首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA strand scission by activated bleomycin group antibiotics   总被引:1,自引:0,他引:1  
The bleomycins (BLMs) are a structurally related group of antitumor antibiotics used clinically for the treatment of certain malignancies. The mechanism of action of the BLM is believed to involve DNA strand scission, a process that requires O2 and an appropriate metal ion; the therapeutically relevant metal is probably iron or copper. DNA strand scission by activated Fe X BLM involves oxygenation C-4' of deoxyribose and leads to two sets of products. One set results from scission of the C-3'--C-4' bond of deoxyribose, with concomitant cleavage of the DNA chain. The other set of products consists of free bases and an alkali-labile lesion, the latter of which leads to DNA chain cleavage on subsequent treatment with base. The structures of all of these degradation products have now been established by direct comparison with authentic synthetic samples. Also studied was the activation of BLM with (mono)oxygen surrogates such as iodosobenzene. The chemistry of the activated BLM so formed was remarkably similar to that of activated cytochrome P-450 and structurally related metalloporphyrins, which suggests a mechanistic analogy between the two. Remarkably, both Fe X BLM and Cu X BLM were also shown to be activated by NADPH cytochrome P-450 reductase in a transformation that was dependent on metal ion, O2 and NADPH.  相似文献   

2.
The thiol-activated neocarzinostatin chromophore cleaves duplex oligonucleotides containing the sequence-TGTTTGA-, producing 3'-phosphoglycolate and 3'-phosphate fragments at T, indicating the involvement of 4'- as well as 5'-chemistry at this residue. Substitution of deuterium for hydrogen at the C-4' position of the affected T leads to a kinetic isotope effect (kH/kD) of 4.0 on the formation of the glycolate-ended product, whereas deuterium at C-5' of the same T reveals kH/kD of 1.6 in the formation of the phosphate-ended product. The proportion of the products representing 4'- and 5'-chemistry can be shifted on the basis of isotope selection effects. A second product resulting from 4'-chemistry, the abasic site associated with 4'-hydroxylation, has been identified as an alkali-labile site, and as a pyridazine derivative formed after cleavage by hydrazine. A comparable isotope effect on its production (kH/kD = 3.7) relative to that of 3'-phosphoglycolate production is consistent with a common intermediate, a putative 4'-peroxy radical, in their formation. The formation of both products of 4'-chemistry is oxygen-dependent, and the internal partitioning between them (3'-phosphate or 3'-phosphoglycolate) is influenced by thiols. Moreover, the nitroaromatic radiation sensitizer misonidazole can substitute for dioxygen, yielding 3'-phosphoglycolate and alkali-labile 3'-phosphate ends, indicative of 4'-chemistry. In addition to the internal partitioning of 4'-chemistry, thiols also affect the overall extent of cleavage (4' plus 5') and the relative partitioning between both sites of attack (4' or 5').  相似文献   

3.
The derivatives obtained by per-methylation of unsubstituted 2-amino-2-deoxy-hexitols and of these compounds monosubstituted at C-3. C-4, or C-6, and disubstituted at C-3 and C-6, have been analysed by g.l.c.-m.s. Each derivative can be identified on the basis of retention time and mass spectrum. In methylation analysis, methanolysis gave one derivative of each hexitol, whereas a mixture of products was formed when degradation was effected by acetolysis followed by hydrolysis. An application in the analysis of amino-sugar linkages in alkali-labile O-glycosylic oligosaccharides from rat-brain glycoproteins is described.  相似文献   

4.
The anaerobic reaction of poly(deoxyadenylic-deoxythymidylic acid) with neocarzinostatin activated by the carboxyl radical CO2-, an electron donor generated from gamma-ray radiolysis of nitrous oxide saturated formate buffer, has been characterized. DNA damage includes base release and strand breaks. Few strand breaks are formed prior to alkaline treatment; they bear 3'-phosphoryl termini. In contrast, most (66%) of the base release occurs spontaneously. DNA damage is highly (95%) specific for thymidine sites. Neither DNA-drug covalent adduct nor nucleoside 5'-aldehyde, which are major products in the DNA-nicking reaction initiated by mercaptans and oxygen, is formed in this reaction. Data are presented to show that the CO2(-)-activated neocarzinostatin intermediate is a short-lived free radical able to abstract hydrogen atoms from the C-1' and C-5' positions of deoxyribose. Attack occurs mostly (68%) at the C-1' position, producing a lesion whose properties are consistent with those of (oxidized) apyrimidinic sites.  相似文献   

