首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The hypothesis that sequence-selective DNA-binding antibiotics locate their preferred binding sites by a process involving migration from nonspecific sites has been tested by footprinting with DNAase I. Footprinting patterns on the tyrT DNA fragment produced by nogalamycin and actinomycin change with time after mixing the antibiotic with the DNA. Sites of protection as well as enhanced cleavage are seen to develop in a fashion which is both temperature and concentration-dependent. At certain sites cutting is transiently enhanced, then blocked. Limited evidence for slow reaction with echinomycin and mithramycin is presented, but the kinetics of footprinting with daunomycin and distamycin appear instantaneous. The feasibility of adducing direct evidence for shuffling by footprinting seems to be governed by slow dissociation of the antibiotic-DNA complex. It may also be dependent upon the mode of binding, be it intercalative or non-intercalative in character.  相似文献   

2.
The “strong” binding of two antibiotics, actinomycin D and daunomycin, to native DNA (calf-thymus) in dilute aqueous solution has been studied by means of calorimetric and spectroscopic measurements. In essence our results show: (1) Daunomycin interaction with DNA is an exothermic process, all features of which depend in a discontinuous way on the fraction of DNA binding sites engaged by the drug. Fluorescence data indicate that such a discontinuous trend should be independent of the GC content of DNA. (2) Actinomycin binding to DNA is, on the contrary, characterized by a positive enthalpy. For such binding, no discontinuity appears discernible with increasing the molar ratio of drug to DNA (phosphorous) on the basis of calorimetric and fluorescence data. (3) Both antibiotics can be bound simultaneously to DNA: our results would suggest that their binding sites on the biopolymer are independent.Discussion is focussed on the possible information derivable from our data on whether or not intercalation may indeed be the main process through which each antibiotic considered “strongly” interacts with DNA.  相似文献   

3.
4.
DNase I footprinting has been used to examine the sequence selective binding of ditrisarubicin B, novel anthracycline antibiotic, to DNA. At 37°C no footprinting pattern is observed, the drug protects all sites from enzymic cleavage with equal efficiency. At 4°C a footprinting pattern is induced with low drug concentrations which is different from that produced by daunomycin. The best binding sites contain the dinucleotide step GpT (ApC) and are located in regions of alternating purines and pyrimidines.  相似文献   

5.
Stopped-flow spectrometry and simple mixing techniques have been employed to investigate the detergent-induced dissociation of anthracycline antibiotics from natural and synthetic DNAs. Both daunomycin and nogalamycin dissociate more slowly poly(dG-dC) than from poly(dA-dT), but the difference is much more marked for nogalamycin. With an equimolar mixture of poly(dG-dC) and poly(dA-dT), or with poly(dA-dC)·poly(dG-dT), dissociation of nogalamycin occurs very slowly. In all cases the release of antibiotic from a synthetic polynucleotide is a one-step process following a sinigle exponential. Dissociation of daunomycin, adrianmycin and iremycin from calf thymus DNA is a more complex reaction which requires a two-exponential fit, in contrast to earlier reports, but differences between the behaviour of the three antibotics are minor. Dissociation of nogalamycin from natural DNA requires a three-exponential fit, is in general far slower, and depends upon the base composition, the level of binding and the time allowed for the complex to equilibrate. It is concluded that sequence selectivity is minimal or lacking for daunomycin, whereas nogalamycin binding is sequence dependent and probably involves migration of the antibiotic between DNA binding sites. There is an inverse correlation between dissociation rate constants and antibacterial potency in simple tests.  相似文献   

6.
Structure of Daunomycin; X-ray Analysis of N-Br-Acetyl-Daunomycin Solvate   总被引:1,自引:0,他引:1  
THE antibiotic daunomycin was discovered and studied by Di Marco and co-workers1–5 who found it to have cytotoxic and antimitotic activity. Extensive chemical work by Arca-mone and co-workers6–9 has established the total absolute configuration as in Fig. 1, which gives the formula of the N-Br-acetyl derivative. Daunomycin interferes with nucleic acid metabolism in both mammalian10 and bacterial11 cells and the formation of a complex between daunomycin and nucleic acids has been studied12–16. The nature of the chemical binding between antibiotics which affect ribonucleic acid synthesis and DNA has been discussed16 and it has been suggested that the amino as well as either quinone17,18 or hydroxyl groups of the chromophore are responsible for hydrogen bonding to the DNA helix. An understanding of this effect is important as the binding of daunomycin to DNA is most likely responsible for the biological activity of this antibiotic. To determine the detailed stereochemical features of daunomycin, the relative orientation of the sugar ring to the aglycone moiety and the nature of the hydrogen bonding in the solid state, we began X-ray crystallographic studies.  相似文献   

