首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P21 activated kinases (PAKs) are major downstream effectors of rac-related small GTPases that regulate various cellular processes. We have identified the new PAK gene max-2 in a screen for mutants disrupted in UNC-6/netrin-mediated commissural axon guidance. There are three Caenorhabditis elegans PAKs. We find that each C. elegans PAK represents a distinct group previously identified in other species. Here we examine their roles in the postembryonic migration of the P cell neuroblasts and the axon guidance of the ventral cord commissural motoneurons (VCCMNs). We find that the two PAKs, max-2 and pak-1, are redundantly required for P cell migration and function with UNC-73/Trio and the rac GTPases (CED-10 and MIG-2). During axon guidance of the VCCMNs, PAK-1 also acts with the rac GTPases, CED-10 and MIG-2, and is completely redundant with MAX-2. Interestingly, we find that unlike MAX-2 activity during P cell migration, for motoneuron axon guidance max-2 is also required in parallel to this PAK-1 pathway, independent of rac GTPase signaling. Finally, we provide evidence that MAX-2 functions downstream of the UNC-6/netrin receptor UNC-5 during axon repulsion and is an integral part of its signaling.  相似文献   

2.
UNC-51 and UNC-14 are required for the axon guidance of many neurons in Caenorhabditis elegans. UNC-51 is a serine/threonine kinase homologous to yeast Atg1, which is required for autophagy. The binding partner of UNC-51, UNC-14, contains a RUN domain that is predicted to play an important role in multiple Ras-like GTPase signaling pathways. How these molecules function in axon guidance is largely unknown. Here we observed that, in unc-51 and unc-14 mutants, UNC-5, the receptor for axon-guidance protein Netrin/UNC-6, abnormally localized in neuronal cell bodies. By contrast, the localization of many other proteins required for axon guidance was undisturbed. Moreover, UNC-5 localization was normal in animals with mutations in the genes for axon guidance proteins, several motor proteins, vesicle components and autophagy-related proteins. We also found that unc-5 and unc-6 interacted genetically with unc-51 and unc-14 to affect axon guidance, and that UNC-5 co-localized with UNC-51 and UNC-14 in neurons. These results suggest that UNC-51 and UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5, and that UNC-5 uses a unique mechanism for its localization; the functionality of UNC-5 is probably regulated by this localization.  相似文献   

3.
Netrins promote axon outgrowth and turning through DCC/UNC-40 receptors. To characterize Netrin signaling, we generated a gain-of-function UNC-40 molecule, MYR::UNC-40. MYR::UNC-40 causes axon guidance defects, excess axon branching, and excessive axon and cell body outgrowth. These defects are suppressed by loss-of-function mutations in ced-10 (a Rac GTPase), unc-34 (an Enabled homolog), and unc-115 (a putative actin binding protein). ced-10, unc-34, and unc-115 also function in endogenous unc-40 signaling. Our results indicate that Enabled functions in axonal attraction as well as axon repulsion. UNC-40 has two conserved cytoplasmic motifs that mediate distinct downstream pathways: CED-10, UNC-115, and the UNC-40 P2 motif act in one pathway, and UNC-34 and the UNC-40 P1 motif act in the other. Thus, UNC-40 might act as a scaffold to deliver several independent signals to the actin cytoskeleton.  相似文献   

4.
D C Merz  H Zheng  M T Killeen  A Krizus  J G Culotti 《Genetics》2001,158(3):1071-1080
Cell and growth cone migrations along the dorsoventral axis of Caenorhabditis elegans are mediated by the UNC-5 and UNC-40 receptor subtypes for the secreted UNC-6 guidance cue. To characterize UNC-6 receptor function in vivo, we have examined genetic interactions between unc-5 and unc-40 in the migrations of the hermaphrodite distal tip cells. We report that cell migration defects as severe as those associated with a null mutation in unc-6 are produced only by null mutations in both unc-5 and unc-40, indicating that either receptor retains some partial function in the absence of the other. We show that hypomorphic unc-5 alleles exhibit two distinct types of interallelic genetic interactions. In an unc-40 wild-type genetic background, some pairs of hypomorphic unc-5 alleles exhibit a partial allelic complementation. In an unc-40 null background, however, we observed that unc-5 hypomorphs exhibit dominant negative effects. We propose that the UNC-5 and UNC-40 netrin receptors can function to mediate chemorepulsion in DTC migrations either independently or together, and the observed genetic interactions suggest that this flexibility in modes of signaling results from the formation of a variety of oligomeric receptor complexes.  相似文献   

