首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell-wall polysaccharides from different parts of maize roots have been analysed. The arabinose, galactose and mannose contents are influenced by cell differentiation, whereas xylose, rhamnose and uronic-acid contents are not. In cap cells, the pectin content is low but rhamnose and fucose are present in larger quantities. The cell-wall polysaccharides from cells of the elongation zone and their respective regenerating protoplasts were also analysed. The walls of the protoplasts contained higher xylose and mannose levels and a much lower level of cellulose than the cells from which they were derived.  相似文献   

2.
Changes in mechanical properties and chemical nature of the cell walls of the different zones along elongating maize ( Zea mays L. cv. LG 11) roots were analyzed and the following results were obtained. (1) The apical region 2 to 5 mm from the tip of 15 mm long roots showed rapid elongation whereas the region 8–10 mm from the tip showed very little growth. (2) The minimum stress-relaxation time (To) and the mean stress-relaxation rate (R) of the cell wall were small whereas the maximum stress-relaxation time (Tm) was large in the region where cell elongation was optimum. The To and R increased and the Tm decreased gradually towards the base of the root. (3) The amounts of non-cellulosic polysaccharides of the cell wall were highest in the region 1.5–2.5 mm from the tip, decreasing until 5 mm from the tip, and then increasing towards the base. However, the proportion of this fraction in the total cell wall polysaccharides was highest in the extreme tip (cap and meristem, 0–1 mm) and decreased towards the base. (4) Major neutral sugars constituting the non-cellulosic polysaccharides of the cell wall were xylose, arabinose, galactose and glucose, with minor amounts of rhamnosc. mannose and fucose. The 1–15 mm region was on the whole rich in glucose and xylose and contained arabinose to a lesser extent. However, the chemical nature in the apical region, (0–2 mm, was rather special, being rich in galactose and fucose. (5) The cell wall of maize roots contained, as a whole, only little pectic substances but was high in hemicellulose 1 (rich in xylose, arabinose and glucose) and hemicellulose 2 (rich in glucose and xylose). (6) It appeared that in the elongating region (apical 2 to 5 mm) the cell elongation rate (CET) showed a rather good correlation with the parameters of mechanical properties (To, Tm and R) and with neutral sugar compositions in the non-cellulosic polysaccharides.  相似文献   

3.
UV-C irradiation (254 nm) was found to enhance the secretion of some cell-wall-degrading enzymes, especially the following carbohydrases: beta-galactosidase, alpha-L-arabinofuranosidase, polygalacturonase, pectinesterase, cellulase, xylanase, and beta-xylosidase, in the campion callus, contributing thereby to an alteration in the polysaccharide structure. The relative amounts of the galactose and arabinose residues in pectin (silenan) and of arabinose in arabinogalactan of calli irradiated during the exponential phase were shown to decrease during the stationary phase. A decrease in the degree of SV methylesterification was found for the irradiated callus. These alterations were found to persist over a long period of culturing time. Decreasing the relative amounts of the arabinose residues in arabinogalactan and pectin and the galactose residues in silenan corresponded to increasing activity of alpha-L-arabinofuranosidase and beta-galactosidase, respectively, due to treatment with UV-C. UV-C irradiation may be used as a tool for modifying the structural features of the cell-wall polysaccharides, such as the relative amounts of galactose and arabinose residues in the side chains of polysaccharides, with the purpose of obtaining physiologically active polysaccharides with the desired properties and structural features.  相似文献   

4.
In the root of horse radish, sucrose, fructose, glucose and two unknown fructose-oligosac-charides were found in the form of free sugars, in the decreasing order just given, and large amounts of starch, hot 50% methanol-soluble polysaccharide, water-soluble polysaccharide, pectin, hemicellulose, cellulose and a small amount of lignin were found as polysaccharides. As the constructive sugar of these polysaccharides, the following, i.e., glucose, fructose, galactose, arabinose, galacturonic acid and xylose were detected.  相似文献   

5.
Callus and suspension cultures of campion (Silene vulgaris) produced pectin polysaccharides, similar in structure to the polysaccharides of intact plants. The major components of the pectins were D-galacturonic acid, galactose, arabinose, and rhamnose residues. The maximum content of pectins was found in callus. The monosaccharide composition of arabinogalactans isolated from cells and a culture medium of callus cultures were similar, with the ratio between arabinose and galactose of 1: (2.3-6.5) being retained. The arabinogalactans from the cells and culture medium of the suspension cultures also had a similar structure, and the arabinose to galactose ratio was 1: (1.5-1.8). In contrast to the callus cultures, the suspension cultures produced arabinogalactans with an increased content of arabinose residues and a decreased content of galactose residues. The greatest content of arabinogalactan was detected in the culture medium of the suspension cultures.  相似文献   

