首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of human Ig lambda light chain gene expression by NF-kappa B.   总被引:1,自引:0,他引:1  
The human Iglambda enhancer consists of three separated sequence elements that we identified previously by mapping DNase I-hypersensitive regions (HSS) downstream of the C region of the Iglambda L chain genes (HSS-1, HSS-2, and HSS-3). It has been shown by several laboratories that expression of the H chain genes as well as the kappa genes, but not the lambda genes, is dependent on constitutive NF-kappaB proteins present in the nucleus. In this study we show by band-shift experiments, in vivo footprinting, and transient transfection assays that all three hypersensitive sites of the human Iglambda enhancer contain functional NF-kappaB sites that act synergistically on expression. We further show that the chicken lambda enhancer also contains a functional NF-kappaB site but the mouse lambda enhancer contains a mutated, nonfunctional NF-kappaB site that is responsible for its low enhancer activity. It is possible that the inactivating mutation in the mouse Iglambda enhancer was compensated for by an expansion of the Igkappa L chain locus, followed by a contraction of the Iglambda locus in this species.  相似文献   

2.
BCR editing in the bone marrow contributes to B cell tolerance by orchestrating secondary Ig rearrangements in self-reactive B cells. We have recently shown that loss of the BCR or a pharmacologic blockade of BCR proximal signaling pathways results in a global "back-differentiation" response in which immature B cells down-regulate genes important for the mature B cell program and up-regulate genes characteristic of earlier stages of B cell development. These observations led us to test the hypothesis that self-Ag-induced down-regulation of the BCR, and not self-Ag-induced positive signals, lead to Rag induction and hence receptor editing. Supporting this hypothesis, we found that immature B cells from xid (x-linked immunodeficiency) mice induce re-expression of a Rag2-GFP bacterial artificial chromosome reporter as well as wild-type immature B cells following Ag incubation. Incubation of immature B cells with self-Ag leads to a striking reversal in differentiation to the pro-/pre-B stage of development, consistent with the idea that back-differentiation results in the reinduction of genes required for L chain rearrangement and receptor editing. Importantly, Rag induction, the back-differentiation response to Ag, and editing in immature and pre-B cells are inhibited by a combination of phorbol ester and calcium ionophore, agents that bypass proximal signaling pathways and mimic BCR signaling. Thus, mimicking positive BCR signals actually inhibits receptor editing. These findings support a model whereby Ag-induced receptor editing is inhibited by BCR basal signaling on developing B cells; BCR down-regulation removes this basal signal, thereby initiating receptor editing.  相似文献   

3.
Silencing individual C (constant region) lambda genes in a kappa(-/-) background reduces mature B cell levels, and L chain-deficient (lambda(-/-)kappa(-/-)) mice attain a complete block in B cell development at the stage when L chain rearrangement, resulting in surface IgM expression, should be completed. L chain deficiency prevents B cell receptor association, and L chain function cannot be substituted (e.g., by surrogate L chain). Nevertheless, precursor cell levels, controlled by developmental progression and checkpoint apoptosis, are maintained, and B cell development in the bone marrow is fully retained up to the immature stage. L chain deficiency allows H chain retention in the cytoplasm, but prevents H chain release from the cell, and as a result secondary lymphoid organs are B cell depleted while T cell levels remain normal.  相似文献   

