首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time courses for inhibition of carnitine palmitoyltransferase (CPT) I activity in, and [14C]malonyl-CoA binding to, liver mitochondria from fed or 48 h-starved rats were obtained at 37 degrees C by using identical incubation conditions and a fixed concentration of malonyl-CoA (3.5 microM), which represents the middle of the physiological range observed previously [Zammit (1981) Biochem. J. 198, 75-83] Incubation of mitochondria in the absence of malonyl-CoA resulted in a time-dependent decrease in the ability of the metabolite instantaneously to inhibit CPT I and to bind to the mitochondria. Both degree of inhibition and binding were restored in parallel over a period of 6-8 min on subsequent addition of malonyl-CoA to the incubation medium. However, the increased inhibition of CPT I activity on addition of mitochondria directly to malonyl-CoA-containing medium was not accompanied by an increase in the amount of [14C]malonyl-CoA bound to mitochondria at 37 degrees C. Time courses for binding of [14C]malonyl-CoA performed at 0 degree C were different from those obtained at 37 degrees C. There was little loss of ability of [14C]malonyl-CoA to bind to mitochondria on incubation in the absence of the metabolite, but there was a time-dependent increase in binding on addition of mitochondria to malonyl-CoA-containing medium. It is suggested that these temperature-dependent differences between the time courses obtained may be due to the occurrence of different changes at 37 degrees C and at 0 degree C in the relative contributions of different components (with different affinities) to the binding observed at 3.5 microM-malonyl-CoA. Evidence for multi-component binding was obtained in the form of strongly curvilinear Scatchard plots for instantaneous (5s) binding of malonyl-CoA to mitochondria. Such multi-component binding would be expected from previous results on the different affinities of CPT I for malonyl-CoA with respect to inhibition [Zammit (1984) Biochem. J. 218, 379-386]. Mitochondria obtained from starved rats showed qualitatively the same time courses as those described above, with notable quantitative differences with respect both to the absolute extents of CPT I inhibition and [14C]malonyl-CoA binding achieved as well as to the time taken to attain them.  相似文献   

2.
Carnitine palmitoyltransferase I in rat liver mitochondria preincubated with malonyl-CoA was more sensitive to inhibition by malonyl-CoA than was the enzyme in mitochondria preincubated in the absence of malonyl-CoA. For carnitine palmitoyltransferase I in mitochondria from starved animals this increase also resulted in the enzyme becoming significantly more sensitive than that in mitochondria assayed immediately after their isolation. Concentrations of malonyl-CoA that induced half the maximal degree of sensitization observed were 1-3 microM.  相似文献   

3.
1. The interaction of malonyl-CoA with the outer carnitine palmitoyltransferase (CPT) system of rat liver mitochondria was re-evaluated by using preparations of highly purified outer membranes, in the light of observations that other subcellular structures that normally contaminate crude mitochondrial preparations also contain malonyl-CoA-sensitive CPT activity. 2. In outer-membrane preparations, which were purified about 200-fold with respect to the inner-membrane-matrix fraction, malonyl-CoA binding was largely accounted for by a single high-affinity component (KD = 0.03 microM), in contrast with the dual site (low- and high-affinity) previously found with intact mitochondria. 3. There was no evidence that the decreased sensitivity of CPT to malonyl-CoA inhibition observed in outer membranes obtained from 48 h-starved rats (compared with those from fed animals) was due to a decreased ratio of malonyl-CoA binding to CPT catalytic moieties. Thus CPT specific activity and maximal high-affinity [14C]malonyl-CoA binding (expressed per mg of protein) were increased 2.2- and 2.0-fold respectively in outer membranes from 48 h-starved rats. 4. Palmitoyl-CoA at a concentration that was saturating for CPT activity (5 microM) decreased the affinity of malonyl-CoA binding by an order of magnitude, but did not alter the maximal binding of [14C]malonyl-CoA. 5. Preincubation of membranes with either tetradecylglycidyl-CoA or 2-bromopalmitoyl-CoA plus carnitine resulted in marked (greater than 80%) inhibition of high-affinity binding, concurrently with greater than 95% inhibition of CPT activity. These treatments also unmasked an effect of subsequent treatment with palmitoyl-CoA to increase low-affinity [14C]malonyl-CoA binding. 6. These data are discussed in relation to the possible mechanism of interaction between the malonyl-CoA-binding site and the active site of the enzyme.  相似文献   

