首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Nogo-66 receptor (NgR) plays a pivotal role in the inhibition of neuroregeneration as the receptor for multiple neurite outgrowth inhibitors such as Nogo-A. We have previously shown that NgR undergoes zinc metalloproteinase-mediated ectodomain shedding in neuroblastoma cells. Here, we demonstrate that the NgR-related protein NgR homologue-1 is released from neuroblastoma cells as a full-length ectodomain (NgRH1-ecto) and an N-terminal fragment (NTF-NgRH1) containing the leucine-rich repeat region of the protein. Inhibitors of the major protease classes failed to block the release of NgRH1-ecto, suggesting that this occurs via a protease-independent mechanism, presumably by a phospholipase-like enzyme. The release of NTF-NgRH1 was blocked by a hydroxamate-based zinc metalloproteinase inhibitor and tissue inhibitor of metalloproteinases-2 and -3, but not -1, implicating the involvement of membrane-type matrix metalloproteinases in this process. Our findings thus highlight the parallels between the ectodomain shedding of NgRH1 and that previously described for NgR.  相似文献   

2.
The Nogo-66 receptor family (NgR) consists in three glycophosphatidylinositol (GPI)-anchored receptors (NgR1, NgR2 and NgR3), which are primarily expressed by neurons in the central and peripheral mammalian nervous system. NgR1 was identified as serving as a high affinity binding protein for the three classical myelin-associated inhibitors (MAIs) Nogo-A, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp), which limit axon regeneration and sprouting in the injured brain. Recent studies suggest that NgR signaling may also play an essential role in the intact adult CNS in restricting axonal and synaptic plasticity and are involved in neurodegenerative diseases, particularly in Alzheimer's disease pathology through modulation of β-secretase cleavage. Here, we outline the biochemical properties of NgRs and their functional roles in the intact and diseased CNS.  相似文献   

3.
The Nogo66 receptor (NgR1) is a neuronal, leucine-rich repeat (LRR) protein that binds three central nervous system (CNS) myelin proteins, Nogo, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein, and mediates their inhibitory effects on neurite growth. Although the LRR domains on NgR1 are necessary for binding to the myelin proteins, the exact epitope(s) involved in ligand binding is unclear. Here we report the generation and detailed characterization of an anti-NgR1 monoclonal antibody, 7E11. The 7E11 monoclonal antibody blocks Nogo, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein binding to NgR1 with IC50 values of 120, 14, and 4.5 nm, respectively, and effectively promotes neurite outgrowth of P3 rat dorsal root ganglia neurons cultured on a CNS myelin substrate. Further, we have defined the molecular epitope of 7E11 to be DNAQLR located in the third LRR domain of rat NgR1. Our data demonstrate that anti-NgR1 antibodies recognizing this epitope, such as 7E11, can neutralize CNS myelin-dependent inhibition of neurite outgrowth. Thus, specific anti-NgR1 antibodies may represent a useful therapeutic approach for promoting CNS repair after injury.  相似文献   

4.
The myelin-derived proteins Nogo, MAG and OMgp limit axonal regeneration after injury of the spinal cord and brain. These cell-surface proteins signal through multi-subunit neuronal receptors that contain a common ligand-binding glycosylphosphatidylinositol-anchored subunit termed the Nogo-66 receptor (NgR). By deletion analysis, we show that the binding of soluble fragments of Nogo, MAG and NgR to cell-surface NgR requires the entire leucine-rich repeat (LRR) region of NgR, but not other portions of the protein. Despite sharing extensive sequence similarity with NgR, two related proteins, NgR2 and NgR3, which we have identified, do not bind Nogo, MAG, OMgp or NgR. To investigate NgR specificity and multi-ligand binding, we determined the crystal structure of the biologically active ligand-binding soluble ectodomain of NgR. The molecule is banana shaped with elongation and curvature arising from eight LRRs flanked by an N-terminal cap and a small C-terminal subdomain. The NgR structure analysis, as well as a comparison of NgR surface residues not conserved in NgR2 and NgR3, identifies potential protein interaction sites important in the assembly of a functional signaling complex.  相似文献   

