首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rates of ketogenesis in mitochondria from fed or starved rats were identical at optimal substrate concentrations, but responded differently to inhibition by malonyl-CoA. Kinetic data suggest that the K1 for malonyl-CoA is greater in the starved animal. These results indicate that, for the regulation of ketogenesis in the starved state, the lower sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA may be more important than the concentration of malonyl-CoA.  相似文献   

2.
Malonyl-CoA inhibition of carnitine palmitoyltransferase I was found to be very pH-dependent. Malonyl-CoA concentrations causing 50% inhibition (I50) at pH 6.0, 6.5, 7.0, 7.5 and 8.0 were 0.04, 1, 9, 40 and 200 microM respectively. It is suggested that a lowering of intracellular pH, such as might occur in ketoacidosis, may attenuate hepatic fatty acid oxidation by increasing malonyl-CoA sensitivity of carnitine palmitoyltransferase I.  相似文献   

3.
The sensitivity of carnitine palmitoyltransferase I (CPT I; EC 2.3.1.21) to inhibition by malonyl-CoA and related compounds was examined in isolated mitochondria from liver, heart and skeletal muscle of the rat. In all three tissues the same order of inhibitory potency emerged: malonyl-CoA much greater than succinyl-CoA greater than methylmalonyl-CoA much greater than propionyl-CoA greater than acetyl-CoA. For any given agent, suppression of CPT I activity was much greater in skeletal muscle than in liver, with the heart enzyme having intermediate sensitivity. With skeletal-muscle mitochondria a high-affinity binding site for [14C]malonyl-CoA was readily demonstrable (Kd approx. 25 nM). The ability of other CoA esters to compete with [14C]malonyl-CoA for binding to the membrane paralleled their capacity to inhibit CPT I. Palmitoyl-CoA also competitively inhibited [14C]malonyl-CoA binding, in keeping with its known ability to overcome malonyl-CoA suppression of CPT I. For reasons not yet clear, free CoA displayed anomalous behaviour in that its competition for [14C]malonyl-CoA binding was disproportionately greater than its inhibition of CPT I. Three major conclusions are drawn. First, malonyl-CoA is not the only physiological compound capable of suppressing CPT I, since chemically related compounds, known to exist in cells, also share this property, particularly in tissues where the enzyme shows the greatest sensitivity to malonyl-CoA. Second, malonyl-CoA and its analogues appear to interact with the same site on the mitochondrial membrane, as may palmitoyl-CoA. Third, the degree of site occupancy by inhibitors governs the activity of CPT I.  相似文献   

4.
Platelet factor 4 is a small protein (Mr 7756) from the alpha-granules of blood platelets which binds strongly to and neutralizes the anticoagulant properties of heparin. From an analysis of X-ray crystallographic data a model for the binding of platelet factor 4 to heparin is proposed.  相似文献   

5.
[14C]Malonyl-CoA bound to intact mitochondria isolated from rat liver and heart in a manner consistent with the presence of two independent classes of binding sites in each tissue. The binding characteristics for mitochondria obtained from fed male rats were: for heart, KD(1) = 11-18nM, KD(2) = 30 microM, N1 = 7pmol/mg of protein, N2 = approx. 660pmol/mg of protein; for liver, KD(1) = 0.1 microM, KD(2) = 5.6 microM, N1 = 11pmol/mg of protein, N2 = 165pmol/mg of protein. In the presence of 40 microM-palmitoyl-CoA the characteristics of binding at the high-affinity sites were changed, so that for heart KD(1) = 0.26 microM, with no change in N1 and for liver KD(1) = approx. 2 microM, with N1 increased to approx. 40pmol/mg of protein. Differences between the two tissues in tightness of malonyl-CoA binding at the high-affinity sites explains the considerably greater sensitivity of heart CPT1 (overt form of carnitine palmitoyltransferase) to inhibition by malonyl-CoA [Saggerson & Carpenter, (1981) FEBS Lett. 129, 229-232; McGarry, Mills, Long & Foster (1983) Biochem. J. 214, 21-28]. Starvation (24h) did not change the characteristics of [14C]malonyl-CoA binding to liver mitochondria and did not alter the I50 (concentration giving 50% inhibition) for displacement of [14C]malonyl-CoA by palmitoyl-CoA. Therefore the decreased sensitivity of liver CPT1 to inhibition by malonyl-CoA in starvation [Saggerson & Carpenter (1981) FEBS Lett. 129, 225-228; Bremer (1981) Biochim. Biophys. Acta 665, 628-631] is not explained by differences in malonyl-CoA binding. Percentage occupancy of the high-affinity sites in heart mitochondria by malonyl-CoA correlated closely with percentage inhibition of CPT1 measured under similar conditions. This finding supports the proposal that the high-affinity binding sites are the functional sites mediating inhibition of CPT1 by malonyl-CoA. Similar experiments with liver mitochondria also suggested that the occupancy of high-affinity sites by malonyl-CoA regulates CPT1 activity. 5,5'-Dithiobis-(2-nitrobenzoic acid), which decreased the sensitivity of heart or liver CPT1 to inhibition by malonyl-CoA [Saggerson & Carpenter (1982) FEBS Lett. 137, 124-128], also decreased [14C]malonyl-CoA binding to the high-affinity sites of heart mitochondria. N1 values for [14C]malonyl-CoA binding to high-affinity sites in liver mitochondria were determined in various physiological states which encompassed a 7-fold range of CPT1 maximal activity (fed, starved, pregnant, hypothyroid, foetal). The N1 value did not change in these states.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Carnitine palmitoyltransferase of liver mitochondria prepared from ketotic diabetic rats has a diminished sensitivity to inhibition by malonyl-CoA compared with carnitine palmitoyltransferase of mitochondria prepared from normal fed rats.  相似文献   