6.
The endosperm of the seed of Gleditsia triacanthos L. contains 18.55% of its dry weight as nonreserve, cell-wall carbohydrates. Of this carbohydrate material, comprising mainly mannose, galactose, and glucose, 76.1% was of low-molecular weight or highly hydrophilic. Mannose, galactose, and glucose were also the major sugar components of the polysaccharides extracted with alkali (23.1% of the cell-wall), while the same sugars, with minor amounts of arabinose, form the residues. Methylation analysis of the polysaccharides and the borate-sodium hydroxide residue indicate that the cell walls are built up on a network of galactomannans, with high Man/Gal ratios, reinforced with minor amounts of cellulose.  相似文献   

7.
Root elongation of Alaska pea seedling was suppressed by higherconcentrations of growth retardants, CCC and ancymidol, thanthose required for shoot elongation. Gibberellic acid (GA3)led to recovery of ancymidol-inhibited elongation, with theconcentration (1 nM) required for roots being lower than thatfor shoots (10 µM). Ancymidol caused swelling of corticalcells in the elongating zone of the root, while GA3 completelycanceled this. These results suggest that roots require muchless gibberellin than shoots for normal elongation growth. Growth kinetics recorded by a computer-regulated rhizometerindicated that the lag periods for growth suppression by ancymidoland growth recovery by GA3 were about 10 h and 7 h, respectively. The composition of the cell wall sugars changed remarkably alongthe root axis from the tip to the base. The arabinose contentwas highest in the tip and rapidly decreased toward the base,whereas galactose complementarily increased toward the base.The thickened zone of ancymidol-treated roots had a higher galactosecontent than GA3-treated slender roots. Other neutral sugarswere not significantly influenced by ancymidol and/or GA3. Theseresults suggest that ancymidol makes cells short and thick withgalactose-rich cell walls while GA3 keeps cells extensible andslender with galactose-poor cell walls. (Received March 3, 1987; Accepted December 4, 1987)  相似文献   

8.
Hypocotyl growth of dark-grown squash (Cucurbita maxima Duch.)seedlings was greatly reduced by the addition of 60 mM polyethyleneglycol (PEG) to hydroponic solution (water stress). When PEGwas removed after one day, growth promptly recovered. The contents of hemicelluloses and cellulose in the wall increasedunder unstressed condition as hypocotyls grew but these increaseswere substantially reduced by water stress. The increases inwall polysaccharide contents recovered when the water stresswas relieved. The amounts per hypocotyl of cellulose and thatof uronic acid in pectin changed in parallel with the growth(r=0.95 and 0.98, respectively). The amounts of most of thesugar components of hemicelluloses also changed in parallelwith hypocotyl growth. Pectic and hemicellulosic galactose contentof unstressed hypocotyls increased to day 2 when the hypocotylgrew at a maximum growth rate, then decreased. In contrast,galactose content of stressed hypocotyls progressively increasedto the end of the experiment. The results indicated that water stress substantially reducednet increases in most of the polysaccharides of the hypocotylcell walls when it reduced the growth, but it did not affectsyntheses of some galactosic polysaccharides in pectin and hemicelluloseB. We assume that the syntheses of non-galactosic wall polysaccharidesare associated with hypocotyl growth and the synthesis of galactose-containingpolysaccharides with preservation of the potential of the cellwall to be loosened, since hypocotyl growth promptly and completelyrecovers when water stress is relieved. (Received December 15, 1986; Accepted June 8, 1987)  相似文献   

9.
The effects of aluminum (Al) on root elongation, the mechanical extensibility of the cell wall, and the amount of cell-wall polysaccharides in the roots of Al-resistant (Atlas 66) and Al-sensitive (Scout 66) cultivars of wheat ( Triticum aestivum L.) were examined. Exposure to 10 μ M AlCl3 for 6 h inhibited root elongation in Scout 66 but not in Atlas 66. It also decreased the mechanical extensibility of the cell wall in the roots of both cultivars, but prominently only in the roots of Scout 66. The amount of hemicellulose in the 10-mm region of root apex of Scout 66 was increased by the exposure to Al, especially in the apical regions. Al did not influence the neutral sugar composition of either pectin or hemicellulose in Scout 66 roots. However, Al increased the weight-average molecular mass of hemicellulosic polysaccharides and the amounts of wall-bound ferulic and diferulic acids in Scout 66 roots. These findings suggest that Al modifies the metabolism of cell-wall components and thus makes the cell wall thick and rigid, thereby inhibiting the growth of wheat roots.  相似文献   