5.
Nogo, MAG, and OMgp are myelin-associated proteins that bind to a neuronal Nogo-66 receptor (NgR/NgR1) to limit axonal regeneration after central nervous system injury. Within Nogo-A, two separate domains are known interact with NgR1. NgR1 is the founding member of the three-member NgR family, whereas Nogo-A (RTN4A) belongs to a four-member reticulon family. Here, we systematically mapped the interactions between these superfamilies, demonstrating novel nanomolar interactions of RTN2 and RTN3 with NgR1. Because RTN3 is expressed in spinal cord white matter, it may have a role in myelin inhibition of axonal growth. Further analysis of the Nogo-A and NgR1 interactions revealed a novel third interaction site between the proteins, suggesting a trivalent Nogo-A interaction with NgR1. We also confirmed here that MAG binds to NgR2, but not to NgR3. Unexpectedly, we found that OMgp interacts with MAG with a higher affinity compared with NgR1. To better define how these multiple structurally distinct ligands bind to NgR1, we examined a series of Ala-substituted NgR1 mutants for ligand binding activity. We found that the core of the binding domain is centered in the middle of the concave surface of the NgR1 leucine-rich repeat domain and surrounded by differentially utilized residues. This detailed knowledge of the molecular interactions between NgR1 and its ligands is imperative when assessing options for development of NgR1-based therapeutics for central nervous system injuries.  相似文献   

6.
The Nogo receptor (NgR) plays a central role in mediating growth-inhibitory activities of myelin-derived proteins, thereby severely limiting axonal regeneration after injury of the adult mammalian central nervous system (CNS). The inhibitory proteins Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp) all bind to the extracellular leucine-rich repeat (LRR) domain of NgR, which provides a large molecular surface for protein-protein interactions. However, epitopes within the LRR domain of NgR for binding Nogo, MAG and OMgp have not yet been revealed. Here, we report an evolutionary approach based on the ribosome display technology for detecting regions involved in ligand binding. By applying this method of "affinity fingerprinting" to the NgR ligand binding domain we were able to detect a distinct region important for binding to Nogo. Several residues defining the structural epitope of NgR involved in interaction with Nogo were subsequently confirmed by alanine scanning mutagenesis.  相似文献   

7.
The myelin-associated inhibitor/Nogo-66 receptor 1 (NgR1) pathway directly functions in negative modulation of structural and electrophysiological synaptic plasticity. A previous study has established an important role of NgR1 pathway signaling in cognitive function, and we have demonstrated that multiple components of this pathway, including ligands, NgR1 co-receptors, and RhoA, are upregulated at the protein level specifically in cognitively impaired, but not age-matched cognitively intact aged rats. Recent studies have identified two novel endogenous NgR1 antagonists, LOTUS and LGI1, and an alternative co-receptor, ADAM22, which act to suppress NgR1 pathway signaling. To determine whether these endogenous NgR1-inhibiting proteins may play a compensatory role in age-related cognitive impairment by counteracting overexpression of NgR1 agonists and co-receptors, we quantified the expression of LOTUS, LGI1, and ADAM22 in hippocampal CA1, CA3 and DG subregions dissected from mature adult and aged rats cognitively phenotyped for spatial learning and memory by Morris water maze testing. We have found that endogenous inhibitors of NgR1 pathway action decrease significantly with aging and cognitive decline and that lower expression levels correlate with declining cognitive ability, particularly in CA1 and CA3. These data suggest that decreased expression of NgR1-antagonizing proteins may exert a combinatorial effect with increased NgR1 signaling pathway components to result in abnormally strong suppression of synaptic plasticity in age-related cognitive impairment.  相似文献   

8.
Members of the Nogo66 receptor family (NgR) are closely associated with nerve growth inhibition and plasticity in the CNS. All three members, NgR1, NgR2 and NgR3, are GPI anchored and highly glycosylated proteins. The binding and signaling properties of NgR1 are well described, but largely unknown for NgR2. At present the only known ligands are myelin associated glycoprotein (MAG) and amyloid beta precursor protein (APP). Despite the requirement of co-receptors for signaling no other binding partner has been uncovered. To learn more about the interactome of NgR2 we performed pull down experiments and were able to identify F-box protein that recognizes sugar chain 1 (Fbs1) as binding partner. We confirmed this finding with co-immunoprecipitations and in vitro binding assays and showed that the binding is mediated by the substrate recognition domain of Fbs1. As a substrate recognition protein of the SCF complex, Fbs1 binding leads to polyubiquitination and finally degradation of its substrates. This is the first time a member of the Nogo receptor family has been connected with an intracellular degradation pathway, which has not only implications for its production, but also for amyloid deposition in Alzheimer's disease.  相似文献   