7.
Preincubation of rat liver mitochondria with 5,5'-dithiobis-(2-nitrobenzoic acid) (Nbs2) followed by removal of excess reagent by washing the mitochondria with 0.5 mM-reduced glutathione resulted in a desensitization of carnitine palmitoyltransferase (CPT) I activity to malonyl-CoA inhibition. The effect was not observed if mitochondria were washed with 0.5 mM-dithiothreitol. The desensitization effect of Nbs2 could be reversed by a second incubation in the presence of 8 microM-malonyl-CoA. In addition, malonyl-CoA, when present simultaneously with Nbs2, protected CPT I activity against the desensitization effect of the thiol-group reagent. These results suggest that malonyl-CoA exerts an effect on one or more thiol groups of the enzyme, and that this effect is related to the ability of the metabolite to sensitize CPT I to malonyl-CoA inhibition.  相似文献   

8.
Carnitine palmitoyltransferase I in rat liver mitochondria preincubated with malonyl-CoA was more sensitive to inhibition by malonyl-CoA than was the enzyme in mitochondria preincubated in the absence of malonyl-CoA. For carnitine palmitoyltransferase I in mitochondria from starved animals this increase also resulted in the enzyme becoming significantly more sensitive than that in mitochondria assayed immediately after their isolation. Concentrations of malonyl-CoA that induced half the maximal degree of sensitization observed were 1-3 microM.  相似文献   

9.
Carnitine palmitoyltransferase (CPT) I, which catalyzes the conversion of palmitoyl-CoA to palmitoylcarnitine facilitating its transport through the mitochondrial membranes, is inhibited by malonyl-CoA. By using the SequenceSpace algorithm program to identify amino acids that participate in malonyl-CoA inhibition in all carnitine acyltransferases, we found 5 conserved amino acids (Thr(314), Asn(464), Ala(478), Met(593), and Cys(608), rat liver CPT I coordinates) common to inhibitable malonyl-CoA acyltransferases (carnitine octanoyltransferase and CPT I), and absent in noninhibitable malonyl-CoA acyltransferases (CPT II, carnitine acetyltransferase (CAT) and choline acetyltransferase (ChAT)). To determine the role of these amino acid residues in malonyl-CoA inhibition, we prepared the quintuple mutant CPT I T314S/N464D/A478G/M593S/C608A as well as five single mutants CPT I T314S, N464D, A478G, M593S, and C608A. In each case the CPT I amino acid selected was mutated to that present in the same homologous position in CPT II, CAT, and ChAT. Because mutant M593S nearly abolished the sensitivity to malonyl-CoA, two other Met(593) mutants were prepared: M593A and M593E. The catalytic efficiency (V(max)/K(m)) of CPT I in mutants A478G and C608A and all Met(593) mutants toward carnitine as substrate was clearly increased. In those CPT I proteins in which Met(593) had been mutated, the malonyl-CoA sensitivity was nearly abolished. Mutations in Ala(478), Cys(608), and Thr(314) to their homologous amino acid residues in CPT II, CAT, and ChAT caused various decreases in malonyl-CoA sensitivity. Ala(478) is located in the structural model of CPT I near the catalytic site and participates in the binding of malonyl-CoA in the low affinity site (Morillas, M., Gómez-Puertas, P., Rubi, B., Clotet, J., Ari?o, J., Valencia, A., Hegardt, F. G., Serra, D., and Asins, G. (2002) J. Biol. Chem. 277, 11473-11480). Met(593) may participate in the interaction of malonyl-CoA in the second affinity site, whose location has not been reported.  相似文献   