10.
Callus and suspension cultures of campion (Silene vulgaris) produced pectin polysaccharides, similar in structure to the polysaccharides of intact plants. The major components of the pectins were D-galacturonic acid, galactose, arabinose, and rhamnose residues. The maximum content of pectins was found in callus. The monosaccharide composition of arabinogalactans isolated from cells and a culture medium of callus cultures were similar, with the ratio between arabinose and galactose of 1: (2.3–6.5) being retained. The arabinogalactans from the cells and culture medium of the suspension cultures also had a similar structure, and the arabinose to galactose ratio was 1: (1.5–1.8). In contrast to the callus cultures, the suspension cultures produced arabinogalactans with an increased content of arabinose residues and a decreased content of galactose residues. The greatest content of arabinogalactan was detected in the culture medium of the suspension cultures.  相似文献   

11.
Ultraviolet radiation (wavelength, 280-315 nm; power, 0.2-13.0 W/m2; exposure, 1 or 3 h) was shown to change the growth of campion callus and the polysaccharide (pectin and arabinogalactan) composition of cell walls. An increase in the concentration of polysaccharides and a decrease in the content of arabinose and galactose residues in pectin and arabinogalactan were noted. For the majority of calluses, growth indices, specific growth rate, and biomass productivity (per 11 medium) were almost the same as in nonirradiated control cells. Maximum values of the growth index and specific growth rate, determined for dry biomass, were observed at a low dose of irradiation (0.2 W/m2) and an exposure of 3 h. A considerable decrease in the content of arabinose and galactose in pectin was noted at high doses of irradiation (exposure, 3 h). Samples of arabinogalactan were characterized by variable arabinose to galactose ratios, which were in the range 1 : (3.4-8.3).  相似文献   

12.
Changes in the neutral sugar compositions of cell walls werestudied during regeneration of shoots and roots from culturedcarrot cells and during maturation of soybean seeds. There weremore arabinan and arabinose-rich acidic polysaccharides thangalactose-rich polysaccharides in the pectic fractions of thecell walls from cultured carrot cells and more galactan, arabinogalactanor both than the arabinose-rich polysaccharides in the samefractions from their mother tissue, i.e. root phloem tissue. The arabinose content of the cell walls decreased and the galactosecontent increased during root and shoot formation until galactoseexceeded arabinose in the cell walls of fully developed shootsand roots from cultured cells. The cell wall arabinose contentalso was higher than that of galactose in cotyledons and embryonicaxes of immature soybean seeds, and change in the neutral sugarcomposition of the cell wall during seed maturation was similarto that during the redifTerentiation of cultured carrot cells.During the very late stage of maturation, galactose in the cellwalls exceeded the content of arabinose. Results suggest that the redifferentiation of roots and shootsfrom cultured cells goes through a process of cell wall formationsimilar to that of embryogenesis or seed development in themother plants. Results also indicate that the predominant arabinanand arabinose-rich acidic polysaccharides have important functionsin cell walls during embryogenesis and in the eraly stages ofseed maturation and that galactan, arabinogalactan, or bothreplace these arabinose-rich polysaccharides after seed maturation. 2Present address: Department of Botany, the University of BritishColumbia, # 3529-6270 University Blvd.,Vancouver, B.C. V6T 2B1Canada (Received October 28, 1982; Accepted April 8, 1983)  相似文献   

13.
Ultraviolet radiation (wavelength, 280–315 nm; power, 0.2–13.0 W/m2; exposure, 1 or 3 h) was shown to change the growth of campion callus and the polysaccharide (pectin and arabinogalactan) composition of cell walls. An increase in the concentration of polysaccharides and a decrease in the content of arabinose and galactose residues in pectin and arabinogalactan were noted. For the majority of calluses, growth indices, specific growth rate, and biomass productivity (per 11 medium) were almost the same as in nonirradiated control cells. Maximum values of the growth index and specific growth rate, determined for dry biomass, were observed at a low dose of irradiation (0.2 W/m2) and an exposure of 3 h. A considerable decrease in the content of arabinose and galactose in pectin was noted at high doses of irradiation (exposure, 3 h). Samples of arabinogalactan were characterized by variable arabinose to galactose ratios, which were in the range 1: (3.4–8.3).  相似文献   