4.
Human intestinal lamina propria plasma cells are considered to be the progeny of chronically stimulated germinal centers located in organized gut-associated lymphoid tissues such as Peyer's patches and isolated lymphoid follicles. We have sampled human colonic lamina propria plasma cells and naive and memory B cell subsets from human Peyer's patches by microdissection of immunohistochemically stained tissue sections and used PCR methods and sequence analysis to compare IgVlambdaJlambda rearrangements in the plasma cell and B cell populations. Rearrangements that were either in-frame or out-of-frame between V and J were compared. Usage of IgVlambda families in the in-frame rearrangements from the plasma cells resembled that observed in the mantle cells, suggesting that antigenic selection for cellular specificity does not dramatically favor any particular Vlambda segment. However, in marked contrast, out-of-frame rearrangements involving Vlambda1 and Vlambda2 families are rarely observed in intestinal plasma cells, whereas rearrangements involving Vlambda5 are increased. This resulted in significantly biased ratios of in-frame:out-of-frame rearrangements in these Vlambda families. Out-of-frame rearrangements of IgVlambdaJlambda from plasma cells, including those involving the Vlambda5 family, have a significant tendency not to involve Jlambda1, consistent with the hypothesis that this population includes rearrangements generated by secondary recombination events. We propose that modification of out-of-frame rearrangements of IgVlambdaJlambda exists, probably a consequence of secondary rearrangements. This may be a mechanism to avoid translocations to susceptible out-of-frame IgVlambdaJlambda rearrangements during somatic hypermutation.  相似文献   

5.
Immunoglobulins (Ig) secreted from a plasma cell contain either kappa or lambda light chains, but not both. This phenomenon is termed isotypic kappa-lambda exclusion. While kappa-producing cells have their lambda chain genes in germline configuration, in most lambda-producing cells the kappa chain genes are either non-productively rearranged or deleted. To investigate the molecular mechanism for isotypic kappa-lambda exclusion, in particular the role of the Ig kappa intron enhancer, we replaced this enhancer by a neomycin resistance (neoR) gene in embryonic stem (ES) cells. B cells heterozygous for the mutation undergo V kappa-J kappa recombination exclusively in the intact Ig kappa locus but not in the mutated Ig kappa locus. Homozygous mutant mice exhibited no rearrangements in their Ig kappa loci. However, splenic B cell numbers were only slightly reduced as compared with the wild-type, and all B cells expressed lambda chain bearing surface Ig. These findings demonstrate that rearrangement in the Ig kappa locus is not essential for lambda gene rearrangement. We also generated homozygous mutant mice in which the neoR gene was inserted at the 3' end of the Ig kappa intron enhancer. Unexpectedly, mere insertion of the neoR gene showed some suppressive effect on V kappa-J kappa recombination. However, the much more pronounced inhibition of V kappa-J kappa recombination by the replacement of the Ig kappa intron enhancer suggests that this enhancer is essential for V kappa-J kappa recombination.  相似文献   

6.
To determine the distribution of Vlambda and Jlambda as well as VH and JH gene usage in a patient with systemic lupus erythematosus (SLE), productive and nonproductive VJ and V(D)J rearrangements were amplified from individual peripheral CD19+ B cells and were analyzed. No differences in the Vlambda and Jlambda or the VH and JH gene usage in the nonproductive gene repertoire of this SLE patient were found compared with the distribution of genes found in normal adults, whereas marked skewing of both Vlambda and VH was noted among the productive rearrangements. The distribution of productive Vlambda rearrangements was skewed, with significantly greater representation of the Jlambda distal cluster C Vlambda genes and the Vlambda distal Jlambda7 element, consistent with the possibility that there was receptor editing of the Vlambda locus in this patient. Significant bias in VH gene usage was also noted with VH3 family members dominating the peripheral B cell repertoire of the SLE patient (83%) compared with that found in normal subjects (55%; p < 0.001). Notably, a clone of B cells employing the VH3-11 gene for the heavy chain and the Vlambda1G segment for the light chain was detected. These data are most consistent with the conclusion that extreme B cell overactivity drives the initial stages of SLE leading to remarkable changes in the peripheral V gene usage that may underlie on fail to prevent the emergence of autoimmunity.  相似文献   

7.
Receptor editing in the bone marrow (BM) serves to modify the Ag receptor specificity of immature self-reactive B cells, while anergy functionally silences self-reactive clones. Here, we demonstrate that anergic B cells in hen egg lysozyme Ig (HEL-Ig)/soluble HEL double transgenic mice show evidence of having undergone receptor editing in vivo, as demonstrated by the presence of elevated levels of endogenous kappa light chain rearrangements in the BM and spleen. In an in vitro IL-7-driven BM culture system, HEL-Ig BM B cells grown in the presence of soluble HEL down-regulated surface IgM expression and also showed induction of new endogenous kappa light chain rearrangements. Using a panel of soluble protein ligands with reduced affinity for the HEL-Ig receptor, the editing response was shown to correlate in a dose-dependent fashion with the strength of signaling through the B cell receptor. The finding that the level of B cell receptor cross-linking sufficient to induce anergy in B cells is also capable of engaging the machinery required for receptor editing suggests an intimate relationship between these two mechanisms in maintaining B cell tolerance.  相似文献   

