首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
NOD (non-obese diabetic) mice develop type 1 diabetes mellitus spontaneously and with a strong similarity to the human disease. Differentiation and function of pancreas beta cells are regulated by a variety of hormones and growth factors, including the nerve growth factor (NGF). Gangliosides have multiple immunomodulatory activities with immunosuppressive properties, decreasing lymphoproliferative responses and modulating cytokine production. In the present study, serum, pancreas islets and spleen mononuclear cells from NOD mice treated with monosialic ganglioside GM1 (100 mg/kg/day) and the group control which received saline solution were isolated to investigate the proinflammatory cytokines (IL-1beta, IFN-gamma, IL-12, TNF-alpha), NGF and its high-affinity receptor TrkA, peri-islet Schwann cells components (GFAP, S100-beta) expression and the relationship with diabetes onset and morphological aspects. Our results suggest that GM1 administration to female NOD mice beginning at the 4th week of life is able to reduce the index of inflammatory infiltrate and consequently the expression of diabetes, modulating the expression of proinflammatory cytokines (IL-12, IFN-gamma, TNF-alpha and IL-1beta). Furthermore, GM1 increases GFAP, S-100beta and NGF in pancreas islets, factors involved in beta cell survival.  相似文献   

3.
Primary cultures of neonatal rat cortical astrocytes contain low cellular levels (about 2 pg/mg of protein) of nerve growth factor (NGF), but secrete significant amounts of NGF into the culture medium (about 540 pg of NGF/mg of cell protein/38-h incubation). Incubation of astrocytes with interleukin-1 (IL-1) increased the cellular content of NGF and the amount secreted by about threefold. In comparison, cerebellar astrocytes secreted significant amounts of NGF, and the secretion was also stimulated by IL-1. The stimulatory action of IL-1 on astrocytes prepared from cortex was dose- and time-dependent. Concentrations of IL-1 causing half-maximal and maximal stimulation of NGF secretion were 1 and 10 U/ml, respectively). Maximal NGF secretion induced by IL-1 (10 U/ml) was seen following 38 h of incubation. The basal secretion of NGF was reduced by about 50% under Ca2(+)-free conditions; however, the percent stimulation of NGF secretion by IL-1 was the same in the absence or presence of Ca2+. The stimulatory action of IL-1 was specific, because other glial growth factors and cytokines were almost ineffective in stimulating NGF secretion from cortical astroglial cells. IL-1 treatment also increased cellular NGF mRNA content twofold. The results indicate that IL-1 specifically triggers a cascade of events, independent of cell growth, which regulate NGF mRNA content and NGF secretion by astrocytes.  相似文献   

4.
The cell-surface expression of GM1 ganglioside was studied using various cultured cells, including brain-derived endothelial cells, astrocytes, neuroblastoma cells (SH-SY5Y), and pheochromocytoma cells (PC12). GM1 ganglioside was detected only on the surface of native and nerve-growth-factor (NGF)-treated PC12 cells. We investigated whether GM1 ganglioside on the surface of these cells is sufficiently potent to induce the assembly of an exogenous soluble amyloid beta-protein (Abeta). A marked Abeta assembly was observed in the culture of NGF-treated PC12 cells. Notably, immunocytochemical study revealed that, despite the ubiquitous surface expression of GM1 ganglioside throughout cell bodies and neurites, Abeta assembly initially occurred at the terminals of SNAP25-immunopositive neurites. Abeta assembly in the culture was completely suppressed by the coincubation of Abeta with the subunit B of cholera toxin, a natural ligand for GM1 ganglioside, or 4396C, a monoclonal antibody specific to GM1-ganglioside-bound Abeta (GAbeta). In primary neuronal cultures, Abeta assembly initially occurred at synaptophysin-positive sites. These results suggest that the cell-surface expression of GM1 ganglioside is strictly cell-type-specific, and that expression of GM1 ganglioside on synaptic membranes is unique in terms of its high potency to induce Abeta assembly through the generation of GAbeta, which is an endogenous seed for Abeta assembly in Alzheimer brain.  相似文献   