7.
Stopped-flow spectrometry and simple mixing techniques have been employed to investigate the detergent-induced dissociation of anthracycline antibiotics from natural and synthetic DNAs. Both daunomycin and nogalamycin dissociate more slowly from poly(dG-dC) than from poly(dA-dT) but the difference is much more marked for nogalamycin. With an equimolar mixture of poly(dG-dC) and poly(dA-dT), or with poly(dA-dC).poly(dG-dT), dissociation of nogalamycin occurs very slowly. In all cases the release of antibiotic from a synthetic polynucleotide is a one-step process following a single exponential. Dissociation of daunomycin, adriamycin and iremycin from calf thymus DNA is a more complex reaction which requires a two-exponential fit, in contrast to earlier reports, but differences between the behaviour of the three antibiotics are minor. Dissociation of nogalamycin from natural DNA requires a three-exponential fit, is in general far slower, and depends upon the base composition, the level of binding and the time allowed for the complex to equilibrate. It is concluded that sequence selectivity is minimal or lacking for daunomycin, whereas nogalamycin binding is sequence dependent and probably involves migration of the antibiotic between DNA binding sites. There is an inverse correlation between dissociation rate constants and antibacterial potency in simple tests.  相似文献   

8.
The agents daunomycin, ethidium bromide, distamycin A and cytochrome c inhibit DNA dependent DNA polymerase I (E. coli) reaction competitively to DNA. The influence of these template inactivators on the binding of DNA polymerase to native as well as denatured DNA has been determined by affinity chromatography. Cytochrome c blocks the binding of the enzyme to double-stranded and to single-stranded DNA Sepharose. In contrast to these results daunomycin, ethidium bromide or distamycin A reduce the binding affinity only with denatured DNA Sepharose as matrix. These data are discussed with respect to the modification by template inactivators of the affinity of DNA to the different binding sites of the DNA polymerase.  相似文献   

9.
Site and sequence specificity of the daunomycin-DNA interaction   总被引:8,自引:0,他引:8  
The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These three experimental approaches provide mutually consistent results showing that daunomycin indeed recognizes specific sites along the DNA lattice. The affinity of daunomycin toward natural DNA increases with increasing GC content. The quantitative results are most readily explained by binding models in which daunomycin interacts with sites containing two adjacent GC base pairs, possibly occurring as part of a triplet recognition sequence. Deoxyribonuclease I footprinting studies utilizing the 160 base pair (bp) tyrT DNA fragment and 61 and 53 bp restriction fragments isolated from pBR322 DNA further define the sequence specificity of daunomycin binding. Specific, reproducible protection patterns were obtained for each DNA fragment at 4 degrees C. Seven protected sequences, ranging in size from 4 to 14 bp, were identified within the tyrT fragment. Relative to the overall tyrT sequence, these protected sequences were GC rich and contained a more limited and distinct distribution of di- and trinucleotides. Within all of the protected sequences, a triplet containing adjacent GC base pairs flanked by an AT base pair could be found in one or more copies. Nowhere in the tyrT fragment did that triplet occur outside a protected sequence. The same triplet occurred within seven out of nine protected sequences observed in the fragments isolated from pBR322 DNA. In the two remaining cases, three contiguous GC base pairs were found. We conclude that the preferred daunomycin triplet binding site contains adjacent GC base pairs, of variable sequence, flanked by an AT base pair. This conclusion is consistent with the results of a recent theoretical study of daunomycin sequence specificity [Chen, K.-X., Gresh, N., & Pullman, B. (1985) J. Biomol. Struct. Dyn. 3, 445-466]. Adriamycin and the beta-anomer of adriamycin produce the same qualitative pattern of protection as daunomycin with the tyrT fragment. Daunomycin inhibits the rate of digestion of pBR322 DNA by PvuI (recognition sequence 5'-CGATCG-3') to a greater extent than it does EcoRI (recognition sequence 5'-GAATTC-3'), a finding consistent with the conclusions derived from our footprinting studies. Our results, as a whole, are the clearest indication to date that daunomycin recognizes a specific DNA sequence as a preferred binding site.  相似文献   

10.
Equilibrium and hydrodynamic studies on the complex of actinomycin D with H1-H5 depleted, 175 basepair nucleosomes are reported. By spectral titration the intrinsic affinities of actinomycin D for nucleosomes and for DNA are found strictly comparable. Sedimentation analysis shows that actinomycin can apparently unfold the nucleosome, like ethidium bromide and daunomycin, but it does so at a much lower bound drug to DNA molar ratio (about 1 drug molecule to 45 basepairs). Since about four bound actinomycin molecules are able to induce the reversible conformational transition of a nucleosome, it is suggested that the sites of interaction may correspond to the kinked DNA sites evidenced by Klug and collaborators (Richmond, T.J., Finch, J.T., Rushton, B., Rhodes, D. and Klug, A. (1984) Nature 311, 532-537) in the structure of the nucleosome. A relevance of these findings to the interaction of actinomycin with "active chromatin" is also suggested.  相似文献   