10.
The outer mitochondrial membrane enzyme carnitine palmitoyltransferase I (CPTI) catalyzes the initial and regulatory step in the beta-oxidation of fatty acids. The genes for the two isoforms of CPTI-liver (L-CPTI) and muscle (M-CPTI) have been cloned and expressed, and the genes encode for enzymes with very different kinetic properties and sensitivity to malonyl-CoA inhibition. Pig L-CPTI encodes for a 772 amino acid protein that shares 86 and 62% identity, respectively, with rat L- and M-CPTI. When expressed in Pichia pastoris, the pig L-CPTI enzyme shows kinetic characteristics (carnitine, K(m) = 126 microM; palmitoyl-CoA, K(m) = 35 microM) similar to human or rat L-CPTI. However, the pig enzyme, unlike the rat liver enzyme, shows a much higher sensitivity to malonyl-CoA inhibition (IC(50) = 141 nM) that is characteristic of human or rat M-CPTI enzymes. Therefore, pig L-CPTI behaves like a natural chimera of the L- and M-CPTI isotypes, which makes it a useful model to study the structure--function relationships of the CPTI enzymes.  相似文献   

11.
Carnitine octanoyltransferase (COT) and carnitine palmitoyltransferase (CPT) I, which facilitate the transport of medium- and long-chain fatty acids through the peroxisomal and mitochondrial membranes, are physiologically inhibited by malonyl-CoA. Using an "in silico" macromolecular docking approach, we built a model in which malonyl-CoA could be attached near the catalytic core. This disrupts the positioning of the acyl-CoA substrate in the channel in the model reported for both proteins (Morillas, M., Gómez-Puertas, P., Roca, R., Serra, D., Asins, G., Valencia, A., and Hegardt, F. G. (2001) J. Biol. Chem. 276, 45001-45008). The putative malonyl-CoA domain contained His(340), implicated together with His(131) in COT malonyl-CoA sensitivity (Morillas, M., Clotet, J., Rubi, B., Serra, D., Asins, G., Ari?o, J., and Hegardt F. G. (2000) FEBS Lett. 466, 183-186). When we mutated COT His(131) the IC(50) increased, and malonyl-CoA competed with the substrate decanoyl-CoA. Mutation of COT Ala(332), present in the domain 8 amino acids away from His(340), decreased the malonyl-CoA sensitivity of COT. The homologous histidine and alanine residues of L-CPT I, His(277), His(483), and Ala(478) were also mutated, which decreased malonyl-CoA sensitivity. Natural mutation of Pro(479), which is also located in the malonyl-CoA predicted site, to Leu in a patient with human L-CPT I hereditary deficiency, modified malonyl-CoA sensitivity. We conclude that this malonyl-CoA domain is present in both COT and L-CPT I proteins and might be the site at which malonyl-CoA interacts with the substrate acyl-CoA. Other malonyl-CoA non-inhibitable members of the family, CPT II and carnitine acetyltransferase, do not contain this domain.  相似文献   

12.
The sensitivity of carnitine acyltransferase I (EC 2.3.1.21) activity to malonyl-CoA inhibition in rat liver mitochondria isolated from animals in various physiological states was quantitatively proportional to the hepatic malonyl-CoA concentration in vivo. It is suggested that this relationship between the two parameters could result in a potent amplification mechanism for the reciprocal regulation of fatty acid synthesis and oxidation.  相似文献   

13.
The release of carnitine palmitoyltransferase (CPT) activity from rat liver mitochondria by increasing concentrations of digitonin was studied for mitochondrial preparations from fed, 48 h-starved and diabetic animals. A bimodal release of activity was observed only for mitochondria isolated from starved and, to a lesser degree, from diabetic rats, and it appeared to result primarily from the enhanced release of approx. 40% and 60%, respectively, of the total CPT activity. This change in the pattern of release was specific to CPT among the marker enzymes studied. For all three types of mitochondria there was no substantial release of CPT concurrently with that of the marker enzyme for the soluble intermembrane space, adenylate kinase. These results illustrate that the bimodal pattern of release of CPT reported previously for mitochondria from starved rats [Bergstrom & Reitz (1980) Arch. Biochem. Biophys. 204, 71-79] is not an immutable consequence of the localization of CPT activity on either side of the mitochondrial inner membrane. Sequential loss of CPT I (i.e. the overt form) from the mitochondrial inner membrane did not affect the concentration of malonyl-CoA required to effect fractional inhibition of the CPT I that remained associated with the mitochondria. The results are discussed in relation to the possibility that altered enzyme-membrane interactions may account for some of the altered regulatory properties of CPT I in liver mitochondria of animals in different physiological states.  相似文献   