5.
An immunohistochemical method utilizing anti-ganglioside GM1 antiserum combined with the peroxidase-antiperoxidase technique was applied to a mixed cell population in primary cultures of newborn rat brain. Ganglioside GM1 was demonstrated to be present in neurons and oligodendroglia, but was absent in astroglia. This demonstration was confirmed using a newly developed biotinylated choleragen-avidin-peroxidase procedure. Primary cultures from newborn rat brain cells that had been subjected to a single treatment with trypsin (first passage) and then cultured for 14 days were predominately (95%) composed of astrocytes that stained positively for glial fibrillary acidic protein but were negative for GM1 ganglioside. This preparation contained only 0.34 nmol ganglioside NeuNAc per mg protein compared to 23.9 nmol gangliosidic NeuNAc/mg protein for a five day culture of newborn rat brain mixed cell culture that had not been subjected to passage. Prolongation of culture time from 5 to 21 days in the latter preparation reduced the ganglioside NeuNAc content to 4.9 nmol gangliosidic NeuNAc/mg protein as the proportion of astrocytes in the culture increased. Ganglioside GM1 could not be detected by TLC analysis of the lipid extract obtained from the “pure” astrocyte culture, although small amounts of GM3 and some polysialogangliosides were detected. About half of the label incorporated upon 24 h incubation of astrocytes in the presence of N-[3H]acetylmannosammine appeared in ganglioside GM3. It is concluded that astrocytes in mixed cell primary cultures from newborn rat brain, as well as astrocytes in astroglial preparations derived from such cultures, do not contain ganglioside GM1.  相似文献   

6.
7.
The cell-surface expression of GM1 ganglioside was studied using various cultured cells, including brain-derived endothelial cells, astrocytes, neuroblastoma cells (SH-SY5Y), and pheochromocytoma cells (PC12). GM1 ganglioside was detected only on the surface of native and nerve-growth-factor (NGF)-treated PC12 cells. We investigated whether GM1 ganglioside on the surface of these cells is sufficiently potent to induce the assembly of an exogenous soluble amyloid β-protein (Aβ). A marked Aβ assembly was observed in the culture of NGF-treated PC12 cells. Notably, immunocytochemical study revealed that, despite the ubiquitous surface expression of GM1 ganglioside throughout cell bodies and neurites, Aβ assembly initially occurred at the terminals of SNAP25-immunopositive neurites. Aβ assembly in the culture was completely suppressed by the coincubation of Aβ with the subunit B of cholera toxin, a natural ligand for GM1 ganglioside, or 4396C, a monoclonal antibody specific to GM1-ganglioside-bound Aβ (GAβ). In primary neuronal cultures, Aβ assembly initially occurred at synaptophysin-positive sites. These results suggest that the cell-surface expression of GM1 ganglioside is strictly cell-type-specific, and that expression of GM1 ganglioside on synaptic membranes is unique in terms of its high potency to induce Aβ assembly through the generation of GAβ, which is an endogenous seed for Aβ assembly in Alzheimer brain.  相似文献   

8.
An enzyme-linked immunoadsorbent assay (ELISA) for neurofilament protein was utilised to quantify the effect of exogenous ganglioside on neurite regeneration in cultures of dorsal root ganglion neurones. In contrast to nerve growth factor (NGF), ganglioside GM1 (100 micrograms/ml) failed to support neuronal survival and neurite regeneration as quantified by the ELISA assay and confirmed by morphological criteria. However, the simultaneous presence of GM1 (100 micrograms/ml) and NGF (0.5-5 ng/ml) throughout a 5-day period of culture resulted in an enhancement of previously reported NGF-induced increases in the expression of neurofilament protein. Further, the addition of GM1 (0-200 micrograms/ml) at 48 h in vitro to cultures initially established in the presence of 5 ng/ml NGF substantially increased the subsequent expression of neurofilament protein, this response being both independent of and not potentiated by NGF. The results in the present system suggest that GM1 cannot initiate a programme of neurite regeneration; however, GM1 can enhance this process with the response being secondary to the effect of NGF.  相似文献   