11.
The complex formation of the antibiotic daunomycin with deoxytetranucleotides of different base sequence in the chain, 5'-d(GpCpGpC), 5'-d(CpGpCpG), and 5'-d(TpGpCpA) in aqueous salt solution was studied by 1D and 2D (2M-TOCSY and 2M-NOESY) 1H-NMR spectroscopy. Concentration and temperature dependences of proton chemical shifts of molecules were measured. Based on these dependences, reaction equilibrium constants, relative content of various complexes depending on concentration and temperature, limiting values of chemical shifts of protons of daunomycin incorporated in various complexes, and the thermodynamic parameters delta H and delta S of complex formation were calculated. The analysis of the results enables the conclusion that the sites of predominant intercalation of daunomycin are triplet nucleotide sequences, the binding sites of the antibiotic with three consecutive GC pairs in the tetranucleotide duplex being more preferential. Daunomycin exhibits no sequence specificity upon binding to the single-stranded deoxynucleotide sequence. From the calculated values of induced chemical shifts of daunomycin protons and 2M-NOE data, the most probable spatial structures of complexes (1:2) of the antibiotic with deoxytetranucleotides were constructed. The binding of the second daunomycin molecule to both the single-stranded and duplex form of tetramers is of pronounced anticooperative mode, which is explained by the presence in the antibiotic of a positively charged amino sugar residue, which poses considerable steric constraints for the insertion of the second antibiotic molecule into the short tetranucleotide sequence. The results were compared with the data obtained under identical experimental conditions for typical intercalators proflavine and ethidium bromide.  相似文献   

12.
13.
500 MHz NMR spectroscopy has been used to investigate the complexation of the anthracycline antibiotic daunomycin (DAU) with self-complementary deoxytetranucleotides, 5'-d(CGCG), 5'-d(GCGC), 5'-d(TGCA), 5'-d(ACGT) and 5'-d(AGCT), of different base sequence in aqueous salt solution. 2D homonuclear 1H NMR spectroscopy (TOCSY and NOESY) and heteronuclear 1H - 31P NMR spectroscopy (HMBC) have been used for complete assignment of the non-exchangeable protons and the phosphorus resonance signals, respectively, and for a qualitative determination of the preferred binding sites of the drug. Analysis shows that DAU intercalates preferentially into the terminal sites of each of the tetranucleotides and that the aminosugar of the antibiotic is situated in the minor groove of the tetramer duplex, partly eclipsing the third base pair. A quantitative determination of the complexation of DAU with the deoxytetranucleotides has been made using the experimental concentration and temperature dependences of the drug proton chemical shifts; these have been analysed in terms of the equilibrium reaction constants, limiting proton chemical shifts and thermodynamical parameters (enthalpies deltaH, entropies deltaS) of different drug-DNA complexes (1:1, 1:2, 2:1, 2:2) in aqueous solution. It is found that DAU interacts with sites containing three adjacent base pairs but does not show any significant sequence specificity of binding with either single or double-stranded tetranucleotides, in contrast with other intercalating drugs such as proflavine, ethidium bromide and actinomycin D. The most favourable structures of the 1:2 complexes have been derived from the induced limiting proton chemical shifts of the drug in the intercalated complexes with the tetranucleotide duplex, in conjunction with 2D NOE data. It has been found that the conformational parameters of the double helix and the orientation of the DAU chromophore in the intercalated complexes depend on base sequence at the binding site of the tetramer duplexes in aqueous solution.  相似文献   

14.
The technique of DNAase I footprinting has been used to investigate preferred binding sites for actinomycin D and distamycin on a 160-base-pair DNA fragment from E. coli containing the tyr T promoter sequence. Only sites containing the dinucleotide step GpC are protected by binding of actinomycin, and all such sites are protected. Distamycin recognizes four major regions rich in A + T residues. Both antibiotics induce enhanced rates of cleavage at certain regions flanking their binding sites. These effects are not restricted to any particular base sequence since they are produced in runs of A and T by actinomycin and in GC-rich sequences by distamycin. The observed increases in susceptibility to nuclease attack are attributed to DNA structural variations induced in the vicinity of the ligand binding site, most probably involving changes in the width of the helical minor groove.  相似文献   

