ((Delta)p)-driven transport was assayed. To study the interactions in further detail, a covalent dimer was constructed consisting of in tandem fused LacS subunits. These covalent dimers, composed of active and completely inactive subunits, were expressed in Escherichia coli, and initial rates of (Delta)p-driven lactose uptake and lactose counterflow were determined. We now show that also in vivo, both subunits interact functionally; that is, partial complementation of the inactive subunit was observed for both transport modes. Thus, both subunits interact functionally in (Delta)p-driven uptake and in counterflow transport. In addition, analysis of in tandem fused LacS subunits containing one regulatory LacS-IIA domain showed that regulation is primarily an intramolecular event.  相似文献   

4.
The dependence upon solution conditions of the quaternary structure and gross conformation of peanut agglutinin was examined by sedimentation equilibrium, sedimentation velocity, gel chromatography, and circular dichroism. At pH 8, the protein exists as a compactly folded tetramer of molecular weight 98,000. Between pH 4.75 and pH 3.0, the molecular reversibly dissociates to a (still globular) dimer. In the presence of denaturants such as SDS or guanidinium chloride, the protein dissociates to its four equal-sized constituents polypeptide chains. The circular dichroic spectrum of peanut lectin exhibits changes in the near ultraviolet upon binding of lactose, whereas the far ultraviolet spectrum remains unchanged. Dissociation to the dimeric state produces subtle changes in both the near and far ultraviolet circular dichroic spectrum.  相似文献   

5.
The biological activity of a lectin is influenced by its quaternary structure. Viscumin is special among the family members of toxic AB-type plant lectins, because it triggers mitogenicity, toxicity, and agglutination. Its activity profile is dependent on the concentration, motivating a thorough inspection of the status of quaternary structure. Over a broad range of protein concentrations (0.01-25 mg/mL), viscumin occurs as a dimer. At high concentrations, the solutions exhibited nonideality, self-association, and polydispersity in sedimentation equilibrium and velocity experiments caused by irreversible aggregation. Calculation of viscumin's overall shape based on sedimentation velocity data resulted in an elongated dimer form resembling that of crystallized agglutinin. Appearance of monomers was restricted to concentrations in the submicrogram/mL level, as demonstrated by fast protein liquid chromatography gel-filtration analysis. To shift the equilibrium to the monomer for comparative cell biological assays, we performed chemical modification under conditions protecting the lectin activity. Citraconylation was effective to destabilize the dimer. Binding studies by fluorescence-activated cell scan analysis revealed a reduction in cell association upon modification and a tendency for increased sensitivity towards haptenic inhibitors at microg/mL concentrations. Nonetheless, growth inhibition continued to be potent for the ricin-like monomer despite reduced extent of binding. Occurrence of a concentration-dependent monomer/dimer equilibrium appears to achieve the same objectives as the development of two separate protein entities in Ricinus communis, an alternative strategy to emergence of a monomeric toxin, and cell cross-linking dimeric agglutinin.  相似文献   

6.
The fructose-1,6-bis(phosphate) aldolase isologous tetramer tightly associates through two different subunit interfaces defined by its 222 symmetry. Both single- and double-interfacial mutant aldolases have a destabilized quaternary structure, but there is little effect on the catalytic activity. These enzymes are however thermolabile. This study demonstrates the temperature-dependent dissociation of the mutant enzymes and determines the dissociation free energies of both mutant and native aldolase. Subunit dissociation is measured by sedimentation equilibrium in the analytical ultracentrifuge. At 25 degrees C the tetramer-dimer dissociation constants for each single-mutant enzyme are similar, about 10(-6) M. For the double-mutant enzyme, sedimentation velocity experiments on sucrose density gradients support a tetramer-monomer equilibrium. Furthermore, sedimentation equilibrium experiments determined a dissociation constant of 10(-15) M3 for the double-mutant enzyme. By the same methods the upper limit for the dissociation constant of wild-type aldolase A is approximately 10(-28) M3, which indicates an extremely stable tetramer. The thermodynamic values describing monomer-tetramer and dimer-tetramer equilibria are analyzed with regard to possible cooperative interaction between the two subunit interfaces.  相似文献   