9.
The incorporation of radioactive precursors into gangliosides and other glycolipids, glycoproteins, and total lipids has been studied in rat pheochromocytoma PC12 cells. Starting with the same PC12 cell pool, cultures displaying different degrees of neuritic expression in response to nerve growth factor (NGF) and combinations of serum ganglioside GM1 were produced. Attempts were then made to correlate neuritic regulation with biochemical performances of these cells. NGF stimulates the incorporation of [3H]galactose into gangliosides and other glycolipids and glycoproteins and [14C]acetate into total lipids, regardless of the serum concentration. NGF both increased their initial labeling rates and promoted additional and more extensive labeling from culture day 4 onward. Unexpectedly, exogenous GM1 also elicited an increase in ganglioside labeling as well as that of the other lipid classes, but not of glycoproteins. The GM1-induced increase was evident at higher serum concentrations (1%) regardless of the presence or absence of NGF, but not apparent in low (0.15%) serum. Serum levels themselves did not affect labeling patterns in the absence of NGF and GM1. GM1-induced stimulation of labeling reflects an increase in the synthetic activities of the cells, and not increased precursor uptake or reduced product degradation. For all constituents stimulated by GM1, concurrent treatment with NGF produces cumulative effects, suggesting independent mechanisms of action by the two molecules.  相似文献   

10.
In the present study, we addressed the question of whether treatment with mannitol, an osmotic diuretic, affects astrogliovascular responses to status epilepticus (SE). In saline-treated animals, astrocytes exhibited reactive astrogliosis in the CA1-3 regions 2-4 days after SE. In the mannitol-treated animals, a large astroglial empty zone was observed in the CA1 region 2 days after SE. This astroglial loss was unrelated to vasogenic edema formation. There was no difference in SE-induced neuronal loss between saline- and mannitol-treated animals. Furthermore, mannitol treatment did not affect astroglial loss and vasogenic edema formation in the dentate gyrus and the piriform cortex. These findings suggest that mannitol treatment induces selective astroglial loss in the CA1 region independent of vasogenic edema formation following SE. These findings support the hypothesis that the susceptibility of astrocytes to SE is most likely due to the distinctive heterogeneity of astrocytes independent of hemodynamics. [BMB Reports 2015; 48(9): 507-512]  相似文献   

11.
1. We investigated the immunohistochemical alterations of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus 1 h to 14 days after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor pitavastatin against the changes of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus after cerebral ischemia in the hippocampus after ischemia. 2. The transient cerebral ischemia was carried out by clamping the carotid arteries with aneurismal clips for 5 min. 3. In the present study, the alteration of HSP 70 and ubiquitin immunoreactivity in the hippocampal CA1 sector was more pronounced than that of BDNF and NGF immunoreactivity after transient cerebral ischemia. In double-labeled immunostainings, BDNF, NGF and ubiquitin immunostaining was observed both in GFAP-positive astrocytes and MRF-1-positive microglia in the hippocampal CA1 sector after ischemia. Furthermore, prophylactic treatment with pitavastatin prevented the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after ischemia. 4. These findings suggest that the expression of stress protein including HSP 70 and ubiquitin may play a key role in the protection against the hippocampal CA1 neuronal damage after transient cerebral ischemia in comparison with the expression of neurotrophic factor such as BDNF and NGF. The present findings also suggest that the glial BDNF, NGF and ubiquitin may play some role for helping surviving neurons after ischemia. Furthermore, our present study indicates that prophylactic treatment with pitavastatin can prevent the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after transient cerebral ischemia. Thus our study provides further valuable information for the pathogenesis after transient cerebral ischemia. The first two authors contributed equally  相似文献   