5.
L S Kappen  C Q Chen  I H Goldberg 《Biochemistry》1988,27(12):4331-4340
Neocarzinostatin chromophore produces alkali-labile, abasic sites at cytidylate residues in AGC sequences in oligonucleotides in their duplex form. Glutathione is the preferred thiol activator of the drug in the formation of these lesions. The phosphodiester linkages on each side of the abasic site are intact, but when treated with alkali, breaks are formed with phosphate moieties at each end. Similar properties are exhibited by the abasic lesions produced at the purine residue to which the C in AGC is base-paired on the complementary strand. The abasic sites at C residues differ from those produced by acid-induced depurination in the much greater lability of the phosphodiester linkages on both sides of the deoxyribose, in the inability of NaBH4 to prevent alkali-induced cleavage, and in the relative resistance to apurinic/apyrimidinic endonucleases. The importance of DNA microstructure in determining attack site specificity in abasic site formation at C residues is shown not only by the requirement for the sequence AGC but also by the findings that substitution of G by I 5' to the C decreases the attack at C, whereas placement of an I opposite the C markedly enhances the reaction. Quantitation of the abstraction of 3H into the drug from C residues in AGC specifically labeled in the deoxyribose at C-5' or C-1',2' suggests that, in contrast to the attack at C-5' in the induction of direct strand breaks at T residues, abasic site formation at C residues may involve attack at C-1'. Each type of lesion may exist on the complementary strands of the same DNA molecule, forming a double-stranded lesion.  相似文献   

6.
The major initial product of riboflavin- and methylene blue-mediated photosensitization of 2'-deoxyguanosine (dG) in oxygen-saturated aqueous solution has previously been identified as 2-amino-5-[(2-deoxy-beta-D-erythro-pentofuranosyl)amino] 4H-imidazol-4-one (dlz). At room temperature in aqueous solution dlz decomposes quantitatively to 2,2-diamino-4-[(2-deoxy-beta-D-erythro- pentofuranosyl)amino]-5(2H)-oxazolone (dZ). The data presented here show that the same guanine photooxidation products are generated following riboflavin- and methylene blue-mediated photosensitization of thymidylyl-(3',5')-2'-deoxyguanosine [d(TpG)]. As observed for the monomers, the initial product, thymidylyl-(3',5')-2-amino-5-[(2-deoxy- beta-D-erythro-pentofuranosyl)amino]-4H-imidazol-4-one [d(Tplz)], decomposes in aqueous solution at room temperature to thymidylyl-(3',5')-2,2-diamino-4- [(2-deoxy-beta-D-erythro-pentofuranosyl)amino]-5(2H)-oxazolone [d(TpZ)]. Both modified dinucleoside monophosphates have been isolated by HPLC and characterized by proton NMR spectrometry, fast atom bombardment mass spectrometry, chemical analyses and enzymatic digestions. Among the chemical and enzymatic properties of these modified dinucleoside monophosphates are: (i) d(Tplz) and d(TpZ) are alkali-labile; (ii) d(Tplz) reacts with methoxyamine, while d(TpZ) is unreactive; (iii) d(Tplz) is digested by snake venom phosphodiesterase, while d(TpZ) is unaffected; (iv) relative to d(TpG), d(TpZ) and d(Tplz) are slowly digested by spleen phosphodiesterase; (v) d(Tplz) and d(TpZ) can be 5'-phosphorylated by T4 polynucleotide kinase. The first observation suggests that dlz and dZ may be responsible for some of the strand breaks detected following hot piperidine treatment of DNA exposed to photosensitizers.  相似文献   