7.
The dimeric interface of severe acute respiratory syndrome coronavirus main protease is a potential target for the anti-SARS drug development. We have generated C-terminal truncated mutants by serial truncations. The quaternary structure of the enzyme was analyzed using both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation. Global analysis of the combined results showed that truncation of C-terminus from 306 to 300 had no appreciable effect on the quaternary structure, and the enzyme remained catalytically active. However, further deletion of Gln-299 or Arg-298 drastically decreased the enzyme activity to 1-2% of wild type (WT), and the major form was a monomeric one. Detailed analysis of the point mutants of these two amino acid residues and their nearby hydrogen bond partner Ser-123 and Ser-139 revealed a strong correlation between the enzyme activity loss and dimer dissociation.  相似文献   

8.
The lactose transport protein (LacS) of Streptococcus thermophilus has a C-terminal hydrophilic domain that is homologous to IIA protein and protein domains of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The IIA domain of LacS is phosphorylated on His-552 by the general energy coupling proteins of the PTS, which are Enzyme I and HPr. To study the effect of phosphorylation on transport, the LacS protein was purified and incorporated into liposomes with the IIA domain facing outwards. This allowed the phosphorylation of the membrane-reconstituted protein by purified HPr(His approximately P) of S. thermophilus. Phosphorylation of LacS increased the V(max) of counterflow transport, whereas the V(max) of the proton motive force (delta p)-driven lactose uptake was not affected. In line with a range of kinetic studies, we propose that phosphorylation affects the rate constants for the reorientation of the ternary complex (LacS with bound lactose plus proton), which is rate-determining for counterflow but not for delta p-driven transport.  相似文献   

9.
The lactose transporter from Streptococcus thermophilus catalyses the symport of galactosides and protons. The carrier domain of the protein harbours the contact sites for dimerization, and the individual subunits in the dimer interact functionally during the transport reaction. As a first step towards the elucidation of the mechanism behind the cooperation between the subunits, regions involved in the dimer interface were determined by oxidative and chemical cross-linking of 12 cysteine substitution mutants. Four positions in the protein were found to be susceptible to intermolecular cross-linking. To ensure that the observed cross-links were not the result of randomly colliding particles, the cross-linking was studied in samples in which either the concentration of LacS in the membrane was varied or the oligomeric state was manipulated. These experiments showed that the cross-links were formed specifically within the dimer. The four regions of the protein located at the dimer interface are close to the extracellular ends of transmembrane segments V and VIII and the intracellular ends of transmembrane segments VI and VII.  相似文献   

10.
The OpuA system of Bacillus subtilis is a member of the substrate-binding-protein-dependent ABC transporter superfamily and serves for the uptake of the compatible solute glycine betaine under hyperosmotic growth conditions. Here, we have characterized the nucleotide-binding protein (OpuAA) of the B.subtilis OpuA transporter in vitro. OpuAA was overexpressed heterologously in Escherichia coli as a hexahistidine tag fusion protein and purified to homogeneity by affinity and size exclusion chromatography (SEC). Dynamic monomer/dimer equilibrium was observed for OpuAA, and the K(D) value was determined to be 6 microM. Under high ionic strength assay conditions, the monomer/dimer interconversion was diminished, which enabled separation of both species by SEC and separate analysis of both monomeric and dimeric OpuAA. In the presence of 1 M NaCl, monomeric OpuAA showed a basal ATPase activity (K(M)=0.45 mM; k(2)=2.3 min(-1)), whereas dimeric OpuAA showed little ATPase activity under this condition. The addition of nucleotides influenced the monomer/dimer ratio of OpuAA, demonstrating different oligomeric states during its catalytic cycle. The monomer was the preferred species under post-hydrolysis conditions (e.g. ADP/Mg(2+)), whereas the dimer dominated the nucleotide-free and ATP-bound states. The affinity and stoichiometry of monomeric or dimeric OpuAA/ATP complexes were determined by means of the fluorescent ATP-analog TNP-ATP. One molecule of TNP-ATP was bound in the monomeric state and two TNP-ATP molecules were detected in the dimeric state of OpuAA. Binding of TNP-ADP/Mg(2+) to dimeric OpuAA induced a conformational change that led to the decay of the dimer. On the basis of our data, we propose a model that couples changes in the oligomeric state of OpuAA with ATP hydrolysis.  相似文献   