5.
The UNC-6/netrin guidance cue functions in axon guidance in vertebrates and invertebrates, mediating attraction via UNC-40/DCC family receptors and repulsion via by UNC-5 family receptors. The growth cone reads guidance cues and extends lamellipodia and filopodia, actin-based structures that sense the extracellular environment and power the forward motion of the growth cone. We show that UNC-6/netrin, UNC-5 and UNC-40/DCC modulated the extent of growth cone protrusion that correlated with attraction versus repulsion. Loss-of-function unc-5 mutants displayed increased protrusion in repelled growth cones, whereas loss-of-function unc-6 or unc-40 mutants caused decreased protrusion. In contrast to previous studies, our work suggests that the severe guidance defects in unc-5 mutants may be due to latent UNC-40 attractive signaling that steers the growth cone back towards the ventral source of UNC-6. UNC-6/Netrin signaling also controlled polarity of growth cone protrusion and F-actin accumulation that correlated with attraction versus repulsion. However, filopodial dynamics were affected independently of polarity of protrusion, indicating that the extent versus polarity of protrusion are at least in part separate mechanisms. In summary, we show here that growth cone guidance in response to UNC-6/netrin involves a combination of polarized growth cone protrusion as well as a balance between stimulation and inhibition of growth cone (e.g. filopodial) protrusion.  相似文献   

6.
The migration of cells and growth cones is a process that is guided by extracellular cues and requires the controlled remodeling of the extracellular matrix along the migratory path. The ADAM proteins are important regulators of cellular adhesion and recognition because they can combine regulated proteolysis with modulation of cell adhesion. We report that the C. elegans gene unc-71 encodes a unique ADAM with an inactive metalloprotease domain. Loss-of-function mutations in unc-71 cause distinct defects in motor axon guidance and sex myoblast migration. Many unc-71 mutations affect the disintegrin and the cysteine-rich domains, supporting a major function of unc-71 in cell adhesion. UNC-71 appears to be expressed in a selected set of cells. Genetic mosaic analysis and tissue-specific expression studies indicate that unc-71 acts in a cell non-autonomous manner for both motor axon guidance and sex myoblast migration. Finally, double mutant analysis of unc-71 with other axon guidance signaling molecules suggests that UNC-71 probably functions in a combinatorial manner with integrins and UNC-6/netrin to provide distinct axon guidance cues at specific choice points for motoneurons.  相似文献   

7.
The netrin guidance cue, UNC-6, and the netrin receptors, UNC-5 and UNC-40, guide SDQR cell and axon migrations in C. elegans. In wild-type larvae, SDQR migrations are away from ventral UNC-6-expressing cells, suggesting that UNC-6 repels SDQR. In unc-6 null larvae, SDQR migrations are towards the ventral midline, indicating a response to other guidance cues that directs the migrations ventrally. Although ectopic UNC-6 expression dorsal to the SDQR cell body would be predicted to cause ventral SDQR migrations in unc-6 null larvae, in fact, more migrations are directed dorsally, suggesting that SDQR is not always repelled from the dorsal source of UNC-6. UNC-5 is required for dorsal SDQR migrations, but not for the ventral migrations in unc-6 null larvae. UNC-40 appears to moderate both the response to UNC-6 and to the other cues. Our results show that SDQR responds to multiple guidance cues and they suggest that, besides UNC-6, other factors influence whether an UNC-6 responsive cell migrates toward or away from an UNC-6 source in vivo. We propose that multiple signals elicited by the guidance cues are integrated and interpreted by SDQR and that the response to UNC-6 can change depending on the combination of cues encountered during migration. These responses determine the final dorsoventral position of the SDQR cell and axon.  相似文献   

8.
The secreted molecule unc-6/netrin is important for guiding axon projections and cell migrations. unc-5 and unc-40/DCC are identified as receptors for unc-6/netrin. The downstream factors of unc-6 receptors are beginning to be elucidated, and some key factors have been identified in various organisms. Here, we showed that SRC-1 interacts with the cytosolic domain of UNC-5 through its SH2 domain. This interaction also requires the intact kinase activity of SRC-1. Downregulation of src-1 by RNA interference decreases the biological processes initiated by the UNC-5 protein and decreases UNC-5 tyrosine phosphorylation. We also generated a chimeric protein consisting of the extracellular domain and transmembrane domain of UNC-5 and an intracellular domain of SRC-1. This fusion protein is able to partially rescue mutant phenotypes caused by unc-5 but not unc-6, unc-40, and unc-34. Our results support a model in which SRC-1 is required for UNC-5-induced axon repulsion and gonad migration signaling pathways and in which localizing SRC-1 activity to UNC-5 is crucial for proper signal transduction in response to unc-6/netrin.  相似文献   