7.
Glutathione-activated neocarzinostatin chromophore (NCS-Chrom) generates bistranded lesions at AGC.GCT sequences in DNA, consisting of an abasic site at the C residue and a strand break at the T residue on the complementary strand, due to hydrogen atom abstraction from C-1' and C-5', respectively. Earlier work showed that 2H from C-5' of T was selectively abstracted by the radical center at C-6 of activated NCS-Chrom, supporting a proposed model of the active-drug/DNA complex. However, since under the conditions used breaks at the T exceeded their inclusion in bistranded lesions, it was not clear what fraction of the hydrogen transfer represented bistranded lesions. Since virtually all abasic sites at the C are part of a bistranded lesions, hydrogen transfer from C-1' of C into the drug should reflect only the bistranded reaction. Accordingly, a self-complementary oligodeoxynucleotide 5'-GCAGCICTGC-3' was synthesized in which the C contained 2H at the C-1' position. In order to eliminate an 2H isotope effect on the transfer and to increase the extent of the bistranded reaction, an I residue was substituted for the G opposite the C residue. Sequencing gel electrophoretic analysis revealed that under one-hit kinetics, 37% of the damage reaction was associated with abasic site (alkali-labile break) formation at the C residue and 48% with direct strand breaks at the T residue. Thus, 74% of the damage involved a bistranded lesion. 1H NMR spectroscopic analysis of the reacted chromophore showed that 2H had been selectively transferred into the C-2 position to the extent of approximately 22%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Thiol-activated neocarzinostatin chromophore abstracts tritium from the 5', but not from the 1' or 2' positions of deoxyribose in DNA and incorporates it into a stable, non-exchangeable form. The abstracted tritium remains covalently associated with the chromophore or its degradation product after treatment with acid or alkali, respectively. Drug activation and the consequent hydrogen abstraction reaction, presumably generating a carbon-centered radical at C-5', do not require molecular oxygen but have a dose-dependent relation with thiol. Under aerobic conditions, where base release and DNA strand breaks with nucleoside 5'-aldehyde at the 5'-ends are produced, hydrogen abstraction from C-5' parallels these parameters of DNA damage. It is possible to formulate a reaction scheme in which the carbon- centered radical at C-5' is an intermediate in the formation of the various DNA damage products found under both aerobic and anaerobic conditions.  相似文献   

9.
Reaction of a 25 bp oligonucleotide with the high valent chromium complex, bis(2-ethyl-2-hydroxybutyrato)oxochromate(V) (Cr(V)-EHBA) produced both Frank- and alkali-labile strand breaks that were sequence-neutral. Frank strand break formation was found to be O2-dependent while formation of alkali-labile strand breaks were O2-independent. Reaction of Cr(V)-EHBA with the 5'-32P-labeled oligomer under oxygenated conditions formed the modified 3'-terminus, 3'-phosphoglycolate, as well as the 3'-phosphate terminus. Formation of the 3'-phosphoglycolate termini, and the O2 dependence of the reactions were consistent with a mechanism involving abstraction of the C4' hydrogen atom from the deoxyribose moiety of DNA. Identical reactions using the 3'-32P-labeled oligomer yielded only 5'-phosphate termini as assigned by co-migration with Maxam-Gilbert markers. Analogous cleavage profiles and modified termini were observed for the reaction of Cr(V)-EHBA and DNA in the presence of hydrogen peroxide. With the addition of hydrogen peroxide, the DNA cleavage reactions were O2-independent and the level of DNA cleavage was enhanced over that observed with Cr(V)-EHBA alone. These findings suggest an oxidation mechanism whereby a reductive intermediate of the carcinogen chromate, Cr(V), can cause DNA damage that mimics oxygen radical DNA damaging pathways.  相似文献   

10.
o,o'-Diphenyleneiodonium cations (DPI) convert relatively harmless radiation-produced electrons into efficient DNA cleaving agents. The cleavage products are unaltered DNA bases, 5-methylenefuranone (5-MF), and a complete set of 3' and 5'-phosphorylated DNA fragments. The production of alkali-labile sites is a minor factor in the process. Based on the production of 5-MF, it is concluded that DNA cleavage by DPI cations involves (but may not be limited to) the C1' chemistry. The loss of 3-aminoDPI (ADPI) cations bound to highly polymerized calf thymus DNA appears to be due to a short-chain reaction with an apparent length of up to 2.1 ADPI cations consumed for each radiation-produced electron. The suggested chain reaction mechanism includes the one-electron oxidation of DNA radicals (including the C1' sugar radical) by ADPI cations bound to the same duplex. The yields of DNA loss in complexes formed by ADPI with short synthetic duplexes indicate that there is more than a 60% probability of DNA damage after one-electron reduction of ADPI.  相似文献   