11.
Rhomboid peptidases (proteases) play key roles in signaling events at the membrane bilayer. Understanding the regulation of rhomboid function is crucial for insight into its mechanism of action. Here we examine the oligomeric state of three different rhomboid proteases. We subjected Haemophilus influenzae, (hiGlpG), Escherichia coli GlpG (ecGlpG) and Bacillus subtilis (YqgP) to sedimentation equilibrium analysis in detergent-solubilized dodecylmaltoside (DDM) solution. For hiGlpG and ecGlpG, rhomboids consisting of the core 6 transmembrane domains without and with soluble domains respectively, and YqgP, predicted to have 7 transmembrane domains with larger soluble domains at the termini, the predominant species was dimeric with low amounts of monomer and tetramers observed. To examine the effect of the membrane domain alone on oligomeric state of rhomboid, hiGlpG, the simplest form from the rhomboid class of intramembrane proteases representing the canonical rhomboid core of six transmembrane domains, was studied further. Using gel filtration and crosslinking we demonstrate that hiGlpG is dimeric and functional in DDM detergent solution. More importantly co-immunoprecipitation studies demonstrate that the dimer is present in the lipid bilayer suggesting a physiological dimer. Overall these results indicate that rhomboids form oligomers which are facilitated by the membrane domain. For hiGlpG we have shown that these oligomers exist in the lipid bilayer. This is the first detailed oligomeric state characterization of the rhomboid family of peptidases.  相似文献   

12.
YiiP is a 32.9-kDa metal transporter found in the plasma membrane of Escherichia coli (Chao, Y., and Fu, D. (2004) J. Biol. Chem. 279, 17173-17180). Here we report the determination of the YiiP oligomeric state in detergent-lipid micelles and in membranes. Molecular masses of YiiP solubilized with dodecyl-, undecyl-, decyl-, or nonyl-beta-d-maltoside were measured directly using size-exclusion chromatography coupled with laser light-scattering photometry, yielding a mass distribution of YiiP homo-oligomers within a narrow range (68.0-68.8 kDa) that equals the predicted mass of a YiiP dimer within experimental error. The detergent-lipid masses associated with YiiP in the mixed micelles were found to increase from 135.5 to 232.6 kDa, with an apparent correlation with the alkyl chain length of the maltoside detergents. Cross-linking the detergent-solubilized YiiP with 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) resulted in a dimeric cross-linked product in an EDC concentration-dependent manner. The oligomeric state of the purified YiiP in reconstituted membranes was determined by electron microscopic analysis of two-dimensional YiiP crystals in negative stain. A projection structure calculated from measurable optical diffractions to 25 A revealed a pseudo-2-fold symmetry within a molecular boundary of approximately 75 x 40 A, indicative of the presence of YiiP dimers in membranes. These data provide direct structural evidence for a dimeric association of YiiP both in detergent-lipid micelles and in the reconstituted lipid bilayer. The functional relevance of the dimeric association in YiiP is discussed.  相似文献   

13.
14.
Buchaklian AH  Funk AL  Klug CS 《Biochemistry》2004,43(26):8600-8606
MsbA is the ABC transporter for lipid A and is found in the inner membranes of Gram-negative bacteria such as Escherichia coli. Without MsbA present, bacterial cells accumulate a toxic amount of lipid A within their inner membranes. A crystal structure of MsbA was recently obtained that provides an excellent starting point for functional dynamics studies in membranes [Chang, and Roth (2001) Science 293, 1793-1800]. Although a structure of MsbA is now available, many questions remain concerning its mechanism of transport. Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy is a powerful approach for characterizing local areas within a large protein structure in addition to detecting and following changes in local structure due to dynamic interactions within a protein. The quaternary structure of the resting state of the MsbA homodimer reconstituted into lipid membranes has been evaluated by SDSL EPR spectroscopy and chemical cross-linking techniques. SDSL and cross-linking results are consistent with the controversial resting state conformation of the MsbA homodimer found in the crystal structure, with the tips of the transmembrane helices forming a dimer interface. The position of MsbA in the membrane bilayer along with the relative orientation of the transmembrane helical bundles with respect to one another has been determined. Characterization of the resting state of the MsbA homodimer is essential for future studies on the functional dynamics of this membrane transporter.  相似文献   

