首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In normal growth and development, apoptosis is necessary to shape the central nervous system and to eliminate excess neurons which are not required for innervation. In some diseases, however, apoptosis can be either overactive as in some neurodegenerative disorders or severely attenuated as in the spread of certain cancers. Bone morphogenetic proteins (BMPs) transmit signals for regulating cell growth, differentiation, and apoptosis. Responding to BMP receptors stimulated from BMP ligands, neurotrophin receptor-mediated MAGE homolog (NRAGE) binds and functions with the XIAP-TAK1-TAB1 complex to activate p38(MAPK) and induces apoptosis in cortical neural progenitors. NRAGE contains a unique repeat domain that is only found in human, mouse, and rat homologs that we theorize is pivotal in its BMP MAPK role. Previously, we showed that deletion of the repeat domain inhibits apoptosis, p38(MAPK) phosphorylation, and caspase-3 cleavage in P19 neural progenitor cells. We also showed that the XIAP-TAB1-TAK1 complex is dependent on NRAGE for IKK-α/β phosphorylation and NF-κB activation. XIAP is a major inhibitor of caspases, the main executioners of apoptosis. Although it has been shown previously that NRAGE binds to the RING domain of XIAP, it has not been determined which NRAGE domain binds to XIAP. Here, we used fluorescence resonance energy transfer (FRET) to determine that there is a strong likelihood of a direct interaction between NRAGE and XIAP occurring at NRAGE's unique repeat domain which we also attribute to be the domain responsible for downstream signaling of NF-κB and activating IKK subunits. From these results, we designed a small peptide modeled after the NRAGE repeat domain which we have determined inhibits NF-κB activation and apoptosis in P19 cells. These intriguing results illustrate that the paradigm of the NRAGE repeat domain may hold promising therapeutic strategies in developing pharmaceutical solutions for combating harmful diseases involving excessive downstream BMP signaling, including apoptosis.  相似文献   

2.
X连锁凋亡抑制蛋白(X-linked inhibitor of apoptosis,XIAP)是目前发现的最具特征性与作用最强的内源性凋亡抑制蛋白质.XIAP特征性结构是其BIR结构域和RING结构域,它们都是XIAP发挥抗凋亡作用的重要结构.多种内源性抑制蛋白质(XAF1、Smac和Omi)能通过不同的方式抑制XIA...  相似文献   

3.
Apoptosis is a complex pathway regulated by the concerted action of multiple pro- and anti-apoptotic molecules. The intrinsic (mitochondrial) pathway of apoptosis is governed up-stream of mitochondria, by the family of Bcl-2 proteins, and down-stream of mitochondria, by low-probability events, such as apoptosome formation, and by feedback circuits involving caspases and inhibitor of apoptosis proteins (IAPs), such as XIAP. All these regulatory mechanisms ensure that cells only commit to death once a threshold of damage has been reached and the anti-apoptotic reserve of the cell is overcome. As cancer cells are invariably exposed to strong intracellular and extracellular stress stimuli, they are particularly reliant on the expression of anti-apoptotic proteins. Hence, many cancer cells undergo apoptosis when exposed to agents that inhibit anti-apoptotic Bcl-2 molecules, such as BH3 mimetics, while normal cells remain relatively insensitive to single agent treatments with the same class of molecules. Targeting different proteins within the apoptotic network with combinatorial treatment approaches often achieves even greater specificity. This led us to investigate the sensitivity of leukemia and lymphoma cells to a pro-apoptotic action of a BH3 mimetic combined with a small molecule inhibitor of XIAP. Using the computational probabilistic model of the apoptotic pathway, verified by experimental results from human leukemia and lymphoma cell lines, we show that inhibition of XIAP has a non-linear effect on sensitization towards apoptosis induced by the BH3 mimetic HA14-1. This study justifies further ex vivo and animal studies on the potential of the treatment of leukemia and lymphoma with a combination of BH3 mimetics and XIAP inhibitors.  相似文献   