4.
The sensitivity of carnitine palmitoyltransferase I (CPT I; EC 2.3.1.21) to inhibition by malonyl-CoA and related compounds was examined in isolated mitochondria from liver, heart and skeletal muscle of the rat. In all three tissues the same order of inhibitory potency emerged: malonyl-CoA much greater than succinyl-CoA greater than methylmalonyl-CoA much greater than propionyl-CoA greater than acetyl-CoA. For any given agent, suppression of CPT I activity was much greater in skeletal muscle than in liver, with the heart enzyme having intermediate sensitivity. With skeletal-muscle mitochondria a high-affinity binding site for [14C]malonyl-CoA was readily demonstrable (Kd approx. 25 nM). The ability of other CoA esters to compete with [14C]malonyl-CoA for binding to the membrane paralleled their capacity to inhibit CPT I. Palmitoyl-CoA also competitively inhibited [14C]malonyl-CoA binding, in keeping with its known ability to overcome malonyl-CoA suppression of CPT I. For reasons not yet clear, free CoA displayed anomalous behaviour in that its competition for [14C]malonyl-CoA binding was disproportionately greater than its inhibition of CPT I. Three major conclusions are drawn. First, malonyl-CoA is not the only physiological compound capable of suppressing CPT I, since chemically related compounds, known to exist in cells, also share this property, particularly in tissues where the enzyme shows the greatest sensitivity to malonyl-CoA. Second, malonyl-CoA and its analogues appear to interact with the same site on the mitochondrial membrane, as may palmitoyl-CoA. Third, the degree of site occupancy by inhibitors governs the activity of CPT I.  相似文献   

5.
[14C]Malonyl-CoA bound to intact mitochondria isolated from rat liver and heart in a manner consistent with the presence of two independent classes of binding sites in each tissue. The binding characteristics for mitochondria obtained from fed male rats were: for heart, KD(1) = 11-18nM, KD(2) = 30 microM, N1 = 7pmol/mg of protein, N2 = approx. 660pmol/mg of protein; for liver, KD(1) = 0.1 microM, KD(2) = 5.6 microM, N1 = 11pmol/mg of protein, N2 = 165pmol/mg of protein. In the presence of 40 microM-palmitoyl-CoA the characteristics of binding at the high-affinity sites were changed, so that for heart KD(1) = 0.26 microM, with no change in N1 and for liver KD(1) = approx. 2 microM, with N1 increased to approx. 40pmol/mg of protein. Differences between the two tissues in tightness of malonyl-CoA binding at the high-affinity sites explains the considerably greater sensitivity of heart CPT1 (overt form of carnitine palmitoyltransferase) to inhibition by malonyl-CoA [Saggerson & Carpenter, (1981) FEBS Lett. 129, 229-232; McGarry, Mills, Long & Foster (1983) Biochem. J. 214, 21-28]. Starvation (24h) did not change the characteristics of [14C]malonyl-CoA binding to liver mitochondria and did not alter the I50 (concentration giving 50% inhibition) for displacement of [14C]malonyl-CoA by palmitoyl-CoA. Therefore the decreased sensitivity of liver CPT1 to inhibition by malonyl-CoA in starvation [Saggerson & Carpenter (1981) FEBS Lett. 129, 225-228; Bremer (1981) Biochim. Biophys. Acta 665, 628-631] is not explained by differences in malonyl-CoA binding. Percentage occupancy of the high-affinity sites in heart mitochondria by malonyl-CoA correlated closely with percentage inhibition of CPT1 measured under similar conditions. This finding supports the proposal that the high-affinity binding sites are the functional sites mediating inhibition of CPT1 by malonyl-CoA. Similar experiments with liver mitochondria also suggested that the occupancy of high-affinity sites by malonyl-CoA regulates CPT1 activity. 5,5'-Dithiobis-(2-nitrobenzoic acid), which decreased the sensitivity of heart or liver CPT1 to inhibition by malonyl-CoA [Saggerson & Carpenter (1982) FEBS Lett. 137, 124-128], also decreased [14C]malonyl-CoA binding to the high-affinity sites of heart mitochondria. N1 values for [14C]malonyl-CoA binding to high-affinity sites in liver mitochondria were determined in various physiological states which encompassed a 7-fold range of CPT1 maximal activity (fed, starved, pregnant, hypothyroid, foetal). The N1 value did not change in these states.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in brain mitochondrial fractions were approx. 3-4-fold lower than activities in liver. Estimated Km values of CPT1 and CPT2 (the overt and latent forms respectively of carnitine palmitoyltransferase) for L-carnitine were 80 microM and 326 microM, respectively, and K0.5 values for palmitoyl-CoA were 18.5 microM and 12 microM respectively. CPT1 activity was strongly inhibited by malonyl-CoA, with I50 values (concn. giving 50% of maximum inhibition) of approx. 1.5 microM. In the absence of other ligands, [2-14C]malonyl-CoA bound to intact brain mitochondria in a manner consistent with the presence of two independent classes of binding sites. Estimated values for KD(1), KD(2), N1 and N2 were 18 nM, 27 microM, 1.3 pmol/mg of protein and 168 pmol/mg of protein respectively. Neither CPT1 activity, nor its sensitivity towards malonyl-CoA, was affected by 72 h starvation. Rates of oxidation of palmitoyl-CoA (in the presence of L-carnitine) or of palmitoylcarnitine by non-synaptic mitochondria were extremely low, indicating that neither CPT1 nor CPT2 was likely to be rate-limiting for beta-oxidation in brain. CPT1 activity relative to mitochondrial protein increased slightly from birth to weaning (20 days) and thereafter decreased by approx. 50%.  相似文献   

