首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
microRNA通过转录后水平调控细胞的蛋白质表达,在神经系统的发育、分化及功能行使中发挥着重要作用。阿尔茨海默病是一种以进行性认知功能障碍为特征的神经退行性疾病,患者脑内microRNA的表达发生改变,异常表达的microRNA可从多种途径影响疾病的发生与发展,对microRNA在阿尔茨海默病中作用的研究不仅有利于疾病发病机制的诠释也有利于microRNA调控机制的探讨。  相似文献   

2.
Identifying the tissues in which a microRNA is expressed could enhance the understanding of the functions, the biological processes, and the diseases associated with that microRNA. However, the mechanisms of microRNA biogenesis and expression remain largely unclear and the identification of the tissues in which a microRNA is expressed is limited. Here, we present a machine learning based approach to predict whether an intronic microRNA show high co-expression with its host gene, by doing so, we could infer the tissues in which a microRNA is high expressed through the expression profile of its host gene. Our approach is able to achieve an accuracy of 79% in the leave-one-out cross validation and 95% on an independent testing dataset. We further estimated our method through comparing the predicted tissue specific microRNAs and the tissue specific microRNAs identified by biological experiments. This study presented a valuable tool to predict the co-expression patterns between human intronic microRNAs and their host genes, which would also help to understand the microRNA expression and regulation mechanisms. Finally, this framework can be easily extended to other species.  相似文献   

3.
4.
5.
microRNAs are short RNAs that reduce gene expression by binding to their targets. The accurate prediction of microRNA targets is essential to understanding the function of microRNAs. Computational predictions indicate that all human genes may be regulated by microRNAs, with each microRNA possibly targeting thousands of genes. Here we discuss computational methods for identifying mammalian microRNA targets and refining them for further experimental validation. We describe microRNA target prediction resources and procedures and how they integrate with various types of experimental techniques that aim to validate them or further explore their function. We also provide a list of target prediction databases and explain how these are curated.  相似文献   

6.
7.
Wei Q  Sun Z  He X  Tan T  Lu B  Guo X  Su B  Ji W 《PloS one》2011,6(9):e25052
Parthenogenetic embryonic stem cells are considered as a promising resource for regeneration medicine and powerful tools for developmental biology. A lot of studies have revealed that embryonic stem cells have distinct microRNA expression pattern and these microRNAs play important roles in self-renewal and pluripotency of embryonic stem cells. However, few studies concern about microRNA expression pattern in parthenogenetic embryonic stem cells, especially in non-human primate--the ideal model species for human, largely due to the limited rhesus monkey parthenogenetic embryonic stem cells (rpESCs) available and lack of systematic analysis of the basics of rpESCs. Here, we derived two novel rpESCs lines and characterized their microRNA signature by Solexa deep sequencing. These two novel rpESCs shared many properties with other primate ESCs, including expression of pluripotent markers, capacity to generate derivatives representative of all three germ layers in vivo and in vitro, maintaining of euploid karyotype even after long culture. Additionally, lack of some paternally expressed imprinted genes and identity of Single-nucleotide Polymorphism (SNP) compare to their oocyte donors support their parthenogenesis origin. By characterizing their microRNA signature, we identified 91 novel microRNAs, except those are also detected in other primate ESCs. Moreover, these two novel rpESCs display a unique microRNA signature, comparing to their biparental counterpart ESCs. Then we analyzed X chromosome status in these two novel rpESCs; results suggested that one of them possesses two active X chromosomes, the other possesses only one active X chromosome liking biparental female embryonic stem cells. Taken together, our novel rpESCs provide a new alternative to existing rhesus monkey embryonic stem cells, microRNA information expands rhesus monkey microRNA data and may help understanding microRNA roles in pluripotency and parthenogenesis.  相似文献   

8.
In the relatively short period of time since their discovery, microRNAs have been shown to control many important cellular functions such as cell differentiation, growth, proliferation and apoptosis. In addition, microRNAs have been demonstrated as key drivers of many malignancies and can function as either tumour suppressors or oncogenes. The haematopoietic system is not outside the realm of microRNA control with microRNAs controlling aspects of stem cell and progenitor self-renewal and differentiation, with many, if not all, haematological disorders associated with aberrant microRNA expression and function. In this review, we focus on the current understanding of microRNA control of haematopoiesis and detail the evidence for the contribution and clinical relevance of aberrant microRNA function to the characteristic block of differentiation in acute myeloid leukaemia.  相似文献   