14.
The effects of insulin and glucose on the oxidative decarboxylation of pyruvate in isolated rat hindlimbs was studied in non-recirculating perfusion with [1-14C]pyruvate. Insulin increased the calculated pyruvate decarboxylation rate in a concentration-dependent manner. At supramaximal insulin concentrations, the calculated pyruvate decarboxylation rate was increased by about 40% in perfusions with 0.15-1.5 mM-pyruvate. Glucose up to 20 mM had no effect. In the presence of insulin and low physiological pyruvate concentrations (0.15 mM), glucose increased the calculated pyruvate oxidation. This effect was abolished by high concentrations of pyruvate (1 mM). The data provide evidence that in resting perfused rat skeletal muscle insulin primarily increased the activity of the pyruvate dehydrogenase complex. The effect of glucose was due to increased intracellular pyruvate supply.  相似文献   

15.
The experiments reconfirm the powerful inhibitory effect of malonyl-CoA on carnitine acyltransferase I and fatty acid oxidation in rat liver mitochondria (Ki 1.5 microM). Sensitivity decreased with starvation (Ki after 18 h starvation 3.0 microM, and after 42 h 5.0 microM). Observations by Cook, Otto & Cornell [Biochem. J. (1980) 192, 955--958] and Ontko & Johns [Biochem. J. (1980) 192, 959--962] have cast doubt on the physiological role of malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. The high Ki values obtained in the cited studies are shown to be due to incubation conditions that cause substrate depletion, destruction of malonyl-CoA or generation of excessively high concentrations of unbound acyl-CoA (which offsets the competitive inhibition of malonyl-CoA towards carnitine acyltransferase I). The present results are entirely consistent with the postulated role of malonyl-CoA as the primary regulatory of fatty acid synthesis and oxidation in rat liver.  相似文献   

16.
The requirement for carnitine and the malonyl-CoA sensitivity of carnitine palmitoyl-transferase I (EC 2.3.1.21) were measured in isolated mitochondria from eight tissues of animal or human origin using fixed concentrations of palmitoyl-CoA (50 microM) and albumin (147 microM). The Km for carnitine spanned a 20-fold range, rising from about 35 microM in adult rat and human foetal liver to 700 microM in dog heart. Intermediate values of increasing magnitude were found for rat heart, guinea pig liver and skeletal muscle of rat, dog and man. Conversely, the concentration of malonyl-CoA required for 50% suppression of enzyme activity fell from the region of 2-3 microM in human and rat liver to only 20 nM in tissues displaying the highest Km for carnitine. Thus, the requirement for carnitine and sensitivity to malonyl-CoA appeared to be inversely related. The Km of carnitine palmitoyltransferase I for palmitoyl-CoA was similar in tissues showing large differences in requirement for carnitine. Other experiments established that, in addition to liver, heart and skeletal muscle of fed rats contain significant quantities of malonyl-CoA and that in all three tissues the level falls with starvation. Although its intracellular location in heart and skeletal muscle is not known, the possibility is raised that malonyl-CoA (or a related compound) could, under certain circumstances, interact with carnitine palmitoyltransferase I in non-hepatic tissues and thereby exert control over long chain fatty acid oxidation.  相似文献   

17.
The outer mitochondrial membrane enzyme carnitine palmitoyltransferase I (CPTI) catalyzes the initial and regulatory step in the beta-oxidation of long-chain fatty acids. There are two well-characterized isotypes of CPTI: CPTIalpha (also known as L-CPTI) and CPTIbeta (also known as M-CPTI) that in human and rat encode for enzymes with very different kinetic properties and sensitivity to malonyl-CoA inhibition. Kinetic hallmarks of the CPTIalpha are high affinity for carnitine and low sensitivity to malonyl-CoA inhibition, while the opposite characteristics, low affinity for carnitine and high sensitivity to malonyl-CoA, are intrinsic to the CPTIbeta isotype. We have isolated the pig CPTIbeta cDNA which encodes for a protein of 772 amino acids that shares extensive sequence identity with human (88%), rat (85%), and mouse (86%) CPTIbeta, while the degree of homology with the CPTIalpha from human (61%), rat (62%), and mouse (60%) is much lower. However, when expressed in the yeast Pichia pastoris, pig CPTIbeta shows kinetic characteristics similar to those of the CPTIalpha isotype. Thus, the pig CPTIbeta, unlike the corresponding human or rat enzyme, has a high affinity for carnitine (K(m) = 197 microM) and low sensitive to malonyl-CoA inhibition (IC(50) = 906 nM). Therefore, the recombinant pig CPTIbeta has unique kinetic characteristics, which makes it a useful model to study the structure-function relationship of the CPTI enzymes.  相似文献   

