共查询到19条相似文献,搜索用时 46 毫秒
1.
剪接位点的识别作为基因识别中的一个重要环节, 一直受到研究人员的关注。考虑到剪接位点附近存在的序列保守性,已有一些基于统计特性的方法被用于剪接位点的识别中,但效果仍有待进一步改进。支持向量机(Support Vector Machines) 作为一种新的基于统计学习理论的学习机,近几年有了很大的发展,已被应用在模式识别的许多问题中。文中将其用于剪接位点的识别中,并针对满足GT- AG 规则的序列样本中虚假剪接位点的样本数远大于真实位点这一特性, 提出了一种基于SVM 的平衡取小法以获得更好的识别效果。实验结果表明,应用支持向量机进行剪接位点的识别能更好地提取位点附近保守序列的统计特征,对测试集具有更好的推广能力,并且使用上更加简单。这一结果为剪接位点的识别提供了一种新的方法,同时也为生物大分子研究中结构和位点的识别问题的解决提供了新的线索。 相似文献
2.
3.
翻译起始位点(TIS)的识别是真核生物基因预测的关键步骤之一,近年来一直得到研究人员的高度重视。基于TIS附近序列的统计特性,出现了一些辨识TIS的判别方法,但识别精度还有待进一步提高。针对传统支持向量机(SVM)方法中存在的不足,提出了基于数据优化法的SVM,它通过其它统计学模型优化训练数据集,进而提高分类器的辨识精度。实验结果表明基于数据优化法的SVM分类器在翻译起始位点的辨识上可获得比其他判别方法更好的效果。 相似文献
4.
5.
选择性剪切是调解基因表达的重要机制。识别选择性剪切位点是后基因组时代的一个重要工作。本文从最新的EBI人类基因选择性剪切数据库中,选取5′/3′选择性剪切位点作为正集,选取在剪切位点附近的假剪切位点作为负集,并把所有的选择性剪切位点和假剪切位点随机分成训练集和测试集。本文选用的预测选择性剪切位点的方法是基于位置权重矩阵和离散增量的支持向量机方法。此方法仅基于训练集,以不同位点的单碱基概率和序列片断的三联体频数作为信息参数,利用位置权重矩阵和离散增量算法结合支持向量机,得到了选择性供体位点和受体位点的分类器,并用此分类器对测试集中的选择性供体位点和受体位点进行预测。对独立测试集中的选择性供体位点和选择性受体位点的预测成功率分别为88.74%和90.86%,特异性分别为85.62%和81.19%。本文预测选择性剪切位点的方法成功率高于其它选择性剪切位点预测方法预测成功率,此预测方法进一步提高了对选择性剪切位点的理论预测能力。 相似文献
6.
选择性剪切是调解基因表达的重要机制.识别选择性剪切位点是后基因组时代的一个重要工作.本文从最新的EBI人类基因选择性剪切数据库中,选取5'/3'选择性剪切位点作为正集,选取在剪切位点附近的假剪切位点作为负集,并把所有的选择性剪切位点和假剪切位点随机分成训练集和测试集.本文选用的预测选择性剪切位点的方法是基于位置权重矩阵和离散增量的支持向量机方法.此方法仅基于训练集,以不同位点的单碱基概率和序列片断的三联体频数作为信息参数,利用位置权重矩阵和离散增量算法结合支持向量机,得到了选择性供体位点和受体位点的分类器,并用此分类器对测试集中的选择性供体位点和受体位点进行预测.对独立测试集中的选择性供体位点和选择性受体位点的预测成功率分别为88.74%和90.86%,特异性分别为85.62%和81.19%.本文预测选择性剪切位点的方法成功率高于其它选择性剪切位点预测方法预测成功率,此预测方法进一步提高了对选择性剪切位点的理论预测能力. 相似文献
7.
用支持向量机预测人类基因5'/3'选择性剪切位点 总被引:1,自引:0,他引:1
选择性剪切是调解基因表达的重要机制.识别选择性剪切位点是后基因组时代的一个重要工作.本文从最新的EBI人类基因选择性剪切数据库中,选取5'/3'选择性剪切位点作为正集,选取在剪切位点附近的假剪切位点作为负集,并把所有的选择性剪切位点和假剪切位点随机分成训练集和测试集.本文选用的预测选择性剪切位点的方法是基于位置权重矩阵和离散增量的支持向量机方法.此方法仅基于训练集,以不同位点的单碱基概率和序列片断的三联体频数作为信息参数,利用位置权重矩阵和离散增量算法结合支持向量机,得到了选择性供体位点和受体位点的分类器,并用此分类器对测试集中的选择性供体位点和受体位点进行预测.对独立测试集中的选择性供体位点和选择性受体位点的预测成功率分别为88.74%和90.86%,特异性分别为85.62%和81.19%.本文预测选择性剪切位点的方法成功率高于其它选择性剪切位点预测方法预测成功率,此预测方法进一步提高了对选择性剪切位点的理论预测能力. 相似文献
8.