11.
T4 RNA ligase was used to construct a deoxypentanucleotide containing a single 8-hydroxyguanine (7-hydro-8-oxoguanine; G8-OH) residue, which is one of the putatively mutagenic DNA adducts produced by oxidants and ionizing radiation. The pentamer d(GCTAG8-OH)p was prepared by the ligation of a chemically synthesized acceptor molecule, d(GCTA), to an adducted donor, 8-hydroxy-2'-deoxyguanosine 5',3'-bisphosphate. The acceptor was efficiently converted to the reaction product (greater than 95%), and the final product yield was 50%. Following 3'-dephosphorylation, the pentamer was characterized by UV spectroscopy, by high-pressure liquid chromatography, and by gas chromatography-mass spectrometry of the nucleosides released by enzymatic hydrolysis. Both d(GCTAG8-OH) and an unmodified control were 5'-phosphorylated by using [gamma -32P]ATP and incorporated covalently by DNA ligase into a five-base gap at a unique NheI restriction site in the otherwise duplex genome of an M13mp19 derivative. The ligation product contained G8-OH at the 3' residue of an in-frame amber codon (5'-TAG-3') (genome position 6276) of the phage lacZ alpha gene. The adduct was part of a nonsense codon in a unique restriction site in order to facilitate the identification and selection of mutants generated by the replication of the modified genome in Escherichia coli. Both control and adducted pentamers ligated into the genome at 50% of the maximum theoretical efficiency, and nearly all (approximately 90%) of the site-specifically adducted products possessed pentanucleotides that were covalently linked at both 5' and 3' termini. The G8-OH lesion in the NheI site inhibited the cleavage of the site by a 200-fold excess of NheI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The (6-4) photoproduct formed by ultraviolet light is known as an alkali-labile DNA lesion. Strand breaks occur at (6-4) photoproducts when UV-irradiated DNA is treated with hot alkali. We have analyzed the degradation reaction of this photoproduct under alkaline conditions using synthetic oligonucleotides. A tetramer, d(GT(6-4)TC), was prepared, and its degradation in 50 mm KOH at 60 degrees C was monitored by high performance liquid chromatography. A single peak with a UV absorption spectrum similar to that of the starting material was detected after the reaction, and this compound was regarded as an intermediate before the strand break. The formation of this intermediate was compared with intermediates from the degradation of other alkali-labile lesions such as the abasic site, thymine glycol, and 5,6-dihydrothymine. The results strongly suggested that the first step of the alkali degradation of the (6-4) photoproduct was the hydrolysis between the N3 and C4 positions of the 5'-pyrimidine component. Analyses by NMR spectroscopy and mass spectrometry supported the chemical structure of this product. Assays of the complex formation with XPC.HR23B and the translesion synthesis by DNA polymerase eta revealed that the biochemical properties are indistinguishable between the intact and hydrolyzed photoproducts.  相似文献   

13.
A di-(carboxamidomethyl) derivative of molybdopterin, the organic component of the molybdenum cofactor, has been prepared under conditions favoring retention of all of the structural features of the molecule. The specific radioactivity of [1-14C]iodoacetamide incorporated relative to the amount of phosphate indicated two alkylation sites per pterin. Energy-dispersive x-ray analysis of the derivative showed the presence of 2 sulfurs in the derivative. An exact mass corresponding to the molecular formula C14H18N7O5S2 was obtained for the MH+ ion of the alkylated, dephosphorylated compound by fast atom bombardment mass spectroscopy. 1H NMR spectra of the phosphorylated and dephosphorylated forms of alkylated molybdopterin, in conjunction with the other data, have provided strong corroboration of the validity of the proposed structure of molybdopterin (Johnson, J. L., and Rajagopalan, K. V. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 6856-6860) as a 6-alkylpterin with a 4-carbon side chain containing an enedithiol on C-1' and C-2', a secondary alcohol on C-3', and a phosphorylated primary alcohol on C-4'. As isolated, the di-(carboxamido-methyl)molybdopterin was found to be a 5,6,7,8-tetrahydropterin.  相似文献   

