首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We report a preliminary high-resolution proton nuclear magnetic resonance characterization of the variant-3 toxin from the scorpion Centruroides sculpturatus Ewing (range Southwestern USA). This toxin assumes a well defined folded conformation in aqueous solutions at room temperature and undergoes reversible thermal denaturation. A number of amide hydrogens exhibit exchange life times varying from several minutes to several hours. A few tentative assignments of the low field aromatic CH resonances has been made on the basis of 2D-COSY and NOE experiments. The upfield shifts exhibited by Trp-47 suggest a unique microenvironment for this residue. The NMR data suggest that there is some degree of correlation between the solution structure of the variant-3 toxin and its crystallographic structure. Our studies provide a basis for a detailed elucidation of the structure-function relationships of these interesting scorpion toxins which bind to the sodium channels of excitable membranes and delay sodium current inactivation.  相似文献   

2.
The solution structure of the anti-mammal and anti-insect LqqIII toxin from the scorpion Leiurus quinquestriatus quinquestriatuswas refined and compared with other long-chain scorpion toxins. This structure, determined by 1H-NMR and molecular modeling, involves an α-helix (18–29) linked to a three-stranded β-sheet (2–6, 33–39, and 43–51) by two disulfide bridges. The average RMSD between the 15 best structures and the mean structure is 0.71 Å for Cα atoms. Comparison between LqqIII, the potent anti-mammal AaHII, and the weakly active variant-3 toxins revealed that the LqqIII three-dimensional structure is closer to that of AaHII than to the variant-3 structure. Moreover, striking analogies were observed between the electrostatic and hydrophobic potentials of LqqIII and AaHII. Several residues are well conserved in long-chain scorpion toxin sequences and seem to be important in protein structure stability and function. Some of them are involved in the CSαβ (Cysteine Stabilized α-helix β-sheet) motif. A comparison between the sequences of the RII rat brain and the Drosophila extracellular loops forming scorpion toxin binding-sites of Na+ channels displays differences in the subsites interacting with anti-mammal or anti-insect toxins. This suggests that hydrophobic as well as electrostatic interactions are essential for the binding and specificity of long-chain scorpion toxins. Proteins 28:360–374, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

3.
We report the sequential assignment of resonances to specific residues in the proton nuclear magnetic resonance spectrum of the variant-3 neurotoxin from the scorpion Centruroides sculpturatus Ewing (range southwestern U.S.A.). A combination of two-dimensional NMR experiments such as 2D-COSY, 2D-NOESY, and single- and double-RELAY coherence transfer spectroscopy has been employed on samples of the protein dissolved in D2O and in H2O for assignment purposes. These studies provide a basis for the determination of the solution-phase conformation of this protein and for undertaking detailed structure-function studies of these neurotoxins that modulate the flow of sodium current by binding to the sodium channels of excitable membranes.  相似文献   

4.
The binding of 125I-labeled derivatives of scorpion toxin and sea anemone toxin to tetrodotoxin-insensitive sodium channels in cultured rat muscle cells has been studied. Specific binding of 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin was each blocked by either native scorpion toxin or native sea anemone toxin. K0.5 for block of binding by several polypeptide toxins was closely correlated with K0.5 for enhancement of sodium channel activation in rat muscle cells. These results directly demonstrate binding of sea anemone toxin and scorpion toxin to a common receptor site on the sodium channel. Binding of both 125I-labeled toxin derivatives is enhanced by the alkaloids aconitine and batrachotoxin due to a decrease in KD for polypeptide toxin. Enhancement of polypeptide toxin binding by aconitine and batrachotoxin is precisely correlated with persistent activation of sodium channels by the alkaloid toxins consistent with the conclusion that there is allosteric coupling between receptor sites for alkaloid and polypeptide toxins on the sodium channel. The binding of both 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin is reduced by depolarization due to a voltage-dependent increase in KD. Scorpion toxin binding is more voltage-sensitive than sea anemone toxin binding. Our results directly demonstrate voltage-dependent binding of both scorpion toxin and sea anemone toxin to a common receptor site on the sodium channel and introduce the 125I-labeled polypeptide toxin derivatives as specific binding probes of tetrodotoxin-insensitive sodium channels in cultured muscle cells.  相似文献   