9.
The combination of leucine-rich repeat (LRR) and immunoglobulin-like (Ig) domains is found in the domain architecture of the Trk neurotrophin receptor protein. Recently dozens of such proteins simultaneously carrying LRR and Ig domains as the Trk receptors have been identified. Given the significant biological roles of Trk and such newly identified proteins, we have searched the public database for human proteins with LRR and Ig domains (collectively termed the leucine-rich repeat and Ig domain-containing protein, LRRIG protein, in this study), and have analyzed the mRNA expression pattern of mouse orthologs of obtained human LRRIG proteins at embryonic day 10. The list of the LRRIG proteins includes 36 human proteins: four LINGO, three NGL, five SALM, three NLRR, three Pal, two ISLR, three LRIG, two GPR, two Adlican, two Peroxidasin-like proteins, three Trk neurotrophin receptors, a yet unnamed protein AAI11068, and three AMIGO. Some molecules (LINGO2, LINGO4, NGL1, SALM1, SALM5, and TrkB) were expressed exclusively in neuronal tissues, whereas others (ISLR1, GPR124, and Adlican2) exhibited non-neuronal expression profiles. However, the majority of LRRIG protein family exhibited broad mRNA tissue-expression profiles.  相似文献   

10.
Failure of axon regeneration in the adult mammalian central nervous system (CNS) is at least partly due to inhibitory molecules associated with myelin. Recent studies suggest that an axon surface protein, the Nogo receptor (NgR), may play a role in this process through an unprecedented degree of crossreactivity with myelin-associated inhibitory ligands. Here, we report the 1.5 A crystal structure and functional characterization of a soluble extracellular domain of the human Nogo receptor. Nogo receptor adopts a leucine-rich repeat (LRR) module whose concave exterior surface contains a broad region of evolutionarily conserved patches of aromatic residues, possibly suggestive of degenerate ligand binding sites. A deep cleft at the C-terminal base of the LRR may play a role in NgR association with the p75 coreceptor. These results now provide a detailed framework for focused structure-function studies aimed at assessing the physiological relevance of NgR-mediated protein-protein interactions to axon regeneration inhibition.  相似文献   

11.
Nogo-66 receptor 1 (NgR1) is a glycosylphosphatidylinositol-anchored receptor for myelin-associated inhibitors that restricts plasticity and axonal regrowth in the CNS. NgR1 is cleaved from the cell surface of SH-SY5Y neuroblastoma cells in a metalloproteinase-dependent manner; however, the mechanism and physiological consequence of NgR1 shedding have not been explored. We now demonstrate that NgR1 is shed from multiple populations of primary neurons. Through a loss-of-function approach, we found that membrane-type matrix metalloproteinase-3 (MT3-MMP) regulates endogenous NgR1 shedding in primary neurons. Neuronal knockdown of MT3-MMP resulted in the accumulation of NgR1 at the cell surface and reduced the accumulation of the NgR1 cleavage fragment in medium conditioned by cortical neurons. Recombinant MT1-, MT2-, MT3-, and MT5-MMPs promoted NgR1 shedding from the surface of primary neurons, and this treatment rendered neurons resistant to myelin-associated inhibitors. Introduction of a cleavage-resistant form of NgR1 reconstitutes the neuronal response to these inhibitors, demonstrating that specific metalloproteinases attenuate neuronal responses to myelin in an NgR1-dependent manner.  相似文献   

12.
Xiong N  Shen J  Li S  Li J  Zhao H 《Molecular biology reports》2012,39(3):2625-2632
Nogo-A is a myelin-associated neuronal growth inhibitory molecule in central nervous system after trauma. However, the physiological functions of Nogo-A in neural development and in healthy oligodendrocytes are largely unknown. In this study, we investigated the expression of Nogo-66 receptor (NgR) protein in 60 cases of human astrocytoma by Western blot RT-PCR and immunohistochemistry. The correlation between the expression of NgR and pathologic grades of astrocyoma was further analyzed. The results showed that the expression of NgR protein and NgR mRNA immunoreactivity score, were decreased markedly with the increasing pathological grades. Double immunostaining results showed that Nogo-A and NgR were colocalized at the interface of astrocytoma cells and extracellular matrix. Our results indicated that NgR may have inhibitory effects on tumor activity and Nogo-A may restrict migration of tumor cells via NgR.  相似文献   