在不依赖于序列相似性的条件下,蛋白质折叠子识别是一种分析蛋白质结构的重要方法.提出了一种三层支持向量机融合网络,从蛋白质的氨基酸序列出发,对27类折叠子进行识别.融合网络使用支持向量机作为成员分类器,采用“多对多”的多类分类策略,将折叠子的6种特征分为主要特征和次要特征,构建了多个差异的融合方案,然后对这些融合方案进行动态选择得到最终决策.当分类之前难以确定哪些参与组合的特征种类能够使分类结果最好时,提供了一种可靠的解决方案来自动选择特征信息互补最大的组合,保证了最佳分类结果.最后,识别系统对独立测试样本的总分类精度达到61.04%.结果和对比表明,此方法是一种有效的折叠子识别方法. 相似文献
9.
基因表达系列分析(Serial analysis of gene expression,SAGE)是一种基因表达数据,反映了细胞内的动态变化。模式识别和可视化方法是分析SAGE数据的基本工具,但是由于缺乏描述数据的统计特性,传统的聚类分析技术不适用于SAGE数据的分析。本文提出了一种基于多分类和支持向量机的SAGE数据的分析法。经过对模拟数据和人类癌症SAGE数据的分析,基于径向基核函数的多分类支持向量机算法一对一(one-against-one,OAO)算法提供了比PoissonC和PoissonS更好的分类结果。 相似文献
10.
11.
12.
Knowledge of structural classes plays an important role in understanding protein folding patterns. In this paper, features based on the predicted secondary structure sequence and the corresponding E–H sequence are extracted. Then, an 11-dimensional feature vector is selected based on a wrapper feature selection algorithm and a support vector machine (SVM). Among the 11 selected features, 4 novel features are newly designed to model the differences between α/β class and α + β class, and other 7 rational features are proposed by previous researchers. To examine the performance of our method, a total of 5 datasets are used to design and test the proposed method. The results show that competitive prediction accuracies can be achieved by the proposed method compared to existing methods (SCPRED, RKS-PPSC and MODAS), and 4 new features are demonstrated essential to differentiate α/β and α + β classes. Standalone version of the proposed method is written in JAVA language and it can be downloaded from http://web.xidian.edu.cn/slzhang/paper.html. 相似文献
13.
The thermostability of proteins is particularly relevant for enzyme engineering. Developing a computational method to identify mesophilic proteins would be helpful for protein engineering and design. In this work, we developed support vector machine based method to predict thermophilic proteins using the information of amino acid distribution and selected amino acid pairs. A reliable benchmark dataset including 915 thermophilic proteins and 793 non-thermophilic proteins was constructed for training and testing the proposed models. Results showed that 93.8% thermophilic proteins and 92.7% non-thermophilic proteins could be correctly predicted by using jackknife cross-validation. High predictive successful rate exhibits that this model can be applied for designing stable proteins. 相似文献
14.
支持向量机与神经网络的关系研究 总被引:2,自引:0,他引:2
支持向量机是一种基于统计学习理论的新颖的机器学习方法,由于其出色的学习性能,该技术已成为当前国际机器学习界的研究热点,该方法已经广泛用于解决分类和回归问题.本文将结构风险函数应用于径向基函数网络学习中,同时讨论了支持向量回归模型和径向基函数网络之间的关系.仿真实例表明所给算法提高了径向基函数网络的泛化性能. 相似文献
15.
An approach of encoding for prediction of splice sites using SVM 总被引:1,自引:0,他引:1
In splice sites prediction, the accuracy is lower than 90% though the sequences adjacent to the splice sites have a high conservation. In order to improve the prediction accuracy, much attention has been paid to the improvement of the performance of the algorithms used, and few used for solving the fundamental issues, namely, nucleotide encoding. In this paper, a predictor is constructed to predict the true and false splice sites for higher eukaryotes based on support vector machines (SVM). Four types of encoding, which were mono-nucleotide (MN) encoding, MN with frequency difference between the true sites and false sites (FDTF) encoding, Pair-wise nucleotides (PN) encoding and PN with FDTF encoding, were applied to generate the input for the SVM. The results showed that PN with FDTF encoding as input to SVM led to the most reliable recognition of splice sites and the accuracy for the prediction of true donor sites and false sites were 96.3%, 93.7%, respectively, and the accuracy for predicting of true acceptor sites and false sites were 94.0%, 93.2%, respectively. 相似文献
16.