15.
Garnier C  Barbier P  Devred F  Rivas G  Peyrot V 《Biochemistry》2002,41(39):11770-11778
The 90 kDa heat-shock protein (Hsp90) is one of the major stress proteins whose overall structure remains unknown. In this study, we investigated the influence of divalent cations Mg(2+) and Ca(2+) on the hydrodynamic properties and quaternary structure of Hsp90. Using analytical ultracentrifugation, size-exclusion chromatography, and polyacrylamide gel electrophoresis, we showed that native Hsp90 was mostly dimeric. The Hsp90 dimer had a sedimentation coefficient, s(w,20) degrees, of 6.10 +/- 0.03 S, which slightly deviated from the hydrodynamics of a globular protein. Using chemical cross-linking and analytical ultracentrifugation, we showed that Mg(2+) and Ca(2+) induced a tertiary conformational change of Hsp90, leading to a self-association process. In the presence of divalent cations, Hsp90 existed as a mixture of monomers, dimers, and tetramers at equilibrium. Finally, to identify Hsp90 domains involved in this divalent cation-dependent self-association, we studied the oligomerization state of the N-terminal (positions 1-221) of Hsp90, the influence of an N-terminal specific ligand, geldanamycin (GA), and the effect of C-terminal truncation on the ability of Hsp90 to oligomerize in the presence of divalent cations. We previously showed that GA inhibits Hsp90 heat-induced oligomerization [Garnier, C., Protasevich, I., Gilli, R., Tsvetkov, P., Lobachov, V., Peyrot, V., Briand, C., and Makarov, A. (1998) Biochem. Biophys. Res. Commun. 249, 197-201], but now we observed that GA does not influence divalent cation-dependent oligomerization of Hsp90, suggesting another mechanism. This mechanism involved the C-terminal part of the protein since C-terminally truncated Hsp90 did not oligomerize in the presence of divalent cations.  相似文献   

16.
Halls SC  Lewis NG 《Biochemistry》2002,41(30):9455-9461
The (+)-pinoresinol-forming dirigent protein is the first protein capable of stereoselectively coupling two coniferyl alcohol derived radical species, in this case to give the 8-8' linked (+)-pinoresinol. Only dimeric cross-linked dirigent protein structures were isolated when 1-ethyl-3-[3-(dimethylamino)-propyl]carbodiimide was used as cross-linking agent, whereas the associated oxidase, presumed to generate the corresponding free radical substrate, was not detected. Native Forsythia intermedia dirigent protein isoforms were additionally subjected to MALDI-TOF and ESI-MS analyses, which established the presence of both monomeric masses of 23-25 kDa and dimeric dirigent protein species ranging from 46 to 49 kDa. Analytical ultracentrifugation, sedimentation velocity, and sedimentation equilibrium analyses of the native dirigent protein in open solution confirmed further its dimeric nature as well as a propensity to aggregate, with the latter being dependent upon both temperature and solution ionic strength. Circular dichroism analysis suggested that the dirigent protein was primarily composed of beta-sheet and loop structures.  相似文献   

17.
The equilibrium unfolding reaction of the C-terminal 80-amino-acid dimeric DNA-binding domain of human papillomavirus (HPV) strain 16 E2 protein has been investigated using fluorescence, far-UV CD, and equilibrium sedimentation. The stability of the HPV-16 E2 DNA-binding domain is concentration-dependent, and the unfolding reaction is well described as a two-state transition from folded dimer to unfolded monomer. The conformational stability of the protein, delta GH2O, was found to be 9.8 kcal/mol at pH 5.6, with the corresponding equilibrium unfolding/dissociation constant, Ku, being 6.5 x 10(-8) M. Equilibrium sedimentation experiments give a Kd of 3.0 x 10(-8) M, showing an excellent agreement between the two different techniques. Denaturation by temperature followed by the change in ellipticity also shows a concomitant disappearance of secondary and tertiary structures. The Ku changes dramatically at physiologically relevant pH's: with a change in pH from 6.1 to 7.0, it goes from 5.5 x 10(-8) M to 4.4 x 10(10) M. Our results suggest that, at the very low concentration of protein where DNA binding is normally measured (e.g., 10(-11) M), the protein is predominantly monomeric and unfolded. They also stress the importance of the coupling between folding and DNA binding.  相似文献   