13.
14.
Olfm1, a secreted highly conserved glycoprotein, is detected in peripheral and central nervous tissues and participates in neural progenitor maintenance, cell death in brain, and optic nerve arborization. In this study, we identified Olfm1 as a molecule promoting axon growth through interaction with the Nogo A receptor (NgR1) complex. Olfm1 is coexpressed with NgR1 in dorsal root ganglia and retinal ganglion cells in embryonic and postnatal mice. Olfm1 specifically binds to NgR1, as judged by alkaline phosphatase assay and coimmunoprecipitation. The addition of Olfm1 inhibited the growth cone collapse of dorsal root ganglia neurons induced by myelin-associated inhibitors, indicating that Olfm1 attenuates the NgR1 receptor functions. Olfm1 caused the inhibition of NgR1 signaling by interfering with interaction between NgR1 and its coreceptors p75NTR or LINGO-1. In zebrafish, inhibition of optic nerve extension by olfm1 morpholino oligonucleotides was partially rescued by dominant negative ngr1 or lingo-1. These data introduce Olfm1 as a novel NgR1 ligand that may modulate the functions of the NgR1 complex in axonal growth.  相似文献   

15.
The myelin-associated glycoprotein (MAG) is a type I membrane-spanning protein expressed exclusively in oligoden drocytes and Schwann cells. It has two generally known pathophysiological roles in the central nervous system (CNS): maintenance of myelin integrity and inhibition of CNS axonal regeneration. The subtle CNS phenotype resulting from genetic ablation of MAG expression has made mechanistic analysis of its functional role in these difficult. However, the past few years have brought some major revelations, particularly in terms of mechanisms of MAG signaling through the Nogo-66 receptor (NgR) complex. Although apparently converging through NgR, a readily noticeable fact is that the neuronal growth inhibitory effect of MAG differs from that of Nogo-66. This may result from the influence of coreceptors in the form of gangliosides or from MAG-specific neuronal receptors such as NgR2. MAG has several other neuronal binding partners, and some of these may modulate its interaction with the NgR complex or downstream signaling. This article discusses new findings in MAG-forward and-reverse signaling and its role in CNS pathophysiology.  相似文献   

16.
Nogo receptor (NgR)-mediated control of axon growth relies on the central nervous system-specific type I transmembrane protein Lingo-1. Interactions between Lingo-1 and NgR, along with a complementary co-receptor, result in neurite and axonal collapse. In addition, the inhibitory role of Lingo-1 is particularly important in regulation of oligodendrocyte differentiation and myelination, suggesting that pharmacological modulation of Lingo-1 function could be a novel approach for nerve repair and remyelination therapies. Here we report on the crystal structure of the ligand-binding ectodomain of human Lingo-1 and show it has a bimodular, kinked structure composed of leucine-rich repeat (LRR) and immunoglobulin (Ig)-like modules. The structure, together with biophysical analysis of its solution properties, reveals that in the crystals and in solution Lingo-1 persistently associates with itself to form a stable tetramer and that it is its LRR-Ig-composite fold that drives such assembly. Specifically, in the crystal structure protomers of Lingo-1 associate in a ring-shaped tetramer, with each LRR domain filling an open cleft in an adjacent protomer. The tetramer buries a large surface area (9,200 A2) and may serve as an efficient scaffold to simultaneously bind and assemble the NgR complex components during activation on a membrane. Potential functional binding sites that can be identified on the ectodomain surface, including the site of self-recognition, suggest a model for protein assembly on the membrane.  相似文献   

17.
Myelin inhibitors of axonal regeneration, like Nogo and MAG, block regrowth after injury to the adult CNS. While a GPI-linked receptor for Nogo (NgR) has been identified, MAG's receptor is unknown. We show that MAG inhibits regeneration by interaction with NgR. Binding of and inhibition by MAG are lost if neuronal GPI-linked proteins are cleaved. Binding of MAG to NgR-expressing cells is GPI dependent and sialic acid independent. Conversely, NgR binds to MAG-expressing cells. MAG, but not a truncated MAG that binds neurons but does not inhibit regeneration, precipitates NgR from NgR-expressing cells, DRG, and cerebellar neurons. Importantly, NgR antibody, soluble NgR, or dominant-negative NgR each prevent inhibition of neurite outgrowth by MAG. Also, MAG and Nogo66 compete for binding to NgR. These results suggest redundancy in myelin inhibitors and indicate therapies for CNS injuries.  相似文献   