9.
Hu S  Pawson T  Steven RM 《Genetics》2011,189(1):137-151
Rho-family GTPases play regulatory roles in many fundamental cellular processes. Caenorhabditis elegans UNC-73 RhoGEF isoforms function in axon guidance, cell migration, muscle arm extension, phagocytosis, and neurotransmission by activating either Rac or Rho GTPase subfamilies. Multiple differentially expressed UNC-73 isoforms contain a Rac-specific RhoGEF-1 domain, a Rho-specific RhoGEF-2 domain, or both domains. The UNC-73E RhoGEF-2 isoform is activated by the G-protein subunit Gαq and is required for normal rates of locomotion; however, mechanisms of UNC-73 and Rho pathway regulation of locomotion are not clear. To better define UNC-73 function in the regulation of motility we used cell-specific and inducible promoters to examine the temporal and spatial requirements of UNC-73 RhoGEF-2 isoform function in mutant rescue experiments. We found that UNC-73E acts within peptidergic neurons of mature animals to regulate locomotion rate. Although unc-73 RhoGEF-2 mutants have grossly normal synaptic morphology and weak resistance to the acetylcholinesterase inhibitor aldicarb, they are significantly hypersensitive to the acetylcholine receptor agonist levamisole, indicating alterations in acetylcholine neurotransmitter signaling. Consistent with peptidergic neuron function, unc-73 RhoGEF-2 mutants exhibit a decreased level of neuropeptide release from motor neuron dense core vesicles (DCVs). The unc-73 locomotory phenotype is similar to those of rab-2 and unc-31, genes with distinct roles in the DCV-mediated secretory pathway. We observed that constitutively active Gαs pathway mutations, which compensate for DCV-mediated signaling defects, rescue unc-73 RhoGEF-2 and rab-2 lethargic movement phenotypes. Together, these data suggest UNC-73 RhoGEF-2 isoforms are required for proper neurotransmitter signaling and may function in the DCV-mediated neuromodulatory regulation of locomotion rate.  相似文献   

10.
Over half of the neurons in Caenorhabditis elegans send axons to the nerve ring, a large neuropil in the head of the animal. Genetic screens in animals that express the green fluorescent protein in a subset of sensory neurons identified eight new sax genes that affect the morphology of nerve ring axons. sax-3/robo mutations disrupt axon guidance in the nerve ring, while sax-5, sax-9 and unc-44 disrupt both axon guidance and axon extension. Axon extension and guidance proceed normally in sax-1, sax-2, sax-6, sax-7 and sax-8 mutants, but these animals exhibit later defects in the maintenance of nerve ring structure. The functions of existing guidance genes in nerve ring development were also examined, revealing that SAX-3/Robo acts in parallel to the VAB-1/Eph receptor and the UNC-6/netrin, UNC-40/DCC guidance systems for ventral guidance of axons in the amphid commissure, a major route of axon entry into the nerve ring. In addition, SAX-3/Robo and the VAB-1/Eph receptor both function to prevent aberrant axon crossing at the ventral midline. Together, these genes define pathways required for axon growth, guidance and maintenance during nervous system development.  相似文献   

11.
The nervous system of Caenorhabditis elegans comprises circumferential and longitudinal axon tracts. Netrin UNC-6 is required for the guidance of circumferential axon migrations and is expressed by ventral neuroglia and neurons in temporally and spatially regulated patterns. Migrating axons mediate the UNC-6 signal through the UNC-5 and UNC-40 receptors. It is thought that UNC-6 is secreted and becomes associated with basement membranes and cell surfaces to form gradients that direct circumferentially migrating axons toward or away from the ventral UNC-6 sources. Little is known about the effects of UNC-6 on longitudinally migrating axons. In unc-6, unc-5, and unc-40 null mutants, some longitudinal nerves are dorsally or ventrally misdirected. Furthermore, the organization of axons are disrupted within nerves. We show that cells ectopically expressing UNC-6 can redirect the migrations of some neighboring longitudinal axons, suggesting that the gradients postulated to direct circumferential migration also help specify the dorsoventral positions of these longitudinal nerves. We also manipulated the temporal and spatial expression pattern of UNC-6 by two different means. First, we removed the PVT midline neuron which expresses UNC-6 for a short time during axon outgrowths. Second, we expressed UNC-6 uniformly in the nervous system throughout development. The results suggest that changing UNC-6 expression patterns modify the distribution of the cue by providing new localized sources. This new guidance information is critical for organizing the axons of longitudinal nerves.  相似文献   