4.
We have previously described a new aspect of the Inhibitor of Apoptosis (IAP) family of proteins anti-apoptotic activity that involves the TAK1/JNK1 signal transduction pathway (1,2). Our findings suggest the existence of a novel mechanism that regulates the anti-apoptotic activity of IAPs that is separate from caspase inhibition but instead involves TAK1-mediated activation of JNK1. In a search for proteins involved in the XIAP/TAK1/JNK1 signaling pathway we isolated by yeast two-hybrid screening a novel X chromosome-linked IAP (XIAP)-interacting protein that we called ILPIP (hILP-Interacting Protein). Whereas ILPIP moderately activates JNK family members when expressed alone, it strongly enhances XIAP-mediated activation of JNK1, JNK2, and JNK3. The expression of a catalytically inactive mutant of TAK1 blocked XIAP/ILPIP synergistic activation of JNK1 thereby implicating TAK1 in this signaling pathway. ILPIP moderately protects against interleukin-1beta converting enzyme- or Fas-induced apoptosis and significantly potentiates the anti-apoptotic activity of XIAP. In vivo co-precipitation experiments show that both ILPIP and XIAP interact with TAK1 and tumor necrosis factor receptor-associated factor 6. Finally, expression of ILPIP did not affect the ability of XIAP to inhibit caspase activation, further supporting the idea that XIAP protection against apoptosis is achieved by two separate mechanisms: one requiring JNK1 activation and a second involving caspase inhibition.  相似文献   

5.
The IAP (inhibitor of apoptosis) family of anti-apoptotic proteins regulates programmed cell death. Of the six known human IAP-related proteins, XIAP is the most potent inhibitor. To study the mechanistic effects of XIAP on DNA damage-induced apoptosis, we prepared U-937 cells that stably overexpress XIAP. The results demonstrate that XIAP inhibits apoptosis induced by 1-[beta-d-arabinofuranosyl]cytosine (ara-C) and other genotoxic agents. XIAP had no detectable effect on ara-C-induced release of mitochondrial cytochrome c and attenuated cleavage of procaspase-9. In addition, we show that ara-C induces the association of XIAP with the cleaved fragments of caspase-9 and thereby inhibition of caspase-9 activity. The results also demonstrate that ara-C induces cleavage of procaspase-3 by a caspase-8-dependent mechanism and that XIAP inhibits caspase-3 activity. These results demonstrate that XIAP functions downstream of procaspase-9 cleavage as an inhibitor of both proteolytically processed caspase-9 and -3 in the cellular response to genotoxic stress.  相似文献   

6.
The mechanisms employed by the p75 neurotrophin receptor (p75NTR) to mediate neurotrophin-dependent apoptosis are poorly defined. Two-hybrid analyses were used to identify proteins involved in p75NTR apoptotic signaling, and a p75NTR binding partner termed NRAGE (for neurotrophin receptor-interacting MAGE homolog) was identified. NRAGE binds p75NTR in vitro and in vivo, and NRAGE associates with the plasma membrane when NGF is bound to p75NTR. NRAGE blocks the physical association of p75NTR with TrkA, and, conversely, TrkA overexpression eliminates NRAGE-mediated NGF-dependent death, indicating that interactions of NRAGE or TrkA with p75NTR are functionally and physically exclusive. NRAGE overexpression facilitates cell cycle arrest and permits NGF-dependent apoptosis within sympathetic neuron precursors cells. Our results show that NRAGE contributes to p75NTR-dependent cell death and suggest novel functions for MAGE family proteins.  相似文献   

7.
X-linked inhibitor of apoptosis protein (XIAP) is a potent suppressor of apoptotic cell death, which functions by directly inhibiting caspases, the principal effectors of apoptosis. Here we report that XIAP can also function as a cofactor in the regulation of gene expression by transforming growth factor-beta (TGF-beta). XIAP, but not the related proteins c-IAP1 or c-IAP2, associated with several members of the type I class of the TGF-beta receptor superfamily and potentiated TGF-beta-induced signaling. Although XIAP-mediated activation of c-Jun N-terminal kinase and nuclear factor kappa B was found to require the TGF-beta signaling intermediate Smad4, the ability of XIAP to suppress apoptosis was found to be Smad4-independent. These data implicate a role for XIAP in TGF-beta-mediated signaling that is distinct from its anti-apoptotic functions.  相似文献   