7.
The requirement for carnitine and the malonyl-CoA sensitivity of carnitine palmitoyl-transferase I (EC 2.3.1.21) were measured in isolated mitochondria from eight tissues of animal or human origin using fixed concentrations of palmitoyl-CoA (50 microM) and albumin (147 microM). The Km for carnitine spanned a 20-fold range, rising from about 35 microM in adult rat and human foetal liver to 700 microM in dog heart. Intermediate values of increasing magnitude were found for rat heart, guinea pig liver and skeletal muscle of rat, dog and man. Conversely, the concentration of malonyl-CoA required for 50% suppression of enzyme activity fell from the region of 2-3 microM in human and rat liver to only 20 nM in tissues displaying the highest Km for carnitine. Thus, the requirement for carnitine and sensitivity to malonyl-CoA appeared to be inversely related. The Km of carnitine palmitoyltransferase I for palmitoyl-CoA was similar in tissues showing large differences in requirement for carnitine. Other experiments established that, in addition to liver, heart and skeletal muscle of fed rats contain significant quantities of malonyl-CoA and that in all three tissues the level falls with starvation. Although its intracellular location in heart and skeletal muscle is not known, the possibility is raised that malonyl-CoA (or a related compound) could, under certain circumstances, interact with carnitine palmitoyltransferase I in non-hepatic tissues and thereby exert control over long chain fatty acid oxidation.  相似文献   

8.
The functional molecular sizes of the protein(s) mediating the carnitine palmitoyltransferase I (CPT I) activity and the [14C]malonyl-CoA binding in purified outer-membrane preparations from rat liver mitochondria were determined by radiation-inactivation analysis. In all preparations tested the dose-dependent decay in [14C]malonyl-CoA binding was less steep than that for CPT I activity, suggesting that the protein involved in malonyl-CoA binding may be smaller than that catalysing the CPT I activity. The respective sizes computed from simultaneous analysis for molecular-size standards exposed under identical conditions were 60,000 and 83,000 DA for malonyl-CoA binding and CPT I activity respectively. In irradiated membranes the sensitivity of CPT activity to malonyl-CoA inhibition was increased, as judged by malonyl-CoA inhibition curves for the activity in control and in irradiated membranes that had received 20 Mrad radiation and in which CPT activity had decayed by 60%. Possible correlations between these data and other recent observations on the CPT system are discussed.  相似文献   