18.
A single-cysteine mutant of the lactose transport protein LacS(C320A/W399C) from Streptococcus thermophilus was selectively labeled with a nitroxide spin label, and its mobility in lipid membranes was studied as a function of its concentration in the membrane by saturation-transfer electron spin resonance. Bovine rhodopsin was also selectively spin-labeled and studied to aid the interpretation of the measurements. Observations of spin-labeled proteins in macroscopically aligned bilayers indicated that the spin label tends to orient so as to reflect the transmembrane orientation of the protein. Rotational correlation times of 1-2 micros for purified spin-labeled bovine rhodopsin in lipid membranes led to viscosities of 2.2 poise for bilayers of dimyristoylphosphatidylcholine (28 degrees C) and 3.0 poise for the specific mixture of lipids used to reconstitute LacS (30 degrees C). The rotational correlation time for LacS did not vary significantly over the range of low concentrations in lipid bilayers, where optimal activity was seen to decrease sharply and was determined to be 9 +/- 1 micros (mean +/- SD) for these samples. This mobility was interpreted as being too low for a monomer but could correspond to a dimer if the protein self-associates into an elongated configuration within the membrane. Rather than changing its oligomeric state, LacS appeared to become less ordered at the concentrations in aligned membranes exceeding 1:100 (w/w) with respect to the lipid.  相似文献   

19.
Bovine seminal ribonuclease (BS-RNase) is a dimeric protein with two identical subunits linked by two disulfide bridges, each subunit showing 80% of sequence identity with pancreatic RNase A. BS-RNase exists in two different quaternary conformations in solution: the MxM form, in which each subunit exchanges its alpha-helical N-terminal segment with its partner, and the M=M form with no exchange. By differential scanning microcalorimetry (DSC), the denaturation of the two dimeric forms of BS-RNase was found to be more complex than a simple two-state process. Monomeric derivatives of the dimeric protein follow instead a simple two-state mechanism, but are distinctly less stable than RNase A. The three-state N if I if D denaturation process of the two quaternary isoforms was interpreted by identifying in the dimers a central highly structured core, enclosing the covalently bonded subunit interface, which unfolds only after the periphery (mainly the N-terminal peptide) unfolds. Circular dichroism spectra of the two forms in the far-ultraviolet region show large differences between the secondary structure of the isoforms and that of the native BS-RNase mixture at equilibrium. This has been attributed to the presence in the equilibrium mixture of intermediate forms with displaced and disordered N-terminal alpha-helical segments.  相似文献   

20.
The state of oligomerization of macrophage migration inhibitory factor (MIF, also known as glycosylation inhibiting factor, GIF) in solution has been variously reported as monomer, dimer, trimer, or mixtures of all three. Several crystal structures show MIF to be a trimer. Sedimentation velocity shows a recombinant human MIF sample is quite homogeneous, with 98% as a species with s(20,w)=3.07 S and D(20,w)=8.29 x 10(-7) cm(2)/s. Using the partial specific volume calculated from the amino acid composition these values imply a mass of 33.56 kDa, well above that of dimer, but also 9% below the trimer mass of 37.035 kDa. Sedimentation equilibrium data at loading concentrations from 0.01 to 1 mg/ml show unequivocally that the self-association is extremely tight. However, the apparent mass is 33.53 kDa [95% confidence 33.25-33.82], again 9% below that expected for 100% trimer. To examine the possibility this protein has an unusual partial specific volume, sedimentation equilibrium was also done in H(2)O/D(2)O mixtures, giving 0.765+/-0.017 ml/g rather than the calculated 0.735 ml/g. With this revised partial specific volume, the equilibrium and velocity data each give M=37.9+/-2.8 kDa, fully consistent with a strongly-associated trimeric quaternary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号