8.
XIAP is member of the IAP family of anti-apoptotic proteins and is known for its ability to bind and suppress caspase family cell death proteases. A phenylurea series of chemical inhibitors of XIAP was recently generated by our laboratories (Schimmer, A. D., Welsh, K., Pinilla, C., Bonneau, M., Wang, Z., Pedersen, I. M., Scott, F. L., Glinsky, G. V., Scudiero, D. A., Sausville, E., Salvesen, G., Nefzi, A., Ostresh, J. M., Houghten, R. A., and Reed, J. C. (2004) Cancer Cell 5, 25-35). We examined the mechanisms of action of these chemical compounds using biochemical, molecular biological, and genetic methods. Active phenylurea-based compounds dissociated effector protease caspase-3 but not initiator protease caspase-9 from XIAP in vitro and restored caspase-3 but not caspase-9 enzymatic activity. When applied to tumor cell lines in culture, active phenylurea-based compounds induced apoptosis in a rapid, concentration-dependent manner, associated with activation of cellular caspases. Apoptosis induced by active phenylurea-based compounds was blocked by chemical inhibitors of caspases, with inhibitors of downstream effector caspases displaying more effective suppression than inhibitors of upstream initiator caspases. Phenylurea-based XIAP antagonists induced apoptosis (defined by annexin V staining) prior to mitochondrial membrane depolarization, in contrast to cytotoxic anticancer drugs. Consistent with these findings, apoptosis induced by phenylurea-based compounds was not altered by genetic alterations in the expression of Bcl-2 family proteins that control mitochondria-dependent cell death pathways, including over-expression of anti-apoptotic proteins Bcl-2 or Bcl-X(L) and genetic ablation of pro-apoptotic proteins Bax and Bak. Conversely, conditional over-expression of an active fragment of XIAP or genetic ablation of XIAP expression altered the apoptosis dose-response of the compounds. Altogether, these findings indicate that phenylurea-based XIAP antagonists block interaction of downstream effector caspases with XIAP, thus inducing apoptosis of tumor cell lines through a caspase-dependent, Bcl-2/Bax-independent mechanism.  相似文献   

9.
Efficient apoptosis requires Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), which releases death-promoting proteins cytochrome c and Smac to the cytosol, which activate apoptosis and inhibit X-linked inhibitor of apoptosis protein (XIAP) suppression of executioner caspases, respectively. We recently identified that in response to Bcl-2 homology domain 3 (BH3)-only proteins and mitochondrial depolarization, XIAP can permeabilize and enter mitochondria. Consequently, XIAP E3 ligase activity recruits endolysosomes into mitochondria, resulting in Smac degradation. Here, we explored mitochondrial XIAP action within the intrinsic apoptosis signaling pathway. Mechanistically, we demonstrate that mitochondrial XIAP entry requires Bax or Bak and is antagonized by pro-survival Bcl-2 proteins. Moreover, intramitochondrial Smac degradation by XIAP occurs independently of Drp1-regulated cytochrome c release. Importantly, mitochondrial XIAP actions are activated cell-intrinsically by typical apoptosis inducers TNF and staurosporine, and XIAP overexpression reduces the lag time between the administration of an apoptotic stimuli and the onset of mitochondrial permeabilization. To elucidate the role of mitochondrial XIAP action during apoptosis, we integrated our findings within a mathematical model of intrinsic apoptosis signaling. Simulations suggest that moderate increases of XIAP, combined with mitochondrial XIAP preconditioning, would reduce MOMP signaling. To test this scenario, we pre-activated XIAP at mitochondria via mitochondrial depolarization or by artificially targeting XIAP to the intermembrane space. Both approaches resulted in suppression of TNF-mediated caspase activation. Taken together, we propose that XIAP enters mitochondria through a novel mode of mitochondrial permeabilization and through Smac degradation can compete with canonical MOMP to act as an anti-apoptotic tuning mechanism, reducing the mitochondrial contribution to the cellular apoptosis capacity.  相似文献   

10.
Human NRAGE, a neurotrophin receptor p75 interaction MAGE homologue, confers NGF-dependent apoptosis of neuronal cells by inducing caspase activation through the JNK-c-jun-dependent pathway and arrests cell growth through the p53-dependent pathway. Our findings showed that human NRAGE could significantly alter the cell skeleton and inhibit homotypic cell-cell adhesion in U2OS cells. With further experiments, we revealed that human NRAGE disrupts colocalization of the E-cadherin/beta-catenin complex and translocates beta-catenin from the cell membrane into the cytoplasm and nucleus. Synchronously, NRAGE also decreases the total protein level of beta-catenin, especially when NRAGE expresses for a long time. More importantly, knock down of NRAGE by RNA interference in PANC-1 cell significantly reinforces E-cadherin/beta-catenin homotypic cell adhesion. The data demonstrate the importance of human NRAGE in homotypic cell-to-cell adhesion and illuminate the mechanism of human NRAGE in the process of inhibition of cell adhesion, which suggests that human NRGAE plays a potential negative role in cancer metastasis.  相似文献   