15.
16.
It is shown that distamycin A and actinomycin D protect the recognition sites of certain restriction endonucleases from the attack by these nucleases due to specific interaction of these antibiotics with double-stranded DNA. Distamycin A protects A-T containing sites and actinomycin G-C rich sites. Among Hind II recognition sites which have alternative structure (GTPyPuAC) distamycin A protects only Hpa I similar sites (GTTAAC). It is shown with several restriction endonucleases that antibiotic action depends on the nucleotide sequences in the recognition sites and in their closest environment. Proper concentrations of antibiotic give rise to larger fragments. Use of both distamycin A and actinomycin D allows to obtain a set of overlapping fragments. The data obtained with various DNAs and restriction endonucleases allow to conclude that these antibiotics may be useful for DNA mapping and for preparation of large functional fragments of DNA.  相似文献   

17.
A molecular dynamics simulation was used to assess the effect on the elasticity of a DNA fragment and the efficiency of DNA binding for actinomycins (antibiotics that are used in chemotherapy for certain oncology diseases). Hydroxyl and amino groups that were introduced as substituents in the phenoxazine ring of actinomycin were tested for their effect on the dynamic behavior and stability of antibiotic–DNA complexes. The Young modulus was calculated for DNA, DNA–actinomycin, DNA–7-hydroxyactinomycin, and DNA–7-aminoactinomycin. The free energy of complexation with DNA was calculated for actinomycin and its two analogs. The substituents were assumed to structurally stabilize the DNA fragment via additional hydrogen bonding.  相似文献   

18.
Binding of actinomycin D to DNA revealed by DNase I footprinting   总被引:6,自引:0,他引:6  
We have analyzed the specificity of the actinomycin D-DNA interaction. The 'footprint' method has been used in this investigation. It is shown that: (i) The presence of dinucleotide GC or GG is required for binding of a single drug molecule. (ii) The strong binding sites are encoded by tetranucleotide XGCY; where X not equal to G and Y not equal to C in accordance with RNA elongation hindrance sites [1]. (iii) There is a positive cooperativity in binding of actinomycin D with DNA.  相似文献   

19.
The effect of daunomycin on the in vitro activity of Escherichia coli DNA-dependent RNA polymerase has been studied under a variety of experimental conditions. The inhibition of RNA synthesis by this DNA-binding antibiotic is overcome by an increase in the DNA concentration but is unaffected by an increase in the concentration of the RNA polymerase. It is concluded that, under conditions used, the inhibition is predominantly due to the interaction of the drug with the template DNA. At the concentration used (20 μM), daunomycin is able to inhibit RNA polymerization even after its initiation. However, the possibility remains that other steps are sensitive to daunomycin. A comparison of the effect of daunomycin on RNA synthesis using different DNAs as templates suggests that the extent of inhibition depends on base composition and on the secondary structure of the DNA. The effect of base composition on the melting temperature of antibiotic-DNA complexes is consistent with the inhibiting effect on RNA synthesis.  相似文献   

20.
DNA-nogalamycin interactions   总被引:1,自引:0,他引:1  
The anthracycline antibiotic nogalamycin differs from the more common daunomycin-type anthracyclines by substitution on both ends of the intercalating chromophore, giving nogalamycin the approximate shape of a dumbbell. The chromophore of daunomycin is substituted on only one end. In nogalamycin, the positively charged amino sugar substituent of daunomycin is replaced by an uncharged nogalose sugar and a methyl ester group. The other end of nogalamycin, where daunomycin is unsubstituted, is fused to a bicyclo amino sugar with a positively charged dimethylamino group. Much larger DNA fluctuations are required for intercalative entry of nogalamycin than for entry of daunomycin. This report describes the X-ray crystal structure of the complex between nogalamycin and the self-complementary DNA hexamer d(me5CGTsAme5CG). The DNA contains cytosines methylated at the 5-positions and a phosphorothioate linkage at the TpA step. Nogalamycin intercalates at the terminal CpG steps and interacts with both strands in both grooves of the DNA. Large conformational adjustments in both nogalamycin and the DNA are necessary to form a stable, intercalative complex. The interactions of the bases with the nogalamycin substituents lead to sliding of bases relative to each other along the normal to Watson-Crick hydrogen bonds. The planarities of base pairs surrounding the intercalation site are distorted. The backbones of the two strands are distorted asymmetrically by nogalamycin with large deviations from standard B-DNA geometry. The complex between nogalamycin and DNA illustrates the conformational flexibility of DNA. The hydrogen-bonding interactions between nogalamycin and DNA do not suggest a sequence-specific binding of the drug, although additional secondary effects might lead to differences between various intercalation sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号