5.
Purified scorpion toxin (Leiurus quinquestriatus) slows inactivation of sodium channels in frog muscle at concentrations in the range of 17-170 nM. Mono[125I]iodo scorpion toxin binds to a single class of sites in frog sartorius muscle with a dissociation constant of 14 nM and a binding capacity of 13 fmol/mg wet weight. Specific binding is inhibited more than 90% by 3 microM sea anemone toxin II and by depolarization with 165 mM K+. Half-maximal inhibition of binding is observed on depolarization to -41 mV. The voltage dependence of scorpion toxin binding is correlated with the voltage dependence of activation of sodium channels. Removal of calcium from the bathing medium shifts both activation and inhibition of scorpion toxin binding to more negative membrane potentials. The results are considered in terms of the hypothesis that activation of sodium channels causes a conformational change in the scorpion toxin receptor site resulting in reduced affinity for scorpion toxin.  相似文献   

6.
A new anti-insect neurotoxin, AaH IT4, has been isolated from the venom of the North African scorpion Androctonus australis Hector. This polypeptide has a toxic effect on insects and mammals and is capable of competing with anti-insect scorpion toxins for binding to the sodium channel of insects; it also modulates the binding of alpha-type and beta-type anti-mammal scorpion toxins to the mammal sodium channel. This is the first report of a scorpion toxin able to exhibit these three kinds of activity. The molecule is composed of 65 amino acid residues and lacks methionine and, more unexpectedly, proline, which until now has been considered to play a role in the folded structure of all scorpion neurotoxins. The primary structure showed a poor homology with the sequences of other scorpion toxins; however, it had features in common with beta-type toxins. In fact, radioimmunoassays using antibodies directed to scorpion toxins representative of the main structural groups showed that there is a recognition of AaH IT4 via anti-beta-type toxin antibodies only. A circular dichroism study revealed a low content of regular secondary structures, particularly in beta-sheet structures, when compared to other scorpion toxins. This protein might be the first member of a new class of toxins to have ancestral structural features and a wide toxic range.  相似文献   

7.
The amino acid sequence for the variant-3 (CsE-v3) toxin from the venom of the scorpion Centruroides sculpturatus Ewing contains eight aromatic residues. By use of 2D NMR spectroscopic methods, the resonances from the individual protons (NH, C alpha H, C beta H',H", and the ring) for each of the individual aromatic residues have been completely assigned. The spatial arrangement of the aromatic ring systems with respect to each other has been qualitatively analyzed by 2D-NOESY techniques. The results show that Trp-47, Tyr-4, and Tyr-42 are in close spatial proximity to each other. The NOESY contacts and the ring current induced shifts in the resonances of the individual protons of Tyr-4 and Trp-47 suggest that the aromatic ring planes of these residues are in an orthogonal arrangement. In addition, the spatial proximity of the rings in the pairs Tyr-4, Tyr-58; Tyr-42, Tyr-40; and Tyr-40, Tyr-38 has also been established. A comparison with the published crystal structure suggests that there is a minor rearrangement of the aromatic rings in the solution phase. No 2D-NOESY contacts involving Phe-44 and Tyr-14 to any other aromatic ring protons have been observed. The pH dependence of the aromatic ring proton chemical shifts has also been studied. These results suggest that the Tyr-58 phenolic group is experiencing a hydrogen-bonding interaction with a positively charged group, while Tyr-4, -14, -38, and -40 are experiencing through-space interactions with proximal negatively charged groups. The Trp-47 indole NH is interacting with the carboxylate groups of two proximal acidic residues. These studies define the microenvironment of the aromatic residues in the variant-3 neurotoxin in aqueous solution.  相似文献   