11.
Infection with Chlamydia protects mammalian host cells against apoptosis. Hypotheses have been proposed to explain this molecularly, including the up-regulation of host anti-apoptotic proteins such as cellular Inhibitor of Apoptosis Protein (IAP) 2 and the Bcl-2 protein Mcl-1. To test for the importance of these proteins, we used mouse embryonic fibroblasts from gene-targeted mice that were deficient in cIAP1, cIAP2, cIAP1/cIAP2, XIAP, or Mcl-1. Infection with Chlamydia trachomatis protected all cells equally well against apoptosis, which was induced either with tumour necrosis factor/cycloheximide (IAP-knock-out cells) or staurosporine (Mcl-1-knock-out). Therefore, these cellular anti-apoptotic proteins are not essential for apoptosis-protection by C. trachomatis.  相似文献   

12.
Several human inhibitor of apoptosis (IAP) family proteins function by directly inhibiting specific caspases in a mechanism that does not require IAP cleavage. In this study, however, we demonstrate that endogenous XIAP is cleaved into two fragments during apoptosis induced by the tumor necrosis factor family member Fas (CD95). The two fragments produced comprise the baculoviral inhibitory repeat (BIR) 1 and 2 domains (BIR1-2) and the BIR3 and RING (BIR3-Ring) domains of XIAP. Overexpression of the BIR1-2 fragment inhibits Fas-induced apoptosis, albeit at significantly reduced efficiency compared with full-length XIAP. In contrast, overexpression of the BIR3-Ring fragment results in a slight enhancement of Fas-directed apoptosis. Thus, cleavage of XIAP may be one mechanism by which cell death programs circumvent the anti-apoptotic barrier posed by XIAP. Interestingly, ectopic expression of the BIR3-Ring fragment resulted in nearly complete protection from Bax-induced apoptosis. Use of purified recombinant proteins revealed that BIR3-Ring is a specific inhibitor of caspase-9 whereas BIR1-2 is specific for caspases 3 and 7. Therefore XIAP possesses two different caspase inhibitory activities which can be attributed to distinct domains within XIAP. These data may provide an explanation for why IAPs have evolved with multiple BIR domains.  相似文献   

13.
BACKGROUND: Tumors develop mechanisms to escape recognition by the immune system. It has recently been demonstrated that tumors cause apoptotic death of key immune cells, including the major antigen-presenting cells, dendritic cells (DC). Elimination of DC from the tumor environment significantly diminishes development of specific immunologic responses. We have recently demonstrated that tumor-induced DC apoptosis could be prevented by overexpression of the anti-apoptotic molecule Bcl-x(L). The aim of this study was to identify extrinsic and intrinsic tumor-induced apoptotic pathways in DC by targeting different anti-apoptotic molecules, including FLIP, XIAP/hILP, dominant-negative procaspase-9 and HSP70. METHODS: Murine bone marrow derived DC were transduced with adenoviral vectors carrying different anti-apoptotic molecules and co-incubated with tumor cells in a Transwell system. Apoptosis of DC was assessed by Annexin V and PI staining. RESULTS: We have demonstrated that adenoviral infection of DC with genes encoding different anti-apoptotic molecules exhibits different degrees of resistance to melanoma-induced apoptosis. Furthermore, we have shown that anti-apoptotic molecules other than the Bcl-2 family of proteins are able to protect DC and prevent tumor-induced apoptosis in DC. CONCLUSIONS: The results show that tumor-induced apoptosis of DC is not limited to the mitochondrial pathway of cell death and open additional possibilities for targeted molecular protection of DC longevity in cancer. Therefore, effective protection of DC from tumor-induced apoptosis may significantly improve the efficacy of DC-based therapies for cancer.  相似文献   