18.
In spite of abundant data on oligodendrocyte abnormalities in dysmyelinated jimpy brain, little is known about the axonal damage and the expression of neuronal genes. Recent findings indicate that Nogo-A, oligodendrocyte-myelin glycoprotein (OMgp), and myelin-associated glycoprotein (MAG) inhibit axonal growth by binding a common receptor, the Nogo-A receptor (NgR)-p75 complex. In order to evaluate neuronal modifications in the absence of myelin and in the presence of abnormal oligodendrocytes at different developmental stages, the expression of these inhibitory proteins and their receptors was investigated in jimpy mutant brain. Despite the decrease in oligodendrocyte number at P15 and P25 in jimpy, Nogo-A and OMgp mRNA levels are not significantly different compared with control, suggesting an overexpression of neuronal Nogo-A and OMgp in mutant. Double immunolabeling for Nogo-A and neurofilaments shows strong axonal staining of Nogo-A in jimpy and its down-regulation in oligodendrocytes. The current data raise questions about functions of Nogo-A other than neurite growth inhibition in the CNS. No significant changes in NgR mRNA levels were observed in jimpy, where the increase in p75 level can be correlated with the cell death of oligodendrocytes. In the paranodal region, the cell adhesion molecule neurofascin glial isoform NFN155 mRNA level is reduced by 40% whereas neuronal form NFN186 is up-regulated. These results may explain the failure of paranodal region organization, even with normal level of CASPR (paranodin) mRNA detected in jimpy brain.  相似文献   

19.
Li X  Su H  Fu QL  Guo J  Lee DH  So KF  Wu W 《Neurochemical research》2011,36(12):2363-2372
NogoA, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein are CNS myelin molecules that bind to the neuronal Nogo-66 receptor (NgR) and inhibit axon growth. The NgR antagonist, soluble NgR1-Fc protein (sNgR-Fc), facilitates axon regeneration by neutralizing the inhibitory effects of myelin proteins in experimental models of CNS injury. Here we aim to investigate the effect of sNgR-Fc on the proliferation of neural progenitor cells (NPCs). The hippocampus cells of embryonic rats were isolated and cultured in vitro. The expression of nestin, βIII-Tubulin, GFAP and Nogo-A on these cells was observed using immunocytochemistry. In order to investigate the effect on proliferation of NPCs, sNgR-Fc, MAG-Fc chimera and Notch1 blocker were added respectively. The total cell number for the proliferated NPCs was counted. BrdU was applied and the rate of proliferating cells was examined. The level of Notch1 was analyzed using Western blotting. We identified that NogoA is expressed in NPCs. sNgR-Fc significantly enhanced the proliferation of NPCs in vitro as indicated by BrdU labeling and total cell count. This proliferation effect was abolished by the administration of MAG suggesting specificity. In addition, we demonstrate that sNgR-Fc is a potent activator for Notch1 and Notch1 antagonist reversed the effect of sNgR-Fc on NPC proliferation. Our results suggest that sNgR-Fc may modulate Nogo activity to induce NPC proliferation via the Notch pathway.  相似文献   

20.
We have identified and characterized a novel single span transmembrane leucine-rich repeat protein, synleurin, that renders cells highly sensitive to the activation by cytokines and lipopolysaccharide (LPS). The major part of the extracellular domain consists of a leucine-rich repeats (LRR) cassette. The LRR central core has 12 analogous LRR repeating modules arranged in a seamless tandem array. The LRRs are most homologous to that of chondroadherin, insulin-like growth factor binding proteins, platelet glycoprotein V, slits, and toll-like receptors. Synleurin expression was detected at low levels in many tissues, including smooth muscle, brain, uterus, pancreas, cartilage, adipose, spleen, and testis. When synleurin is ecotopically expressed in transfected cells, the cells exhibit amplified responses to bFGF, EGF, PDGF-B, IGF-1, IGF-2, and LPS. Synleurin gene (slrn) maps to human chromosome at 5q12. The name synleurin reflects its synergistic effect on cytokine stimulation and its prominent leucine-rich repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号