8.
9.
Southern blot analyses of germ-line DNA obtained from rabbits expressing lambda chains of C7 and/or C21 allotypes were performed with a rabbit C lambda region-specific probe; a 12-kbp EcoRI- and a 2-kbp BamHI-hybridizing fragment were detected only in the DNA from rabbits expressing the C21 allotype. The 12-kbp EcoRI fragment was cloned and shown to contain two C lambda region-encoding genes in the same orientation. Each is preceded by a J lambda gene segment. Nonamer-12-bp spacer-heptamer recombination signal sequences were found 5' of each J lambda segment, and splicing signals were identified at the 3' ends of the J lambda segments and the 5' ends of the corresponding C lambda genes. The C lambda 5 gene, which exhibits a sequence identical with that found in several cDNA clones, is carried by the 2-kbp BamHI fragment missing from the genomic DNA of rabbits which do not express the C21 allotype. The second C lambda gene, C lambda 6, lies 3' of C lambda 5, in a 1.6-kbp BamHI fragment which is present in genomic DNAs of all tested rabbits, irrespective of their phenotype. Its sequence is identical with that found in one cDNA clone and differs from that of C lambda 5 in 17 base positions resulting in four amino acid substitutions. A fragment of a cDNA, with a J-C region sequence identical with that encoded by the J lambda 5-C lambda 5 gene pair, was subcloned into a plasmid expression vector. The resulting polypeptide product could be specifically immunoprecipitated by anti-C21 but not anti-C7 alloantisera, showing that some, if not all, C21 allotopes are encoded by the C lambda 5 gene. In contrast, the C lambda 6 gene product was not precipitable, either by anti-C7 or by anti-C21 alloantisera, although it was readily immunoprecipitated by a goat anti-rabbit lambda chain antiserum.  相似文献   

10.
11.
Extracellular deposition as amyloids of immunoglobulin light chains causes light chain amyloidosis. Among the light chain families, lambda 6a is one of the most frequent in light chain amyloidosis patients. Its germline protein, 6aJL2, and point mutants, R24G and P7S, are good models to study fibrillogenesis, because their stability and fibril formation characteristics have been described. Both mutations make the germline protein unstable and speed up its ability to aggregate. To date, there is no molecular mechanism that explains how these differences in amyloidogenesis can arise from a single mutation. To look into the structural and dynamical differences in the native state of these proteins, we carried out molecular dynamics simulations at room temperature. Despite the structural similarity of the germline protein and the mutants, we found differences in their dynamical signatures that explain the mutants’ increased tendency to form amyloids. The contact network alterations caused by the mutations, though different, converge in affecting two anti‐aggregation motifs present in light chain variable domains, suggesting a different starting point for aggregation in lambda chains compared to kappa chains.  相似文献   

12.
Survival of mature B cells is thought to depend on the BCR signaling (BCR) because ablation of either H chain (HC) expression or BCR signaling causes B cells to rapidly disappear. Whether a complete BCR is required for survival of mature B cells is not known. To address this question, we generated a mouse in which we can repress the expression of a transgenic Ig L chain (IgL) by doxycycline (IgL-repressible mouse). Repression of IgL abrogated expression. Surprisingly, however, IgL-negative B cells survived longer than 14 wk, expressed signal-competent HC on the cell's surface, and active unfolded protein response factors. Like postgerminal center B cells, IgL-negative B cells were small lymphocytes, not dividing and expressed Bcl-6. Our results indicate that expression of unpaired HC, as it may occur as a consequence of Ag ligation, somatic hypermutation, or receptor editing, facilitates the survival of cells either by inducing receptor signaling or by inducing unfolded protein response and/or the expression of survival genes such as Bcl-6.  相似文献   