14.
Li Q  Ren J 《Aging cell》2007,6(6):799-806
A fall in circulating levels of cardiac survival factor insulin-like growth factor 1 (IGF-1) contributes to cardiac aging. To better understand the role of IGF-1 in cardiac aging, we examined the influence of cardiac IGF-1 overexpression on lifespan, cardiomyocyte intracellular Ca2+ homeostasis, protein damage, apoptosis and expression of pro- and anti-apoptotic proteins in young and old mice. Mouse survival rate was constructed by the Kaplan–Meier curve. Intracellular Ca2+ was evaluated by fura-2 fluorescence. Protein damage was determined by protein carbonyl formation. Apoptosis was assessed by caspase-8 expression, caspase-3 and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assay. Pro- and anti-apoptotic proteins including Bax, p53, pp53, Bcl2, Omi/HtrA2, apoptosis repressor with caspase recruitment domain (ARC) and X-linked inhibitor of apoptosis protein (XIAP) were assessed by Western blot. Aging decreased plasma in IGF-1 levels, elevated myocyte resting intracellular Ca2+ levels, reduced electrically stimulated rise in intracellular Ca2+ and delayed intracellular Ca2+ decay associated with enhanced protein carbonyl formation, caspase-8 expression and caspase-3 activity in FVB mice, all of which with the exception of elevated resting intracellular Ca2+ were attenuated by IGF-1. Aging up-regulated expression of Bax, Bcl2 and ARC, down-regulated XIAP expression and did not affect p53, pp53 and Omi/HtrA2. The IGF-1 transgene attenuated or nullified aging-induced changes in Bax, Bcl2 and XIAP. Our data suggest a beneficial role for IGF-1 in aging-induced survival, cardiac intracellular Ca2+ homeostasis, protein damage and apoptosis possibly related to pro- and anti-apoptotic proteins.  相似文献   

15.
Inhibitor of apoptosis proteins (IAPs) can block apoptosis through binding to active caspases and antagonizing their function. IAP function can be neutralized by Smac/Diablo, an IAP-binding protein that is released from mitochondria during apoptosis. In addition to their ability to interact with caspases, certain IAPs also display ubiquitin-protein isopeptide ligase activity because of the presence of a RING domain. However, it is not known whether the ubiquitin-protein isopeptide ligase activities of human IAPs contribute to their apoptosis inhibitory activity or whether this IAP property can be modulated through association with Smac/Diablo. Here we demonstrate that the ubiquitin ligase activities of XIAP, and to a lesser extent c-IAP-1 and c-IAP2, are potently repressed through binding to Smac/Diablo. We also show that mutation of the XIAP RING domain rendered this IAP a less effective inhibitor of apoptosis, suggesting that the ubiquitin ligase activity of XIAP contributes to its anti-apoptotic function. These data suggest that Smac/Diablo potentiates apoptosis by simultaneously antagonizing caspase-IAP interactions and repressing IAP ubiquitin ligase activities.  相似文献   

16.
Members of the IAP (inhibitor of apoptosis) family function as anti-apoptotic proteins by binding directly to caspase-3, -7, and -9 to inhibit their activities. During apoptosis, the activities of IAPs are relieved by a second mitochondria-derived caspase activator, named Smac/DIABLO. Some IAPs have a C-terminal RING finger domain that has been identified as the essential motif for the activity of ubiquitin ligase (E3). Here we show that X-linked IAP (XIAP) mediates the polyubiquitination of caspase-9 and Smac. The large subunit of mature caspase-9 was polyubiquitinated by XIAP in vitro, while procaspase-9 was not. Furthermore, the polyubiquitinated form of caspase-9 accumulated in an XIAP-dependent manner in intact cells. The ubiquitination of caspase-9 was significantly inhibited in the presence of mature Smac, whereas XIAP was also found to promote the polyubiquitination of cytosolic Smac both in vitro and in intact cells. These ubiquitination reactions require the RING finger domain of XIAP. These findings suggest that XIAP functions as ubiquitin ligase toward mature caspase-9 and Smac to inhibit apoptosis.  相似文献   