8.
The three-dimensional structure of the variant-3 protein neurotoxin from the scorpion Centruroides sculpturatus Ewing has been determined by X-ray diffraction data. The initial model for the 65-residue protein was obtained at 3 A resolution by multiple-isomorphous-replacement methods. The structure was refined at 1.8 A resolution by restrained difference-Fourier methods, and by free-atom, block-diagonal least-squares. Considering the 4900 reflections for which d = 1.8-7 A and Fo greater than 2.5 sigma (Fo), the final R-index is 0.16 for the restrained model, and 0.14 for the free-atom model. Average estimated errors in atomic co-ordinates are about 0.1 A. The refined structure includes 492 protein atoms; one molecule of 2-methyl-2,4-pentanediol, which is tightly bound in a hydrophobic pocket on the surface of the protein; and 72 additional solvent sites. The major secondary structural features are two and a half turns of alpha-helix and a three-strand stretch of antiparallel beta-sheet. The helix is connected to the middle strand of the beta-sheet by two disulfide bridges, and a third disulfide bridge is located nearby. Several loops extend out of this dense core of secondary structure. The protein displays several reverse turns and a highly contorted proline-rich, COOH-terminal segment. One of the proline residues (Pro59) assumes a cis-conformation. The structure involves 44 intramolecular hydrogen bonds. The crystallographic results suggest two major corrections in the published primary structure; one of these has been confirmed by new chemical sequence data. The protein displays a large flattened surface that contains a high concentration of hydrophobic residues, along with most of the conserved amino acids that are found in the scorpion neurotoxins.  相似文献   

9.
A new peptide with 61 amino acids cross-linked by 4 disulfide bridges, with molecular weight of 6938.12 Da, and an amidated C-terminal amino acid residue was purified and characterized. The primary structure was obtained by direct Edman degradation and sequencing its gene. The peptide is lethal to mammals and was shown to be similar (95% identity) to toxin Ts1 (gamma toxin) from the Brazilian scorpion Tityus serrulatus; it was named Tt1g (from T. trivittatus toxin 1 gamma-like). Tt1g was assayed on several sub-types of Na+-channels showing displacement of the currents to more negative voltages, being the hNav1.3 the most affected channel. This toxin displays characteristics typical to the β-type sodium scorpion toxins. Lethality tests and physiological assays indicate that this peptide is probably the most important toxic component of this species of scorpion, known for causing human fatalities in the South American continent.  相似文献   

10.
Toxin II isolated from the sea anemone Anemonia sulcata enhances activation of the action potential sodium ionophore of electrically excitable neuroblastoma cells by veratridine and batrachotoxin. This heterotropic cooperative effect is identical to that observed previously with scorpion toxin but occurs at a 110-fold higher concentration. Depolarization of the neuroblastoma cells inhibits the effect of sea anemone toxin as observed previously for scorpion toxin. Specific scorpion toxin binding is inhibited by sea anemone toxin with KD approximately equal to 90 nM. These results show that the polypeptides scorpion toxin and sea anemone toxin II share a common receptors site associated with action potential sodium ionophores.  相似文献   

11.
We have previously shown that the [3H]saxitoxin binding site of the sodium channel is expressed independently of the [125I]scorpion toxin binding site in chick muscle cultures and in rat brain. In the present work, we studied the development of the sodium channel protein during chemically induced differentiation of N1E-115 neuroblastoma cells, using [3H]saxitoxin binding, [125I]scorpion toxin binding, and 22Na uptake techniques. When grown in their normal culture medium, these cells are mostly undifferentiated, bind 90 +/- 10 fmol of [3H]saxitoxin/mg of protein and 112 +/- 14 fmol of [125I]scorpion toxin/mg protein, and, when stimulated with scorpion toxin and batrachotoxin, take up 70 +/- 5 nmol of 22Na/min/mg of protein. Cells treated with dimethyl sulfoxide (DMSO) or hexamethylene-bis-acetamide (HMBA) differentiate morphologically within 3 days. At this time, the [3H]saxitoxin binding, the [125I]scorpion toxin binding, and the 22Na uptake values are not very different from those of undifferentiated cells. With subsequent time in DMSO or HMBA, these values continue to increase, a result indicating that the main period of sodium channel expression occurs well after the cells have assumed the morphologically differentiated state. The data indicate that the expression of sodium channels and morphological differentiation are independently regulated neuronal properties, that the attainment of morphological differentiation is necessary but not in itself sufficient for full expression of the sodium channel proteins, and that, in contrast to the chick muscle cultures and rat brain, the [3H]saxitoxin site and [125I]scorpion toxin site appear to be coregulated in N1E-115 cells.  相似文献   