12.
BACKGROUND: The cytoplasmic C. elegans protein MIG-10 affects cell migrations and is related to mammalian proteins that bind phospholipids and Ena/VASP actin regulators. In cultured cells, mammalian MIG-10 promotes lamellipodial growth and Ena/VASP proteins induce filopodia. RESULTS: We show here that during neuronal development, mig-10 and the C. elegans Ena/VASP homolog unc-34 cooperate to guide axons toward UNC-6 (netrin) and away from SLT-1 (Slit). The single mutants have relatively mild phenotypes, but mig-10; unc-34 double mutants arrest early in development with severe axon guidance defects. In axons that are guided toward ventral netrin, unc-34 is required for the formation of filopodia and mig-10 increases the number of filopodia. In unc-34 mutants, developing axons that lack filopodia are still guided to netrin through lamellipodial growth. In addition to its role in axon guidance, mig-10 stimulates netrin-dependent axon outgrowth in a process that requires the age-1 phosphoinositide-3 lipid kinase but not unc-34. CONCLUSIONS: mig-10 and unc-34 organize intracellular responses to both attractive and repulsive axon guidance cues. mig-10 and age-1 lipid signaling promote axon outgrowth; unc-34 and to a lesser extent mig-10 promote filopodia formation. Surprisingly, filopodia are largely dispensable for accurate axon guidance.  相似文献   

13.
14.
Model organisms like Caenorhabditis elegans allow the study of growth cone motility and guidance in vivo. We are using circumferential axon guidance in C. elegans to study both the mechanisms of guidance and the interactions between different guidance systems in vivo. A genetic screen has identified suppressors of the specific axon guidance defects caused by ectopic expression of UNC-5, the repulsive receptor for the UNC-6/netrin guidance cue. These mutations identify eight genes whose products are required for the function of UNC-5 in these cells. In principle, the functions of some of these genes may involve unc-73, which encodes a multidomain, cytoplasmic protein that is an activator of the rac and rho GTPases. Loss of UNC-73 causes errors in axon guidance, and it is hypothesized that UNC-73 acts in multiple signaling pathways used by guidance receptors on the growth cone surface to regulate the underlying cytoskeleton. Here we summarize and discuss these recent developments that are advancing our understanding of growth cone signal transduction in vivo.  相似文献   

15.
Netrin is an evolutionarily conserved axon guidance molecule that has both axonal attraction and repulsion activities. In Caenorhabditis elegans, Netrin/UNC-6 is secreted by ventral cells, attracting some axons ventrally and repelling some axons, which extend dorsally. One axon guided by UNC-6 is that of the HSN neuron. The axon guidance process for HSN neurons is complex, consisting of ventral growth, dorsal growth, branching, second ventral growth, fasciculation with ventral nerve cords, and then anterior growth. The vulval precursor cells (VPC) and the PVP and PVQ neurons are required for the HSN axon guidance; however, the molecular mechanisms involved are completely unknown. In this study, we found that the VPC strongly expressed UNC-6 during HSN axon growth. Silencing of UNC-6 expression in only the VPC, using a novel tissue-specific RNAi technique, resulted in abnormal HSN axon guidance. The expression of Netrin/UNC-6 by only the VPC in unc-6 null mutants partially rescued the HSN ventral axon guidance. Furthermore, the expression of Netrin/UNC-6 by the VPC and the ventral nerve cord (VNC) in unc-6 null mutants restored the complex HSN axon guidance. These results suggest that UNC-6 expressed by the VPC and the VNC cooperatively regulates the complex HSN axon guidance.  相似文献   