14.
The relationship of root-cap slimes to proteins   总被引:6,自引:1,他引:5  
1. The patterns of incorporation of radioactivity from d-[U-(14)C]glucose into the pectic components of sections of sycamore roots changed so that sections nearer the tip incorporated relatively more label into arabinose and galactose compared with uronic acid. 2. Radioactive maize root-cap slime was prepared and found to contain three water-soluble component polymers which were electrophoretically (i) neutral, (ii) weakly acidic and (iii) strongly acidic at pH6.5. The neutral component was a glucan. The other components, which could be degraded by trans-elimination, consisted of an acidic backbone chain composed of galacturonic acid and glucose, attached to which were different proportions of neutral sugars. Arabinose, galactose and fucose, the main neutral sugars of the weakly and strongly acidic materials, were absent from the neutral fraction. 3. Fucose was a major sugar in maize-root slime and in a slime of similar composition synthesized by a maize callus of shoot origin. Only trace amounts were found in sycamore, pea and wheat root tips, and in pectin prepared from maize roots and coleoptiles. A high proportion of fucose is therefore a chemical characteristic of maize slime, and slime synthesis indicated a state of differentiation of the tissue. 4. The similarity between the slime and pectin is discussed; slime is a form of pectin modified in such a way as to provide a hydrated protective coating around the root tip.  相似文献   

15.
Crude water-soluble polysaccharides were isolated from Acanthus ebracteatus by hot water extraction followed by ethanol precipitation after pre-treatment with 80% ethanol. The crude polysaccharides were separated into neutral and acidic polysaccharides by anion-exchange chromatography. The neutral polysaccharide (A1001) was rich in galactose, 3-O-methylgalactose and arabinose, whereas the acidic polysaccharide (A1002) consisted mainly of galacturonic acid along with rhamnose, arabinose and galactose as minor components indicating a pectin-type polysaccharide with rhamnogalacturonan type I (RG-1) backbone. 3-O-Methylgalactose is also present in the acidic fraction. Both neutral and acidic fractions showed potent effects on the complement system using pectic polysaccharide PM II from Plantago major as a positive control. A small amount of 3-O-methylgalactose present in the pectin seemed to be of importance for activity enhancement in addition to the amount of neutral sugar side chains attached to RG-1. The relationship between chemical structure and effect on the complement system of the isolated polysaccharides is considered in the light of these data. The presence of the rare monosaccharide 3-O-methylgalactose may indicate that this can be used as a chemotaxonomic marker. The traditional way of using this plant as a medical remedy appears to have a scientific basis.  相似文献   

16.
Some 22% of the dry weight of the cotyledons of resting seeds of Lupinus angustifolius cv. Unicrop has been shown to be non-starch polysaccharide material comprising the massively thickened walls of the storage mesophyll cells. On hydrolysis this material released galactose (76%), arabinose (13%), xylose (4%), uronic acid (7%): only traces of glucose were detected indicating the virtual absence of cellulose from the walls. Changes in the amount and composition of this material following germination have been studied in relation to parameters of seedling development and the mobilisation of protein, lipid and oligosaccharide reserves. Starch, which was not present in the resting seed, appeared transitorily following germination: under conditions of continuous darkness starch levels were reduced. During the period of bulk-reserve mobilisation, 92% of the non-starch polysaccharide material disappeared from the cotyledons. The residual cell-wall material released galactose (14%), arabinose (19%), xylose (24%) and uronic acid (43%). The galactose and arabinose residues of the cotyledonary cell walls clearly constitute a major storage material, quantitatively as important as protein. The overall role of the wall polysaccharides in seedling development is discussed.  相似文献   