12.
The crystal structure of the variant-3 protein neurotoxin from the scorpion Centruroides sculpturatus Ewing has been refined at 1.2 A resolution using restrained least-squares. The final model includes 492 non-hydrogen protein atoms, 453 protein hydrogen atoms, eight 2-methyl-2,4-pentanediol (MPD) solvent atoms, and 125 water oxygen atoms. The variant-3 protein model geometry deviates from ideal bond lengths by 0.024 A and from ideal angles by 3.6 degrees. The crystallographic R-factor for structure factors calculated from the final model is 0.192 for 17,706 unique reflections between 10.0 to 1.2 A. A comparison between the models of the initial 1.8 A and the 1.2 A refinement shows a new arrangement of the previously poorly defined residues 31 to 34. Multiple conformations are observed for four cysteine residues and an MPD oxygen atom. The electron density indicates that disulfide bonds between Cys12 and Cys65 and between Cys29 and Cys48 have two distinct side-chain conformations. A molecule of MPD bridges neighboring protein molecules in the crystal lattice, and both MPD enantiomers are present in the crystal. A total of 125 water molecules per molecule of protein are included in the final model with B-values ranging from 11 to 52 A2 and occupancies from unity down to 0.4. Comparisons between the 1.2 A and 1.8 A models, including the bound water structure and crystal packing contacts, are emphasized.  相似文献   

13.
A 7- dimethylaminocoumarin -4-acetate fluorescent derivative of toxin II from the venom of the scorpion Centruroides suffusus suffusus (Css II) has been prepared to study the structural, conformational, and cellular properties of the beta-neurotoxin receptor site on the voltage-dependent sodium channel. The derivative retains high affinity for its receptor site on the synaptosomal sodium channel with a KD of 7 nM and site capacity of 1.5 pmol/mg of synaptosomal protein. The fluorescent toxin is very environmentally sensitive and the fluorescence emission upon binding indicates that the Css II receptor is largely hydrophobic. Binding of tetrodotoxin or batrachotoxin does not alter the spectroscopic properties of bound Css II, whereas toxin V from Leiurus quinquestriatus effects a 10-nm blue shift to a more hydrophobic environment. This is the first direct indication of conformational coupling between these separate neurotoxin receptor sites. The distance between the tetrodotoxin and Css II scorpion toxin receptors on the sodium channel was measured by fluorescence resonance energy transfer. Efficiencies were measured by both donor quenching and acceptor-sensitized emission. The distance between these two neurotoxin sites is about 34 A. The implications of these receptor locations together with other known molecular distances are discussed in terms of a molecular structure of the voltage-dependent sodium channel.  相似文献   

14.
The Leiurus quinquestriatus quinquestriatus receptor site of the voltage-dependent sodium channel has been characterized using several fluorescent scorpion toxins. The derivatives show fluorescence enhancements upon binding to the receptor site on the channel together with blue shifts. The fluorescence properties of the bound probes indicate a conformationally flexible, hydrophobic site. Binding of tetrodotoxin has no effect on the fluorescence spectra of the bound derivatives, whereas binding of the allosteric activator batrachotoxin enhances the fluorescence about 2-fold and causes a red shift in the emission spectra, suggesting a batrachotoxin-induced conformational change in the scorpion toxin receptor. The distance between the tetrodotoxin receptor and the Leiurus scorpion toxin receptor on the channel was measured by fluorescence resonance energy transfer. Five different chromophoric scorpion toxin derivatives were used as energy transfer acceptors or donors with anthraniloyltetrodotoxin or N-methylanthraniloylglycine-tetrodotoxin as the energy donor or acceptor. Because of the presence of three tetrodotoxin receptors for each Leiurus receptor, the positions of the donors and acceptors were exchanged. Efficiencies of transfer were measured by both donor quenching and sensitized emission. The average distance of separation between these sites is 35 A. Upon batrachotoxin addition, this distance changes to 42 A indicating a conformational change in one subunit of the channel or a change in the interaction between two subunits coupled to the batrachotoxin-binding site. On the basis of these studies, we present a model suggesting that tetrodotoxin binds to a subunit/site which is extracellularly placed and is 35 A from the Leiurus subunit/site which is located in a protein cleft of the channel which extends partly into the membrane, and undergoes a neurotoxin and voltage-dependent conformational change.  相似文献   