12.
Because of the importance of neural recognition molecules expressed by glial cells to mediate interactions with neurons, growth factors and cytokines known to be functional during morphogenesis and in diseases of the nervous system were studied for their effects on recognition molecule expression by cultured immature and mature astrocytes from several brain regions. In cultures of immature astrocytes, transforming growth factors-beta 1 (TGF-beta 1) and -beta 2 (TGF-beta 2) and nerve growth factor (NGF) increased expression of the neural adhesion molecule L1, leading to a glia-mediated L1-specific increase in neurite outgrowth of dorsal root ganglion neurons on the astrocyte substrate. L1 expression induced by TGF-beta was inhibited by addition of antibodies to NGF, suggesting that TGF-beta influences L1 expression by modulating production of NGF by astrocytes. TGF-beta 1 and -beta 2 decreased expression of N-CAM by immature astrocytes. Since N-CAM expression was not affected by NGF and antibodies to NGF did not abolish the TGF-beta-induced decrease in N-CAM expression, NGF did not appear to be the mediator for regulating expression of N-CAM. Expression of the adhesion molecule on glia (AMOG) was not affected by any factor. NGF and TGF-beta 2 in latent form, but not TGF-beta 1 were found in the culture supernatants. Addition of interferon-gamma (IFN-gamma), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), platelet-derived growth factor (PDGF), or basic fibroblast growth factor (bFGF) to the cultures did not change recognition molecule expression. REcognition molecule expression by mature astrocytes was not found to be modified by any of the factors tested. In view of the observation that levels of L1 and N-CAM expression correlated with the presence of TGF-beta 2 and NGF in the culture supernatants of immature astrocytes, an autocrine regulatory mechanism for recognition molecule expression by these cells is suggested to play a crucial role in regulation of neuron-glia interactions.  相似文献   

13.
Proinflammatory cytokines, pathological iron deposition, and oxidative stress have been implicated in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). HO-1 mRNA levels and mitochondrial uptake of [(55)Fe]Cl(3)-derived iron were measured in rat astroglial cultures exposed to interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha (TNF-alpha) alone or in combination with the heme oxygenase-1 (HO-1) inhibitors, tin mesoporphyrin (SnMP) or dexamthasone (DEX), or interferon beta1b (INF-beta). HO-1 expression in astrocytes was evaluated by immunohistochemical staining of spinal cord tissue derived from MS and control subjects. IL-1beta or TNF-alpha promoted sequestration of non-transferrin-derived (55)Fe by astroglial mitochondria. HO-1 inhibitors, mitochondrial permeability transition pore (MTP) blockers and antioxidants significantly attenuated cytokine-related mitochondrial iron sequestration in these cells. IFN-beta decreased HO-1 expression and mitochondrial iron sequestration in IL-1beta- and TNF-alpha-challenged astroglia. The percentage of astrocytes coexpressing HO-1 in affected spinal cord from MS patients (57.3% +/- 12.8%) was significantly greater (p < 0.05) than in normal spinal cord derived from controls subjects (15.4% +/- 8.4%). HO-1 is over-expressed in MS spinal cord astroglia and may promote mitochondrial iron deposition in MS plaques. In MS, IFN-beta may attenuate glial HO-1 gene induction and aberrant mitochondrial iron deposition accruing from exposure to proinflammatory cytokines.  相似文献   