13.
In order to study the regulation of expression of Ig lambda genes we have analyzed lambda-producing hybridomas derived from transgenic mice which harbor a functionally rearranged kappa transgene. We also analyzed lambda-producing hybridomas from nontransgenic mice. Surprisingly, all but one of the transgenic lambda-hybridomas co-produce kappa L chains. Also, in contrast to transgenic kappa-hybridomas, most lambda-hybridomas have rearranged endogenous kappa genes despite the presence of transgenic kappa-chains and endogenous H chains. Analysis of spleen cells and hybridomas from nontransgenic mice shows that about 20% of lambda-producing B cells in the spleen co-produce kappa, and a similar proportion of lambda-hybridomas from normal spleens produce both kappa- and lambda-chains. The data argue strongly against the strictly sequential expression of kappa and lambda genes. We present a new model for the regulation of kappa and lambda gene expression, whose key feature is the distinction between a kappa cell lineage in which Ig gene rearrangement is susceptible to feedback by a complete antibody molecule at the pre-B cell stage, and a kappa lambda B cell lineage which does not show feedback inhibition during B cell development.  相似文献   

14.
15.
During B cell differentiation rearrangement of immunoglobulin (Ig) genes is partially regulated by the Ig proteins. Rearrangement of heavy (H) chain genes is inhibited, whilst that of light (L) chain genes is induced by the membrane form of the mu H chain. In order to analyse additional structural requirements of mu induced L chain gene rearrangement we transfected wild-type mu and mutant mu constructs lacking functional exons encoding the first or second constant domains into Abelson murine leukemia virus (AMuLV) transformed pre-B cells. All mu chains are expressed on the surface of the pre-B cell and all associate with omega and iota, two proteins forming a surrogate light chain, necessary for mu membrane expression. Nevertheless, only wild-type mu and not the mutant mu proteins promote L gene rearrangement. A heterodimer of proteins with Mr of 33 kd and 36 kd was found associated with wild-type but not with the mutant mu proteins. Continuous presence of mu is required for L chain gene recombination since loss of mu stopped and readdition of mu started L gene rearrangement. We propose that the protein complex composed of mu and the 33 kd/36 kd protein heterodimer is responsible for the activation of the L chain gene locus and its rearrangement.  相似文献   

16.
17.
18.
Analysis of 10 cDNA encoding lambda L chains of horse Ig indicated that this species may employ a relatively small number of variable region (V lambda) genes in the splenic B cell population. The V lambda sequences of all of the cDNA analyzed were closely related (> 88% identity at the nucleotide level) and were characterized by a deletion of the amino acid residue at position 3 compared with V lambda sequences so far described in other species. The 10 V lambda sequences could be grouped into three groups, V lambda 1 to V lambda 3, on the basis of a number of linked substitutions. Sequences within the groups showed the greatest divergence in the third cdr regions and at the V-J junctions. The junctional variation included amino acid substitutions on both sides of the V-J junction as well as the insertion or deletion of two to four amino acid residues. Four C lambda genes were identified in genomic blots of horse DNA, and three of these were found expressed in splenic cDNA. The fourth C lambda gene may represent a pseudogene, inasmuch as the associated J region possessed a defective heptamer joining sequence. Six of the nine possible V lambda-C lambda combinations were found in the cDNA analyzed, suggesting that genes belonging to groups V lambda 1 through V lambda 3 may rearrange to any one of three J lambda-C lambda genes. One V lambda germline gene was characterized and found to represent a distinct V lambda group (V lambda 4), not represented in the cDNA sequences analyzed. The number of germline V lambda genes was estimated to be 20 to 30, based on analysis of restriction fragments hybridizing with V lambda probes. On the basis of these data, we propose that the V lambda repertoire in horse may consist of relatively limited number of genes, of which only a few may be used at high frequency in the splenic B cell population. The results indicate that predominance of lambda-chains in horse Ig may not simply be due to the presence of a large germline V lambda gene repertoire.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号