16.
The mechanisms linking guidance receptors to cytoskeletal dynamics in the growth cone during axon extension remain mysterious. The Rho-family GTPases Rac and CDC-42 are key regulators of growth cone lamellipodia and filopodia formation, yet little is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts. UNC-73/Trio is a well-characterized Rac GTP exchange factor in Caenorhabditis elegans axon pathfinding, yet UNC-73 does not control CED-10/Rac downstream of UNC-6/Netrin in attractive axon guidance. Here we show that C. elegans TIAM-1 is a Rac-specific GEF that links CDC-42 and Rac signaling in lamellipodia and filopodia formation downstream of UNC-40/DCC. We also show that TIAM-1 acts with UNC-40/DCC in axon guidance. Our results indicate that a CDC-42/TIAM-1/Rac GTPase signaling pathway drives lamellipodia and filopodia formation downstream of the UNC-40/DCC guidance receptor, a novel set of interactions between these molecules. Furthermore, we show that TIAM-1 acts with UNC-40/DCC in axon guidance, suggesting that TIAM-1 might regulate growth cone protrusion via Rac GTPases in response to UNC-40/DCC. Our results also suggest that Rac GTPase activity is controlled by different GEFs in distinct axon guidance contexts, explaining how Rac GTPases can specifically control multiple cellular functions.  相似文献   

17.
In 1990, the discovery of three Caenorhabditis elegans genes (unc5, unc6, unc40) involved in pioneer axon guidance and cell migration marked a significant advancement in neuroscience research [Hedgecock EM, Culotti JG, Hall DH. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 1990;4:61-85]. The importance of this molecular guidance system was exemplified in 1994, when the vertebrate orthologue of Unc6, Netrin-1, was discovered to be a key guidance cue for commissural axons projecting toward the ventral midline in the rodent embryonic spinal cord [Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 1994;78:409-424]. Since then, Netrin-1 has been found to be a critical component of embryonic development with functions in axon guidance, cell migration, morphogenesis and angiogenesis. Netrin-1 also plays a role in the adult brain, suggesting that manipulating netrin signals may have novel therapeutic applications.  相似文献   

18.
In Caenorhabditis elegans, unc-33 encodes an orthologue of the vertebrate collapsin response mediator protein (CRMP) family. We previously reported that CRMP-2 accumulated in the distal part of the growing axon of vertebrate neurons and played critical roles in axon elongation. unc-33 mutants show axonal outgrowth defects in several neurons. It has been reported that UNC-33 accumulates in neurites, whereas a missense mutation causes the mislocalization of UNC-33 from neurites to cell body, which suggests that the localization of UNC-33 in neurites is important for axonal outgrowth. However, it is unclear how UNC-33 accumulates in neurites and regulates neuronal development. In this study, to understand the regulatory mechanisms of localization of UNC-33 in neurites, we screened for the mutants that were involved in the localization of UNC-33, and identified three mutants: unc-14 (RUN domain protein), unc-51 (ULK kinase) and unc-116 (kinesin heavy chain). UNC-14 is known to associate with UNC-51. UNC-116 forms a complex with KLC-2 as Kinesin-1, a microtubule-dependent motor complex. We found that UNC-33 interacted with UNC-14 and KLC-2 in vivo. These results suggest that the UNC-14/UNC-51 complex and Kinesin-1 are involved in the localization of UNC-33 in neurites.  相似文献   

19.
Rac GTPases control cell shape by regulating downstream effectors that influence the actin cytoskeleton. UNC-115, a putative actin-binding protein similar to human abLIM/limatin, has previously been implicated in axon pathfinding. We have discovered the role of UNC-115 as a downstream cytoskeletal effector of Rac signaling in axon pathfinding. We show that unc-115 double mutants with ced-10 Rac, mig-2 Rac or unc-73 GEF but not with rac-2/3 Rac displayed synthetic axon pathfinding defects, and that loss of unc-115 function suppressed the formation of ectopic plasma membrane extensions induced by constitutively-active rac-2 in neurons. Furthermore, we show that UNC-115 can bind to actin filaments. Thus, UNC-115 is an actin-binding protein that acts downstream of Rac signaling in axon pathfinding.  相似文献   

20.
The unc-52 gene of Claenorhabditis elegans encodes a homologue of the basement membrane heparan sulfate proteoglycan perlecan. Viable alleles reduce the abundance of UNC-52 in late larval stages and increase the frequency of distal tip cell (DTC) migration defects caused by mutations disrupting the UNC-6/netrin guidance system. These unc-52 alleles do not cause circumferential DTC migration defects in an otherwise wild-type genetic background. The effects of unc-52 mutations on DTC migrations are distinct from effects on myofilament organization and can be partially suppressed by mutations in several genes encoding growth factor-like molecules, including EGL-17/FGF, UNC-129/TGF-beta, DBL-1/TGF-beta, and EGL-20/WNT. We propose that UNC-52 serves dual roles in C. elegans larval development in the maintenance of muscle structure and the regulation of growth factor-like signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号