9.
Preincubation of rat liver mitochondria with 5,5'-dithiobis-(2-nitrobenzoic acid) (Nbs2) followed by removal of excess reagent by washing the mitochondria with 0.5 mM-reduced glutathione resulted in a desensitization of carnitine palmitoyltransferase (CPT) I activity to malonyl-CoA inhibition. The effect was not observed if mitochondria were washed with 0.5 mM-dithiothreitol. The desensitization effect of Nbs2 could be reversed by a second incubation in the presence of 8 microM-malonyl-CoA. In addition, malonyl-CoA, when present simultaneously with Nbs2, protected CPT I activity against the desensitization effect of the thiol-group reagent. These results suggest that malonyl-CoA exerts an effect on one or more thiol groups of the enzyme, and that this effect is related to the ability of the metabolite to sensitize CPT I to malonyl-CoA inhibition.  相似文献   

10.
Carnitine palmitoyltransferase (CPT) is a mitochondrial-inner-membrane enzyme, with activities located on both the outer and inner sides of the membrane. The inhibition of CPT by bromopalmitate derivatives was studied in intact hepatic mitochondria (representing CPT-A activity, the outer enzyme), in inverted submitochondrial vesicles (representing CPT-B, the inner enzyme), and in purified hepatic CPT. Bromopalmitoyl-CoA had an I50 (concentration giving 50% inhibition of CPT activity) of 0.63 +/- 0.08 microM in intact mitochondria and 2.44 +/- 0.86 microM in inverted vesicles. Preincubation of mitochondria with bromopalmitoyl-CoA decreased V max. for both CPT-A and CPT-B. Sonication decreased sensitivity to bromopalmitoyl-CoA, and solubilization with Triton abolished sensitivity at the concentrations used (0-10 microM). Purified CPT had a bromopalmitoyl-CoA I50 of 353 microM in aqueous buffer, 67 microM in 20% dimethyl sulphoxide, 45 microM in phosphatidylcholine liposomes and 26 microM in cardiolipin liposomes. Increasing [carnitine] at constant bromopalmitoyl-CoA concentrations or increasing [bromopalmitoyl-CoA] in the preincubation resulted in increased inhibition of purified CPT. 2-Tetradecylglycidyl-CoA and malonyl-CoA did not offer measurable protection against bromopalmitoyl-CoA inhibition of the purified CPT, suggesting a different site of interaction of bromopalmitoyl-CoA with CPT. The data suggest that the sensitivity of CPT to bromopalmitoyl-CoA may be modulated by membrane environment and assay conditions.  相似文献   

11.
Malonyl-CoA significantly increased the Km for L-carnitine of overt carnitine palmitoyltransferase in liver mitochondria from fed rats. This effect was observed when the molar palmitoyl-CoA/albumin concentration ratio was low (0.125-1.0), but not when it was higher (2.0). In the absence of malonyl-CoA, the Km for L-carnitine increased with increasing palmitoyl-CoA/albumin ratios. Malonyl-CoA did not increase the Km for L-carnitine in liver mitochondria from 24h-starved rats or in heart mitochondria from fed animals. The Km for L-carnitine of the latent form of carnitine palmitoyltransferase was 3-4 times that for the overt form of the enzyme. At low ratios of palmitoyl-CoA/albumin (0.5), the concentration of malonyl-CoA causing a 50% inhibition of overt carnitine palmitoyltransferase activity was decreased by 30% when assays with liver mitochondria from fed rats were performed at 100 microM-instead of 400 microM-carnitine. Such a decrease was not observed with liver mitochondria from starved animals. L-Carnitine displaced [14C]malonyl-CoA from liver mitochondrial binding sites. D-Carnitine was without effect. L-Carnitine did not displace [14C]malonyl-CoA from heart mitochondria. It is concluded that, under appropriate conditions, malonyl-CoA may decrease the effectiveness of L-carnitine as a substrate for the enzyme and that L-carnitine may decrease the effectiveness of malonyl-CoA to regulate the enzyme.  相似文献   