9.
10.
Clefts of the lip and palate are thought to be caused by genetic and environmental insults but the role of epigenetic mechanisms underlying this common birth defect are unknown. We analyzed the expression of over 600 microRNAs in the murine medial nasal and maxillary processes isolated on GD10.0–GD11.5 to identify those expressed during development of the upper lip and analyzed spatial expression of a subset. A total of 142 microRNAs were differentially expressed across gestation days 10.0–11.5 in the medial nasal processes, and 66 in the maxillary processes of the first branchial arch with 45 common to both. Of the microRNAs exhibiting the largest percent increase in both facial processes were five members of the Let‐7 family. Among those with the greatest decrease in expression from GD10.0 to GD11.5 were members of the microRNA‐302/367 family that have been implicated in cellular reprogramming. The distribution of expression of microRNA‐199a‐3p and Let‐7i was determined by in situ hybridization and revealed widespread expression in both medial nasal and maxillary facial process, while that for microRNA‐203 was much more limited. MicroRNAs are dynamically expressed in the tissues that form the upper lip and several were identified that target mRNAs known to be important for its development, including those that regulate the two main isoforms of p63 (microRNA‐203 and microRNA‐302/367 family). Integration of these data with corresponding proteomic datasets will lead to a greater appreciation of epigenetic regulation of lip development and provide a better understanding of potential causes of cleft lip.  相似文献   

11.
The importance of microRNAs as key molecular components of cellular processes is now being recognized. Recent reports have shown that microRNAs regulate processes as diverse as protein expression and nuclear functions inside cells and are able to signal extracellularly, delivered via exosomes, to influence cell fate at a distance. The versatility of microRNAs as molecular tools inspires the design of novel strategies to control gene expression, protein stability, DNA repair and chromatin accessibility that may prove very useful for therapeutic approaches due to the extensive manageability of these small molecules. However, we still lack a comprehensive understanding of the microRNA network and its interactions with the other layers of regulatory elements in cellular and extracellular functions. This knowledge may be necessary before we exploit microRNA versatility in therapeutic settings. To identify rules of interactions between microRNAs and other regulatory systems, we begin by reviewing microRNA activities in a single cell type: the melanocyte, from development to disease.  相似文献   

12.
The importance of microRNAs in development is now widely accepted. However, identifying the specific targets of individual microRNAs and understanding their biological significance remains a major challenge. We have used the zebrafish model system to evaluate the expression and function of microRNAs potentially involved in muscle development and study their interaction with predicted target genes. We altered expression of the miR-30 microRNA family and generated phenotypes that mimicked misregulation of the Hedgehog pathway. Inhibition of the miR-30 family increases activity of the pathway, resulting in elevated ptc1 expression and increased numbers of superficial slow-muscle fibres. We show that the transmembrane receptor smoothened is a target of this microRNA family. Our results indicate that fine coordination of smoothened activity by the miR-30 family allows the correct specification and differentiation of distinct muscle cell types during zebrafish embryonic development.  相似文献   

13.
14.
何晨  谭军  陈薇 《生物技术通讯》2005,16(6):674-676
在多细胞生物的基因组中都存在一类非编码RNA基因,能够产生长度约为22个核苷酸的小分子RNA,称为microRNA(miRNA),具有调节其他基因表达活性的功能。miRNA的发现,为我们理解复杂的基因调节网络开辟了新的空间。本文概述了miRNA的产生过程、转录抑制机理、研究并预测miRNA的方法等。  相似文献   

15.
16.
17.
MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer -dependent and -independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation.  相似文献   

18.
Quality Assessment and Data Analysis for microRNA Expression Arrays   总被引:1,自引:0,他引:1       下载免费PDF全文
MicroRNAs are small (~22 nt) RNAs that regulate gene expression and play important roles in both normal and disease physiology. The use of microarrays for global characterization of microRNA expression is becoming increasingly popular and has the potential to be a widely used and valuable research tool. However, microarray profiling of microRNA expression raises a number of data analytic challenges that must be addressed in order to obtain reliable results. We introduce here a universal reference microRNA reagent set as well as a series of nonhuman spiked-in synthetic microRNA controls, and demonstrate their use for quality control and between-array normalization of microRNA expression data. We also introduce diagnostic plots designed to assess and compare various normalization methods. We anticipate that the reagents and analytic approach presented here will be useful for improving the reliability of microRNA microarray experiments.  相似文献   

19.

Background  

Glioblastoma arises from complex interactions between a variety of genetic alterations and environmental perturbations. Little attention has been paid to understanding how genetic variations, altered gene expression and microRNA (miRNA) expression are integrated into networks which act together to alter regulation and finally lead to the emergence of complex phenotypes and glioblastoma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号