18.
The primary aim of this paper was to calculate and report flux control coefficients for mitochondrial outer-membrane carnitine palmitoyltransferase (CPT I) over hepatic ketogenesis because its role in controlling this pathway during the neonatal period is of academic importance and immediate clinical relevance. Using hepatocytes isolated from suckling rats as our model system, we measured CPT I activity and carbon flux from palmitate to ketone bodies and to CO2 in the absence and presence of a range of concentrations of etomoxir. (This is converted in situ to etomoxir-CoA which is a specific inhibitor of the enzyme.) From these data we calculated the individual flux control coefficients for CPT I over ketogenesis, CO2 production and total carbon flux (0.51 +/- 0.03; -1.30 +/- 0.26; 0.55 +/- 0.07, respectively) and compared them with equivalent coefficients calculated by similar analyses [Drynan, L., Quant, P.A. & Zammit, V.A. (1996) Biochem. J. 317, 791-795] in hepatocytes isolated from adult rats (0.85 +/- 0.20; 0.23 +/- 0.06; 1.06 +/- 0.29). CPT I exerts significantly less control over ketogenesis in hepatocytes isolated from suckling rats than those from adult rats. In the suckling systems the flux control coefficients for CPT I over ketogenesis specifically and over total carbon flux (< 0.6) are not consistent with the enzyme being rate-limiting. Broadly similar results were obtained and conclusions drawn by reanalysis of previous data {from experiments in mitochondria isolated from suckling or adult rats [Krauss, S., Lascelles, C.V., Zammit, V.A. & Quant, P.A. (1996) Biochem. J. 319, 427-433]} using a different approach of control analysis, although it is not strictly valid to compare flux control coefficients from different systems. Our overall conclusion is that flux control coefficients for CPT I over oxidative fluxes from palmitate (or palmitoyl-CoA) differ markedly according to (a) the metabolic state, (b) the stage of development, (c) the specific pathway studied and (d) the model system.  相似文献   

19.
We have recently shown by deletion mutation analysis that the conserved first 18 N-terminal amino acid residues of rat liver carnitine palmitoyltransferase I (L-CPTI) are essential for malonyl-CoA inhibition and binding (Shi, J., Zhu, H., Arvidson, D. N. , Cregg, J. M., and Woldegiorgis, G. (1998) Biochemistry 37, 11033-11038). To identify specific residue(s) involved in malonyl-CoA binding and inhibition of L-CPTI, we constructed two more deletion mutants, Delta12 and Delta6, and three substitution mutations within the conserved first six amino acid residues. Mutant L-CPTI, lacking either the first six N-terminal amino acid residues or with a change of glutamic acid 3 to alanine, was expressed at steady-state levels similar to wild type and had near wild type catalytic activity. However, malonyl-CoA inhibition of these mutant enzymes was reduced 100-fold, and high affinity malonyl-CoA binding was lost. A mutant L-CPTI with a change of histidine 5 to alanine caused only partial loss of malonyl-CoA inhibition, whereas a mutant L-CPTI with a change of glutamine 6 to alanine had wild type properties. These results demonstrate that glutamic acid 3 and histidine 5 are necessary for malonyl-CoA binding and inhibition of L-CPTI by malonyl-CoA but are not required for catalysis.  相似文献   

20.
The functional molecular sizes of the protein(s) mediating the carnitine palmitoyltransferase I (CPT I) activity and the [14C]malonyl-CoA binding in purified outer-membrane preparations from rat liver mitochondria were determined by radiation-inactivation analysis. In all preparations tested the dose-dependent decay in [14C]malonyl-CoA binding was less steep than that for CPT I activity, suggesting that the protein involved in malonyl-CoA binding may be smaller than that catalysing the CPT I activity. The respective sizes computed from simultaneous analysis for molecular-size standards exposed under identical conditions were 60,000 and 83,000 DA for malonyl-CoA binding and CPT I activity respectively. In irradiated membranes the sensitivity of CPT activity to malonyl-CoA inhibition was increased, as judged by malonyl-CoA inhibition curves for the activity in control and in irradiated membranes that had received 20 Mrad radiation and in which CPT activity had decayed by 60%. Possible correlations between these data and other recent observations on the CPT system are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号