12.
The effect of malonyl-CoA on the kinetic parameters of carnitine palmitoyltransferase (outer) the outer form of carnitine palmitoyltransferase (palmitoyl-CoA: L-carnitine O-palmitoyltransferase, EC 2.3.1.21) from rat heart mitochondria was investigated using a kinetic analyzer in the absence of bovine serum albumin with non-swelling conditions and decanoyl-CoA as the cosubstrate. The K0.5 for decanoyl-CoA is 3 microM for heart mitochondria from both fed and fasted rats. Membrane-bound carnitine palmitoyltransferase (outer) shows substrate cooperativity for both carnitine and acyl-CoA, similar to that exhibited by the enzyme purified from bovine heart mitochondria. The Hill coefficient for decanoyl-CoA varied from 1.5 to 2.0, depending on the method of assay and the preparation of mitochondria. Malonyl-CoA increased the K0.5 for decanoyl-CoA with no apparent increase in sigmoidicity or Vmax. With 20 microM malonyl-CoA and a Hill coefficient of n = 2.1, the K0.5 for decanoyl-CoA increased to 185 microM. Carnitine palmitoyltransferase (outer) from fed rats had an apparent Ki for malonyl-CoA of 0.3 microM, while that from 48-h-fasted rats was 2.5 microM. The kinetics with L-carnitine were variable: for different preparations of mitochondria, the K0.5 ranged from 0.2 to 0.7 mM and the Hill coefficient varied from 1.2 to 1.8. When an isotope forward assay was used to determine the effect of malonyl-CoA on carnitine palmitoyltransferase (outer) activity of heart mitochondria from fed and fasted animals, the difference was much less than that obtained using a continuous rate assay. Carnitine palmitoyltransferase (outer) was less sensitive to malonyl-CoA at low compared to high carnitine concentrations, particularly with mitochondria from fasted animals. The data show that carnitine palmitoyltransferase (outer) exhibits substrate cooperativity for both acyl-CoA and L-carnitine in its native state. The data show that membrane-bound carnitine palmitoyltransferase (outer) like carnitine palmitoyltransferase purified from heart mitochondria exhibits substrate cooperativity indicative of allosteric enzymes and indicate that malonyl-CoA acts like a negative allosteric modifier by shifting the acyl-CoA saturation to the right. A slow form of membrane-bound carnitine palmitoyltransferase (outer) was not detected, and thus, like purified carnitine palmitoyltransferase, substrate-induced hysteretic behavior is not the cause of the positive substrate cooperativity.  相似文献   

13.
Carnitine palmitoyltransferase (CPT) I, which catalyzes the conversion of palmitoyl-CoA to palmitoylcarnitine facilitating its transport through the mitochondrial membranes, is inhibited by malonyl-CoA. By using the SequenceSpace algorithm program to identify amino acids that participate in malonyl-CoA inhibition in all carnitine acyltransferases, we found 5 conserved amino acids (Thr(314), Asn(464), Ala(478), Met(593), and Cys(608), rat liver CPT I coordinates) common to inhibitable malonyl-CoA acyltransferases (carnitine octanoyltransferase and CPT I), and absent in noninhibitable malonyl-CoA acyltransferases (CPT II, carnitine acetyltransferase (CAT) and choline acetyltransferase (ChAT)). To determine the role of these amino acid residues in malonyl-CoA inhibition, we prepared the quintuple mutant CPT I T314S/N464D/A478G/M593S/C608A as well as five single mutants CPT I T314S, N464D, A478G, M593S, and C608A. In each case the CPT I amino acid selected was mutated to that present in the same homologous position in CPT II, CAT, and ChAT. Because mutant M593S nearly abolished the sensitivity to malonyl-CoA, two other Met(593) mutants were prepared: M593A and M593E. The catalytic efficiency (V(max)/K(m)) of CPT I in mutants A478G and C608A and all Met(593) mutants toward carnitine as substrate was clearly increased. In those CPT I proteins in which Met(593) had been mutated, the malonyl-CoA sensitivity was nearly abolished. Mutations in Ala(478), Cys(608), and Thr(314) to their homologous amino acid residues in CPT II, CAT, and ChAT caused various decreases in malonyl-CoA sensitivity. Ala(478) is located in the structural model of CPT I near the catalytic site and participates in the binding of malonyl-CoA in the low affinity site (Morillas, M., Gómez-Puertas, P., Rubi, B., Clotet, J., Ari?o, J., Valencia, A., Hegardt, F. G., Serra, D., and Asins, G. (2002) J. Biol. Chem. 277, 11473-11480). Met(593) may participate in the interaction of malonyl-CoA in the second affinity site, whose location has not been reported.  相似文献   