15.
Animal toxins are small proteins built on the basis of a few disulfide bonded frameworks. Because of their high variability in sequence and biologic function, these proteins are now used as templates for protein engineering. Here we report the extensive characterization of the structure and dynamics of two toxin folds, the "three-finger" fold and the short alpha/beta scorpion fold found in snake and scorpion venoms, respectively. These two folds have a very different architecture; the short alpha/beta scorpion fold is highly compact, whereas the "three-finger" fold is a beta structure presenting large flexible loops. First, the crystal structure of the snake toxin alpha was solved at 1.8-A resolution. Then, long molecular dynamics simulations (10 ns) in water boxes of the snake toxin alpha and the scorpion charybdotoxin were performed, starting either from the crystal or the solution structure. For both proteins, the crystal structure is stabilized by more hydrogen bonds than the solution structure, and the trajectory starting from the X-ray structure is more stable than the trajectory started from the NMR structure. The trajectories started from the X-ray structure are in agreement with the experimental NMR and X-ray data about the protein dynamics. Both proteins exhibit fast motions with an amplitude correlated to their secondary structure. In contrast, slower motions are essentially only observed in toxin alpha. The regions submitted to rare motions during the simulations are those that exhibit millisecond time-scale motions. Lastly, the structural variations within each fold family are described. The localization and the amplitude of these variations suggest that the regions presenting large-scale motions should be those tolerant to large insertions or deletions.  相似文献   

16.
Scorpion beta-toxins that affect the activation of mammalian voltage-gated sodium channels (Navs) have been studied extensively, but little is known about their functional surface and mode of interaction with the channel receptor. To enable a molecular approach to this question, we have established a successful expression system for the anti-mammalian scorpion beta-toxin, Css4, whose effects on rat brain Navs have been well characterized. A recombinant toxin, His-Css4, was obtained when fused to a His tag and a thrombin cleavage site and had similar binding affinity for and effect on Na currents of rat brain sodium channels as those of the native toxin isolated from the scorpion venom. Molecular dissection of His-Css4 elucidated a functional surface of 1245 A2 composed of the following: 1) a cluster of residues associated with the alpha-helix, which includes a putative "hot spot" (this cluster is conserved among scorpion beta-toxins and contains their "pharmacophore"); 2) a hydrophobic cluster associated mainly with the beta2 and beta3 strands, which is likely to confer the specificity for mammalian Navs; 3) a single bioactive residue (Trp-58) in the C-tail; and 4) a negatively charged residue (Glu-15) involved in voltage sensor trapping as inferred from our ability to uncouple toxin binding from activity upon its substitution. This study expands our understanding about the mode of action of scorpion beta-toxins and illuminates differences in the functional surfaces that may dictate their specificities for mammalian versus insect sodium channels.  相似文献   