14.
Little is known about the effect of astroglial GLT-1 of post-stroke depression (PSD) rat model on the function of neural stem cells (NSCs). This study aimed to investigate whether astroglial GLT-1 of PSD rats affect differentiation of NSCs from neonatal rat hippocampus and synaptic formation of NSC-derived neurons. Astrocytes were isolated from the left hippocampus of normal adult SD rats and PSD rats. A lentiviral vector was used to silence the expression of GLT-1 in astrocytes of PSD rats. NSCs were respectively co-cultured with normal (control), PSD, and GLT-1 silenced astrocytes for 7 days. GLT-1, GFAP, MAP2, Synaptophysin (SYN), glutamate (Glu) and glutamine (Gln) were respectively measured by qRT-PCR, western blot, immunofluorescence and efficient mass spectrometry (MS). PSD astrocytes increased the number of NSC-derived astrocytes, but inhibited the expression of GLT-1 of NSC-derived astrocytes and synapses of NSC-derived neurons. On the basis of the low expression of GLT-1 in PSD astrocytes, we further silenced GLT-1 in PSD astrocytes. Interestingly, GLT-1 silenced PSD astrocytes more obviously inhibited synapses of NSC-derived neurons, but increased the number of NSC-derived neurons and reversed the expression of GLT-1 in NSC-derived astrocytes. At the same time, concentration of glutamate in the medium elevated, and glutamine in the medium gradually reduced. In NSC-derived neurons and astrocytes, glutamate metabolism was also affected by changed GLT-1. Down-expressed GLT-1 in PSD astrocytes stimulated NSCs differentiating into astrocytes, but inhibiting the formation of functional synapses by influencing glutamate metabolism in vitro.  相似文献   

15.
Mucopolysaccharidosis I (MPS I) is a congenital disorder caused by the deficiency of α-l-iduronidase (IDUA), with the accumulation of glycosaminoglycans (GAGs) in the CNS. Although GAG toxicity is not fully understood, previous works suggest a GAG-induced alteration in neuronal membrane composition. This study is aimed to evaluate the levels and distribution of gangliosides and cholesterol in different brain regions (cortex, cerebellum, hippocampus and hypothalamus) in a model using IDUA knockout (KO) mice (C57BL/6). Lipids were extracted with chloroform–methanol and then total gangliosides and cholesterol were determined, followed by ganglioside profile analyses. While no changes in cholesterol content were observed, the results showed a tissue dependent ganglioside alteration in KO mice: a total ganglioside increase in cortex and cerebellum, and a selective presence of GM3, GM2 and GD3 gangliosides in the hippocampus and hypothalamus. To elucidate this, we evaluated gene expression of ganglioside synthesis (GM3, GD3 and GM2/GD2 synthases) and degradation of (Neuraminidase1) enzymes in the cerebellum and hippocampus by RT-sq-PCR. The results obtained with KO mice showed a reduced expression of GD3 and GM2/GD2 synthases and Neuraminidase1 in cerebellum; and a decrease in GM2/GD2 synthase and Neuraminidase1 in the hippocampus. These data suggest that the observed ganglioside changes result from a combined effect of GAGs on ganglioside biosynthesis and degradation.  相似文献   

16.
为评价神经生长因子(NGF)、混合型神经节苷脂(GM)和单唾液酸神经节苷脂(GM1)对中枢胆碱能神经损伤早期的影响,在大鼠单侧隔-海马通路部分损伤后即时经脑室分别注入上述三种神经元营养因子,7d后取两侧海马分别测定乙酰胆碱(ACh)、胆碱乙酰基转移酶(ChAT)和胆碱酯酶(ChE)。损伤对照组(脑室注入盐水)术侧海马ACh含量保留率为对侧的20.3%,ChAT活力为50%,ChE活力为48.3%。给予NGF、GM或GM1的实验组,ACh含量保留率分别为34.9%,35.3%和47.7%;ChAT活力为77.4%,78.4%和69.2%;而ChE活力的保留率未见明显改变。这些神经元营养因子显著增加了大鼠隔-海马通路损伤后海马内ACh含量和ChAT活力,说明它们减轻了损伤侧海马胆碱能神经纤维的破坏,具有明显的损伤早期保护作用。  相似文献   