14.
Malonyl-CoA and 2-tetradecylglycidyl-CoA (TG-CoA) are potent inhibitors of mitochondrial carnitine palmitoyltransferase I (EC 2.3.1.21). To gain insight into their mode of action, the effects of both agents on mitochondria from rat liver and skeletal muscle were examined before and after membrane disruption with octylglucoside or digitonin. Pretreatment of intact mitochondria with TG-CoA caused almost total suppression of carnitine palmitoyltransferase I, with concomitant loss in malonyl-CoA binding capacity. However, subsequent membrane solubilization with octylglucoside resulted in high and equal carnitine palmitoyltransferase activity from control and TG-CoA pretreated mitochondria; neither solubilized preparation showed sensitivity to malonyl-CoA or TG-CoA. Upon removal of the detergent by dialysis the bulk of carnitine palmitoyltransferase was reincorporated into membrane vesicles, but the reinserted enzyme remained insensitive to both inhibitors. Carnitine palmitoyltransferase containing vesicles failed to bind malonyl-CoA. With increasing concentrations of digitonin, release of carnitine palmitoyltransferase paralleled disruption of the inner mitochondrial membrane, as reflected by the appearance of matrix enzymes in the soluble fraction. The profile of enzyme release was identical in control and TG-CoA pretreated mitochondria even though carnitine palmitoyltransferase I had been initially suppressed in the latter. Similar results were obtained when animals were treated with 2-tetradecylglycidate prior to the preparation of liver mitochondria. We conclude that malonyl-CoA and TG-CoA interact reversibly and irreversibly, respectively, with a common site on the mitochondrial (inner) membrane and that occupancy of this site causes inhibition of carnitine palmitoyltransferase I, but not of carnitine palmitoyltransferase II. Assuming that octylglucoside and digitonin do not selectively inactivate carnitine palmitoyltransferase I, the data suggest that both malonyl-CoA and TG-CoA interact with a regulatory locus that is closely juxtaposed to but distinct from the active site of the membrane-bound enzyme.  相似文献   

15.
l-Aminocarnitine (l-AC) has been shown to inhibit carnitine palmitoyltransferases (CPT) in rat muscle and in rat liver. However, there are no reports on interactions of l-AC with CPT II and CPT I of human muscle. Therefore, the aim of the present work was to characterize the inhibition of human muscle CPT I and CPT II by l-AC in muscle mitochondria, skinned fibers and muscle homogenates in comparison to the established action of malonyl-CoA. Both isoenzymes were inhibited by l-AC, but sensitivity was different (CPT I, K(d)=3.8 mM l-AC; CPT II, K(d)=21.3 microM l-AC). A mixed inhibition type in respect to carnitine was detected (K(i)=3.5 microM l-AC). At 0.5 mM l-AC, CPT II was completely inhibited without affection of CPT I. In contrast, CPT I was completely inhibited by 0.4 mM malonyl-CoA (K(d)=0.5 microM), whereas CPT II was nearly not affected by this inhibitor. Using these inhibitors in muscle homogenates, activities of CPT II and CPT I were detected to be 38+/-10% and 63+/-10% of total, respectively (n=21). In intact mitochondria and different fractions of muscle homogenates after selective solubilization of CPT II by Tween 20, the extent of specific CPT inhibition changed in relation to the accessible isoenzyme pattern. Palmitoyl-carnitine-dependent respiration in skinned fibers was inhibited by high concentrations of l-AC, indicating that the inhibitor can be transported via the acyl-carnitine transporter, too. The combined use of both inhibitors (l-AC and malonyl-CoA) allows the kinetic characterization of CPT I and CPT II in human muscle homogenates. In addition, it has been shown that l-AC can be used for the study of metabolic consequences of CPT II deficiency on function of intact mitochondria.  相似文献   