17.
We have determined the solution structure of Cn2, a beta-toxin extracted from the venom of the New World scorpion Centruroides noxius Hoffmann. Cn2 belongs to the family of scorpion toxins that affect the sodium channel activity, and is very toxic to mammals (LD50=0.4 microg/20 g mouse mass). The three-dimensional structure was determined using 1H-1H two-dimensional NMR spectroscopy, torsion angle dynamics, and restrained energy minimization. The final set of 15 structures was calculated from 876 experimental distance constraints and 58 angle constraints. The structures have a global r. m.s.d. of 1.38 A for backbone atoms and 2.21 A for all heavy atoms. The overall fold is similar to that found in the other scorpion toxins acting on sodium channels. It is made of a triple-stranded antiparallel beta-sheet and an alpha-helix, and is stabilized by four disulfide bridges. A cis-proline residue at position 59 induces a kink of the polypeptide chain in the C-terminal region. The hydrophobic core of the protein is made up of residues L5, V6, L51, A55, and by the eight cysteine residues. A hydrophobic patch is defined by the aromatic residues Y4, Y40, Y42, W47 and by V57 on the side of the beta-sheet facing the solvent. A positively charged patch is formed by K8 and K63 on one edge of the molecule in the C-terminal region. Another positively charged spot is represented by the highly exposed K35. The structure of Cn2 is compared with those of other scorpion toxins acting on sodium channels, in particular Aah II and CsE-v3. This is the first structural report of an anti-mammal beta-scorpion toxin and it provides the necessary information for the design of recombinant mutants that can be used to probe structure-function relationships in scorpion toxins affecting sodium channel activity.  相似文献   

18.
Depressant insect-selective neurotoxins derived from scorpion venoms (a) induce in blowfly larvae a short, transient phase of contraction similar to that induced by excitatory neurotoxins followed by a prolonged flaccid paralysis and (b) displace excitatory toxins from their binding sites on insect neuronal membranes. The present study was undertaken in order to examine the basis of these similarities by comparing the primary structures and neuromuscular effects of depressant and excitatory toxins. A new depressant toxin (LqhIT2) was purified from the venom of the Israeli yellow scorpion. The effects of this toxin on a prepupal housefly neuromuscular preparation mimic the effects on the intact animal; i.e., a brief period of repetitive bursts of junction potentials is followed by suppression of their amplitude and finally by a block of neuromuscular transmission. Loose patch clamp recordings indicate that the repetitive activity has a presynaptic origin in the motor nerve and closely resembles the effect of the excitatory toxin AaIT. The final synaptic block is attributed to neuronal membrane depolarization, which results in an increase in spontaneous transmitter release; this effect is not induced by excitatory toxin. The amino acid sequences of three depressant toxins were determined by automatic Edman degradation. The depressant toxins comprise a well-defined family of polypeptides with a high degree of sequence conservation. This group differs considerably in primary structure from the excitatory toxin, with which it shares identical or related binding sites, and from the two groups of scorpion toxins that affect sodium conductance in mammals. The two opposing pharmacological effects of depressant toxins are discussed in light of the above data.  相似文献   

19.
蝎毒素是蝎为防卫的需要而产生的一系列活性短肽.其中蝎昆虫特异性毒素可特异性结合并调控昆虫可兴奋细胞膜上的钠离子通道,是研究离子通道结构与功能的首选探针,并在转基因抗虫植物及生物杀虫剂研究方面具有潜在的应用价值.本文对蝎β型昆虫毒素的结构与功能及其对钠离子通道的作用方式和β毒素的电压传感器捕获(voltage sensor-trapping)模型做一综述,为进一步揭示蝎β毒素的结构与功能的关系和在农作物抗虫领域的应用提供依据.  相似文献   

20.
The effects of purified scorpion toxins from two different species on the kinetics of sodium currents were evaluated in amphibian myelinated nerves under voltage clamp. A toxin from Leiurus quinquestriatus slowed and prevented sodium channel inactivation, exclusively, and a toxin from Centruroides sculpturatus Ewing reduced transient sodium currents during a maintained depolarization, and induced a novel inward current that appeared following repolarization, as previously reported by Cahalan (1975, J. Physiol. [Lond.]. 244:511-534) for the crude scorpion venom. Both of these effects were observed in fibers treated with both of these toxins, and the kinetics of the induced current were modified in a way that showed that the same sodium channels were modified simultaneously by both toxins. Although the toxins can act on different sites, the time course of the action of C. sculpturatus toxin was accelerated in the presence of the L. quinquestriatus toxin, indicating some form of interaction between the two toxin binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号