17.
Understanding the molecular events that govern neural progenitor lineage commitment, mitotic arrest, and differentiation into functional progeny are germane to our understanding of neocortical development. Members of the family of bone morphogenetic proteins (BMPs) play pivotal roles in regulating neural differentiation and apoptosis during neurogenesis through combined actions involving Smad and TAK1 activation. We demonstrate that BMP signaling is required for the induction of apoptosis of neural progenitors and that NRAGE is a mandatory component of the signaling cascade. NRAGE possesses the ability to bind and function with the TAK1-TAB1-XIAP complex facilitating the activation of p38. Disruption of NRAGE or any other member of the noncanonical signaling cascaded is sufficient to block p38 activation and thus the proapoptotic signals generated through BMP exposure. The function of NRAGE is independent of Smad signaling, but the introduction of a dominant-negative Smad5 also rescues neural progenitor apoptosis, suggesting that both canonical and noncanonical pathways can converge and regulate BMP-mediated apoptosis. Collectively, these results establish NRAGE as an integral component in BMP signaling and clarify its role during neural progenitor development.  相似文献   

18.
Ligation of death receptors or formation of the Apaf-1 apoptosome results in the activation of caspases and execution of apoptosis. We recently demonstrated that X-linked inhibitor-of-apoptosis protein (XIAP) associates with the apoptosome in vitro. By utilizing XIAP mutants, we now report that XIAP binds to the 'native' apoptosome complex via a specific interaction with the small p12 subunit of processed caspase-9. Indeed, we provide the first direct evidence that XIAP can simultaneously bind active caspases-9 and -3 within the same complex and that inhibition of caspase-3 by the Linker-BIR2 domain prevents disruption of BIR3-caspase-9 interactions. Recent studies suggest that inhibition of caspase-3 is dispensable for its anti-apoptotic effects. However, we clearly demonstrate that inhibition of caspase-3 is required to inhibit CD95 (Fas/Apo-1)-mediated apoptosis, whereas inhibition of either caspase-9 or caspase-3 prevents Bax-induced cell death. Finally, we illustrate for the first time that XIAP mutants, which are incapable of binding to caspases-9 and -3 are completely devoid of anti-apoptotic activity. Thus, XIAP's capacity to maintain inhibition of caspase-9 within the Apaf-1 apoptosome is influenced by its ability to simultaneously inhibit active caspase-3, and depending upon the apoptotic stimulus, inhibition of caspase-9 or 3 is essential for XIAP's anti-apoptotic activity.  相似文献   

19.
The X-linked mammalian inhibitor of apoptosis protein (XIAP) has been shown to bind several partners. These partners include caspase 3, caspase 9, DIABLO/Smac, HtrA2/Omi, TAB1, the bone morphogenetic protein receptor, and a presumptive E2 ubiquitin-conjugating enzyme. In addition, we show here that XIAP can bind to itself. To determine which of these interactions are required for it to inhibit apoptosis, we generated point mutant XIAP proteins and correlated their ability to bind other proteins with their ability to inhibit apoptosis. partial differential RING point mutants of XIAP were as competent as their full-length counterparts in inhibiting apoptosis, although impaired in their ability to oligomerize with full-length XIAP. Triple point mutants, unable to bind caspase 9, caspase 3, and DIABLO/HtrA2/Omi, were completely ineffectual in inhibiting apoptosis. However, point mutants that had lost the ability to inhibit caspase 9 and caspase 3 but retained the ability to inhibit DIABLO were still able to inhibit apoptosis, demonstrating that IAP antagonism is required for apoptosis to proceed following UV irradiation.  相似文献   

20.
The mitochondrial ARTS protein promotes apoptosis through targeting XIAP   总被引:9,自引:0,他引:9  
ARTS is an unusual septin-like mitochondrial protein that was originally shown to mediate TGF-beta-induced apoptosis. Recently, we found that ARTS is also important for cell killing by other pro-apoptotic factors, such as arabinoside, etoposide, staurosporine and Fas. In Drosophila, the IAP antagonists Reaper, Hid and Grim are essential for the induction of virtually all apoptotic cell death. We found that mutations in peanut, which encodes a Drosophila homologue of ARTS, can dominantly suppress cell killing by Reaper, Hid and Grim, indicating that peanut acts downstream or in parallel to these. In mammalian cells, ARTS is released from mitochondria upon pro-apoptotic stimuli and then binds to XIAP. Binding of ARTS to XIAP is direct, as recombinant ARTS and XIAP proteins can bind to each other in vitro. ARTS binding to XIAP is specific and related to its pro-apoptotic function, as mutant forms of ARTS (or related septins) that fail to bind XIAP failed to induce apoptosis. ARTS leads to decreased XIAP protein levels and caspase activation. Our data suggest that ARTS induces apoptosis by antagonizing IAPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号