16.
The effects of 2-tetradecylglycidic acid (TDGA), TDGA-CoA and TDGA-carnitine were examined in purified hepatic CPT (carnitine palmitoyltransferase) and in hepatic mitochondria and inverted submitochondrial vesicles derived from Sprague-Dawley rats. Since TDGA has been reported as a specific inhibitor of carnitine palmitoyltransferase-A (CPT-A), the focus was on kinetics and inhibition of CPT-A, and the relationship of this key enzyme to beta-oxidation. After administration of TDGA in vivo to overnight-starved rats, the Vmax. of CPT in intact mitochondria and in inverted vesicles (CPT-B) was depressed by 66%. The S0.5 for palmitoyl-CoA and Km for carnitine were unchanged. The I50 (concn. giving 50% inhibition) for malonyl-CoA was significantly increased from 20 to 141 microM in intact mitochondria, but unchanged (199 versus 268 microM) in inverted vesicles. The addition in vitro of TDGA-CoA (0-1.0 microM) gave I50 values of 0.29 and 0.27 microM (S.E.M. = 0.19) in intact mitochondria from fed and 48 h-starved rats, and 0.81 and 1.57 microM (S.E.M. = 0.29) for inverted vesicles derived from fed and starved rats. Addition in vitro of TDGA-carnitine to mitochondria from starved rats yielded an I50 value of 27.7 mM (S.E.M. = 12.2) for L-[methyl-14C]carnitine release from palmitoyl-L-[methyl-14C]carnitine and 0.64 mM (S.E.M. = 0.07) for palmitoyl-L-[methyl-14C]carnitine formation from L-[methyl-14C]carnitine in intact mitochondria. Inverted vesicles were not measurably sensitive to TDGA-carnitine up to 500 microM for the assay of L-[methyl-14C]carnitine release, but were as sensitive as intact mitochondria when inhibition was determined in the direction of palmitoyl-L-[methyl-14C]carnitine formation (I50 = 0.54 +/- 0.07 microM). When TDGA-CoA was added to intact mitochondria, then incubated for 5 min at room temperature and subsequently washed out, Vmax. of CPT decreased from 5.8 to 3.5 (S.E.M. = 0.6) in intact mitochondria, and from 17.2 to 6.3 (S.E.M. = 4.8) in inverted vesicles. The Km for L-carnitine and the S0.5 for palmitoyl-CoA increased 2-fold with TDGA-CoA pretreatment in both intact mitochondria and inverted vesicles. Detergent solubilization (0.05% Triton X-100) resulted in a complete loss of TDGA-CoA sensitivity (up to 1.0 microM measured). Sonicated mitochondria exhibited an I50 of 0.72 +/- 0.03 microM.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
1. Hepatic carnitine palmitoyltransferase activity was measured over a range of concentrations of palmitoyl-CoA and in the presence of several concentrations of the inhibitor malonyl-CoA. These measurements were made in mitochondria obtained from the livers of fed and starved (24 h) virgin female and fed and starved pregnant rats. 2. In the fed state overt carnitine palmitoyltransferase activity was significantly lower in virgin females than in age-matched male rats. 3. Starvation increased overt carnitine palmitoyltransferase activity in both virgin and pregnant females. This increase was larger than in the male and was greater in pregnant than in virgin females. 4. In the fed state pregnancy had no effect on the Hill coefficient or the [S]0.5 when palmitoyl-CoA was varied as substrate. Pregnancy did not alter the sensitivity of the enzyme to inhibition by malonyl-CoA. 5. Starvation decreased the sensitivity of the enzyme to malonyl-CoA. The change in sensitivity was similar in male, virgin female and pregnant rats. 6. The possible relevance of these findings to known sex differences and changes with pregnancy in hepatic fatty acid oxidation and esterification are discussed.  相似文献   