17.
Dynamin-related proteins are large GTPases that deform and cause fission of membranes. The DRP1 family of Arabidopsis thaliana has five members of which DRP1A, DRP1C, and DRP1E are widely expressed. Likely functions of DRP1A were identified by studying rsw9, a null mutant of the Columbia ecotype that grows continuously but with altered morphology. Mutant roots and hypocotyls are short and swollen, features plausibly originating in their cellulose-deficient walls. The reduction in cellulose is specific since non-cellulosic polysaccharides in rsw9 have more arabinose, xylose, and galactose than those in wild type. Cell plates in rsw9 roots lack DRP1A but still retain DRP1E. Abnormally placed and often incomplete cell walls are preceded by abnormally curved cell plates. Notwithstanding these division abnormalities, roots and stems add new cells at wild-type rates and organ elongation slows because rsw9 cells do not grow as long as wild-type cells. Absence of DRP1A reduces endocytotic uptake of FM4-64 into the cytoplasm of root cells and the hypersensitivity of elongation and radial swelling in rsw9 to the trafficking inhibitor monensin suggests that impaired endocytosis may contribute to the development of shorter fatter roots, probably by reducing cellulose synthesis.  相似文献   

18.
Fractional purification and bioconversion of hemicelluloses   总被引:1,自引:0,他引:1  
Hemicelluloses are types of plant cell wall polysaccharides, and the world's second most abundant renewable polymers after cellulose in lignocellulosic materials. They represent a type of hetero-polysaccharide with complex structure containing glucose, xylose, mannose, galactose, arabinose, rhamnose, glucuronic acid, and galacturonic acid in various amounts, depending on the source. Hemicelluloses are usually bonded to other cell-wall components such as cellulose, cell-wall proteins, lignin, and phenolic compounds by covalent and hydrogen bonds, and by ionic and hydrophobic interactions. This paper provides a review on hemicelluloses from lignocellulosic materials, especially in regard to their isolation and purification methods, and bioconversion. Current isolation and purification strategies are summarized, including: alkali peroxide extraction, organic solvent extraction, steam explosion, ultrasound-assisted extraction, microwave-assisted extraction, column chromatography, and membrane separation. In addition, the bioconversion of hemicelluloses including pretreatment, enzymatic hydrolysis, and fermentation are discussed.  相似文献   

19.
Proteins and Carbohydrates in Xylem Sap from Squash Root   总被引:8,自引:0,他引:8  
The xylem sap from squash roots was collected from the cut surfaceof stems, and the proteins and carbohydrates in the sap wereanalyzed. The sap contained 18.6 µg ml–1 proteinand the major polypeptides were as follows: 1) two polypeptides,of 75 and 40 kDa, with high-mannose glycans, the levels of whichincreased for about 24 h after cutting and then decreased; 2)a 32-kDa polypeptide, which appeared soon after cutting, disappearedand then reappeared again 48–64 h after cutting; and 3)a 19-kDa and a 14-kDa polypeptide, which were present constitutively.The carbohydrates contained in the xylem sap were fractionatedinto 80% ethanol-soluble and -insoluble material, and whichwere analyzed by high-performance liquid chromatography, gaschromatography and enzymatic mathods. The former fraction containedconsiderable amounts of myo-inositol and fructose as free sugarsand oligosaccharides composed mainly of galactose, arabinoseand glucose. The latter contained polysaccharides composed mainlyof uronic acids, galactose and arabinose. The possible significanceof these substances, which may mediate the interactions betweenthe root and the aerial organs, is discussed. (Received April 20, 1992; Accepted July 4, 1992)  相似文献   

20.
Maimon E  Moore R 《Annals of botany》1991,67(2):145-151
We examined the gravitropic responses of surgically altered primary roots of Zea mays to determine the route by which gravitropic inhibitors move from the root tip to the elongating zone. Horizontally oriented roots, from which a 1-mm-wide girdle of epidermis plus 2-10 layers of cortex were removed from the apex of the elongating zone, curve downward. However, curvature occurred only apical to the girdle. Filling the girdle with mucilage-like material transmits curvature beyond the girdle. Vertically oriented roots with a half-girdle' (i.e. the epidermis and 2-10 layers of the cortex removed from half of the circumference of the apex of the elongating zone) curve away from the girdle. Inserting the half-girdle at the base of the elongating zone induces curvature towards the girdle. Filling the half-circumference girdles with mucilage-like material reduced curvature significantly. Stripping the epidermis and outer 2-5 layers of cortex from the terminal 1.5 cm of one side of a primary root induces curvature towards the cut, irrespective of the root's orientation to gravity. This effect is not due to desiccation since treated roots submerged in water also curved towards their cut surface. Coating a root's cut surface with a mucilage-like substance minimizes curvature. These results suggest that the outer cell-layers of the root, especially the epidermis, play an important role in root gravicurvature, and the gravitropic signals emanating from the root tip can move apoplastically through mucilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号