探讨原发性肝癌患者精确放疗后乙型肝炎病毒(hepatitis b virus,HBV)再激活的危险特征和分类预测模型。提出基于遗传算法的特征选择方法,从原发性肝癌数据的初始特征集中选择HBV再激活的最优特征子集。建立贝叶斯和支持向量机的HBV再激活分类预测模型,并预测最优特征子集和初始特征集的分类性能。实验结果表明,基于遗传算法的特征选择提高了HBV再激活分类性能,最优特征子集的分类性能明显优于初始特征子集的分类性能。影响HBV再激活的最优特征子集包括:HBV DNA水平,肿瘤分期TNM,Child-Pugh,外放边界和全肝最大剂量。贝叶斯的分类准确性最高可达82.89%,支持向量机的分类准确性最高可达83.34%。 相似文献
17.
Remote homology detection refers to the detection of structure homology in evolutionarily related proteins with low sequence similarity. Supervised learning algorithms such as support vector machine (SVM) are currently the most accurate methods. In most of these SVM-based methods, efforts have been dedicated to developing new kernels to better use the pairwise alignment scores or sequence profiles. Moreover, amino acids’ physicochemical properties are not generally used in the feature representation of protein sequences. In this article, we present a remote homology detection method that incorporates two novel features: (1) a protein's primary sequence is represented using amino acid's physicochemical properties and (2) the similarity between two proteins is measured using recurrence quantification analysis (RQA). An optimization scheme was developed to select different amino acid indices (up to 10 for a protein family) that are best to characterize the given protein family. The selected amino acid indices may enable us to draw better biological explanation of the protein family classification problem than using other alignment-based methods. An SVM-based classifier will then work on the space described by the RQA metrics. The classification scheme is named as SVM-RQA. Experiments at the superfamily level of the SCOP1.53 dataset show that, without using alignment or sequence profile information, the features generated from amino acid indices are able to produce results that are comparable to those obtained by the published state-of-the-art SVM kernels. In the future, better prediction accuracies can be expected by combining the alignment-based features with our amino acids property-based features. Supplementary information including the raw dataset, the best-performing amino acid indices for each protein family and the computed RQA metrics for all protein sequences can be downloaded from http://ym151113.ym.edu.tw/svm-rqa. 相似文献
18.
Cancers are regarded as malignant proliferations of tumor cells present in many tissues and organs, which can severely curtail the quality of human life. The potential of using plasma DNA for cancer detection has been widely recognized, leading to the need of mapping the tissue-of-origin through the identification of somatic mutations. With cutting-edge technologies, such as next-generation sequencing, numerous somatic mutations have been identified, and the mutation signatures have been uncovered across different cancer types. However, somatic mutations are not independent events in carcinogenesis but exert functional effects. In this study, we applied a pan-cancer analysis to five types of cancers: (I) breast cancer (BRCA), (II) colorectal adenocarcinoma (COADREAD), (III) head and neck squamous cell carcinoma (HNSC), (IV) kidney renal clear cell carcinoma (KIRC), and (V) ovarian cancer (OV). Based on the mutated genes of patients suffering from one of the aforementioned cancer types, patients they were encoded into a large number of numerical values based upon the enrichment theory of gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We analyzed these features with the Monte-Carlo Feature Selection (MCFS) method, followed by the incremental feature selection (IFS) method to identify functional alteration features that could be used to build the support vector machine (SVM)-based classifier for distinguishing the five types of cancers. Our results showed that the optimal classifier with the selected 344 features had the highest Matthews correlation coefficient value of 0.523. Sixteen decision rules produced by the MCFS method can yield an overall accuracy of 0.498 for the classification of the five cancer types. Further analysis indicated that some of these features and rules were supported by previous experiments. This study not only presents a new approach to mapping the tissue-of-origin for cancer detection but also unveils the specific functional alterations of each cancer type, providing insight into cancer-specific functional aberrations as potential therapeutic targets. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. 相似文献
19.