18.
The temporal changes in oleate oxidation, lipogenesis, malonyl-CoA concentration and sensitivity of carnitine palmitoyltransferase I (CPT 1) to malonyl-CoA inhibition were studied in isolated rabbit hepatocytes and mitochondria as a function of time after birth of the animal or time in culture after exposure to glucagon, cyclic AMP or insulin. (1) Oleate oxidation was very low during the first 6 h after birth, whereas lipogenesis rate and malonyl-CoA concentration decreased rapidly during this period to reach levels as low as those found in 24-h-old newborns that show active oleate oxidation. (2) The changes in the activity of CPT I and the IC50 (concn. causing 50% inhibition) for malonyl-CoA paralleled those of oleate oxidation. (3) In cultured fetal hepatocytes, the addition of glucagon or cyclic AMP reproduced the changes that occur spontaneously after birth. A 12 h exposure to glucagon or cyclic AMP was sufficient to inhibit lipogenesis totally and to cause a decrease in malonyl-CoA concentration, but a 24 h exposure was required to induce oleate oxidation. (4) The induction of oleate oxidation by glucagon or cyclic AMP is triggered by the fall in the malonyl-CoA sensitivity of CPT I. (5) In cultured hepatocytes from 24 h-old newborns, the addition of insulin inhibits no more than 30% of the high oleate oxidation, whereas it stimulates lipogenesis and increases malonyl-CoA concentration by 4-fold more than in fetal cells (no oleate oxidation). This poor effect of insulin on oleate oxidation seems to be due to the inability of the hormone to increase the sensitivity of CPT I sufficiently. Altogether, these results suggest that the malonyl-CoA sensitivity of CPT I is the major site of regulation during the induction of fatty acid oxidation in the fetal rabbit liver.  相似文献   

19.
The inhibition of carnitine palmitoyltransferase (CPT, EC 2.3.1.21) by malonyl-CoA, acetyl-CoA and free CoA was studied in sonicated skeletal-muscle homogenates from normal human subjects and from five patients with a mutant CPT [Zierz & Engel (1985) Eur. J. Biochem. 149, 207-214]. (1) Malonyl-CoA, acetyl-CoA and CoA were competitive inhibitors of CPT with palmitoyl-CoA. (2) Acetyl-CoA and CoA inhibited normal and mutant CPT to the same degree, whereas malonyl-CoA inhibited mutant CPT more than normal CPT. (3) Triton X-100 abolished the inhibition of normal CPT by malonyl-CoA, but not by acetyl-CoA or CoA. Triton X-100 by itself caused loss of activity of the mutant CPT. (4) In the concentration range 0.1-0.4 mM, the inhibitory effects of any two of the three inhibitors were synergistic. (5) The inhibitory constants (Ki) for acetyl-CoA and CoA were close to 45 microM. The Ki for malonyl-CoA was 200-fold lower, or 0.22 microM. Addition of 40 microM-acetyl-CoA or CoA resulted in a 3-fold increase in the Ki for acetyl-CoA. Addition of 20 microM-CoA resulted in a 3-fold increase in the Ki for acetyl-CoA. (6) The findings indicate that acetyl-CoA and CoA can inhibit CPT at the catalytic site or a nearby site which is different from that at which malonyl-CoA inhibits CPT. (7) The fact that small changes in the concentration of acetyl-CoA and CoA can antagonize the inhibitory effect of malonyl-CoA suggests that these compounds could modulate the inhibition of CPT by malonyl-CoA.  相似文献   

20.
Solubilization of rat liver mitochondria in 5% Triton X-100 followed by chromatography on a hydroxylapatite column resulted in the identification of malonyl-CoA binding protein(s) distinct from a major carnitine palmitoyltransferase activity peak. Further purification of the malonyl-CoA binding protein(s) on an acyl-CoA affinity column followed by sodium dodecyl sulfate gel electrophoresis indicated proteins with Mr mass of 90 and 45-33 kDa. A purified liver malonyl-CoA binding fraction, which was devoid of carnitine palmitoyltransferase, and a soluble malonyl-CoA-insensitive carnitine palmitoyltransferase were reconstituted by dialysis in a liposome system. The enzyme activity in the reconstituted system was decreased by 50% in the presence of 100 microM malonyl-CoA. Rat liver mitochondria carnitine palmitoyltransferase may be composed of an easily dissociable catalytic unit and a malonyl-CoA sensitivity conferring regulatory component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号