17.
Abstract: In astrocytes, nerve growth factor (NGF) synthesis has been described to be stimulated by the cytokines interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) and inhibited by corticosterone. As all three factors are present in the brain under certain conditions, we investigated the effect of their combined application on NGF secretion in the astroglial cell line RC7 and, in addition, studied the effect of calcitriol (1α,25-dihydroxyvitamin D3). Calcitriol stimulated NGF secretion, whereas corticosterone reduced basal levels of NGF secretion as well as inhibited the NGF secretion induced by IL-1β, calcitriol, and TGF-β1. Calcitriol had an additive effect when applied together with IL-1β and a synergistic effect when applied with TGF-β1. Moreover, calcitriol not only counteracted the inhibitory effect of corticosterone on NGF secretion stimulated by TGF-β1 but even augmented it to a level more than threefold higher than that reached with TGF-β1 alone. Due to the trophic effect of NGF on basal forebrain cholinergic neurons, these findings might be of therapeutic relevance under conditions where cholinergic function is impaired and the endogenous levels of corticosterone, IL-1β, or TGF-β1 are elevated.  相似文献   

18.
Activated astroglial cells are implicated in neuropathogenesis of many infectious and inflammatory diseases of the brain. A number of inflammatory mediators and cytokines have been proposed to play a key role in glial cell-related brain damage. Cytokine production seems to be initiated by signaling through TLR4/type I IL-1R (IL-1RI) in response to their ligands, LPS and IL-1beta, playing vital roles in innate host defense against infections, inflammation, injury, and stress. We have shown that glial cells are stimulated by ethanol, up-regulating cytokines and inflammatory mediators associated with TLR4 and IL-1RI signaling pathways in brain, suggesting that ethanol may contribute to brain damage via inflammation. We explore the possibility that ethanol, in the absence of LPS or IL-1beta, triggers signaling pathways and inflammatory mediators through TLR4 and/or IL-1RI activation in astrocytes. We show in this study that ethanol, at physiologically relevant concentrations, is capable of inducing rapid phosphorylation within 10 min of IL-1R-associated kinase, ERK1/2, stress-activated protein kinase/JNK, and p38 MAPK in astrocytes. Then an activation of NF-kappaB and AP-1 occurs after 30 min of ethanol treatment along with an up-regulation of inducible NO synthase and cyclooxygenase-2 expression. Finally, we note an increase in cell death after 3 h of treatment. Furthermore, by using either anti-TLR4- or anti-IL-1RI-neutralizing Abs, before and during ethanol treatment, we inhibit ethanol-induced signaling events, including NF-kappaB and AP-1 activation, inducible NO synthase, and cyclooxygenase-2 up-regulation and astrocyte death. In summary, these findings indicate that both TLR4 and IL-1RI activation occur upon ethanol treatment, and suggest that signaling through these receptors mediates ethanol-induced inflammatory events in astrocytes and brain.  相似文献   

19.
Astrocytes are very sensitive to alterations in the brain environment and respond showing a phenomenon known as astroglial reaction. S100beta is an astroglial derived neurotrophic factor, seems to be involved in neuroplasticity. The aim of this work was to study the astrocytic response in rat hippocampus and cerebral cortex after repetitive seizures induced by 3-mercaptopropionic acid (MP) administration. Immunocytochemical studies were performed to analyze GFAP and S100beta expression. Both studied areas showed hypertrophied astrocytes with enlarged processes and increased soma size. Astrocyte hyperplasia was observed only in the cerebral cortex. A significant decrease in the astrocytic S100beta immunostaining occurs after MP treatment. These results indicate that MP administration induces an astroglial reaction with reduced intracellular S100beta level. The observed reduction in astroglial S100beta could be related to the release of this factor to the extracellular space, where it may produce neurotrophic or deleterious effects accordingly to the concentration achieved. The mechanism of this remains to be elucidated.  相似文献   

20.
A new technique capable of demonstrating the presence and cellular localization of the ganglioside GM1 in primary cultured cells from the brains of newborn rats is described. The method is based on the highly specific binding of biotinylated choleragen to ganglioside GM1, and takes advantage of the high affinity of avidin for biotin. Thus, the biotinylated choleragen-ganglioside GM1 complex can be visualized by the use of avidin peroxidase. The results of this nonimmunologic method indicate that the concentration of ganglioside GM1 is much lower in culture astroglial cells than in neurons and oligodendroglial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号