14.
1. The biosynthesis of streptomycin in Streptomyces griseus has been studied by adding d-[3,4-(14)C(2)]glucose or d-[1,3-(14)C(2)]glucose to the growth medium and degrading the streptomycin produced. 2. The results suggest that the C-3' branch carbon atom of l-streptose arises from C-3 of d-glucose. 3. The mechanism of biosynthesis of streptose from glucose is discussed. It probably involves an intramolecular rearrangement of a 6-deoxy-4-oxyhexose derivative, and it is suggested that the nucleoside diphosphate sugar derivative hitherto recognized as an intermediate in the biosynthesis of l-rhamnose might participate in such a rearrangement.  相似文献   

15.
Netropsin is bound to the DNA decamer d(CCCCCIIIII)2, the C-4 bromo derivative d(CCCBr5CCIIIII)2and the C-2 bromo derivative d(CBr5CCCCIIIII)2in a novel 2:1 mode. Complexes of the native decamer and the C-4 bromo derivative are isomorphous, space group P1, unit cell dimensions a = 32.56 A (32.66), b = 32.59 A (32.77), c = 37.64 A (37.71), alpha = 86.30 degrees (86.01 degrees), beta = 84.50 degrees (84.37 degrees), gamma = 68.58 degrees (68.90 degrees) with two independent molecules (A and B) in the asymmetric unit (values in parentheses are for the derivative). The C-2 bromo derivative is hexagonal P61, unit cell dimensions a = b = 32.13 A, c = 143.92, gamma = 120 degrees with one molecule in the asymmetric unit. The structures were solved by the molecular replacement method. The novelty of the structures is that there are two netropsins bound end-to-end in the minor groove of each B-DNA decamer which has nearly a complete turn. The netropsins are held by hydrogen bonding interactions to the base atoms and by sandwiching van der Waal's interactions from the sugar-phosphate backbones of the double helix similar to every other drug.DNA complex. Each netropsin molecule spans approximately 5 bp. The netropsins refined with their guanidinium heads facing each other at the center, although an orientational disorder for the netropsins cannot be excluded. The amidinium ends stretch out toward the junctions and bind to the adjacent duplexes in the columns of stacked symmetry-related complexes. Both cationic ends of netropsin are bridged by water molecules in one of the independent molecules (molecule A) of the triclinic structures and also the hexagonal structure to form pseudo-continuous drug.decamer helices.  相似文献   

16.
The conformation and dynamics of the deoxyribose rings of a (nogalamycin)2-d(5'-GCATGC)2 complex have been determined from an analysis of 1H-1H vicinal coupling constants and sums of coupling constants (J1'-2',J1'-2",epsilon 1', epsilon 2' and epsilon 2") measured from one-dimensional n.m.r. spectra and from H-1'-H-2' and H-1'-H-2" cross-peaks in high-resolution phase-sensitive two-dimensional correlation spectroscopy (COSY) and double-quantum-filtered correlation spectroscopy (DQF-COSY) experiments. The value of J3'-4' has also been estimated from the magnitude of H-3'-H-4' cross-peaks in DQF-COSY spectra and H-1'-H-4' coherence transfer cross-peaks in two-dimensional homonuclear Hartman-Hahn spectroscopy (HOHAHA) spectra. The data were analysed, in terms of a dynamic equilibrium between North (C-3'-endo) and South (C-2'-endo) conformers, by using the graphical-analysis methods described by Rinkel & Altona [(1987) J. Biomol. Struct. Dyn. 4,621-649]. The data reveal that the sugars of the 2C-5G and 3A-4T base-pairs, which form the drug-intercalation site, have strikingly different properties. The deoxyribose rings of the 2C-5G base-pair are best described in terms of an equilibrium heavily weighted in favour of the C-2'-endo geometry (greater than 95% 'S'), with a phase angle, P, lying in the range 170-175 degrees and amplitude of pucker between 35 and 40 degrees, as typically found for B-DNA. For the deoxyribose rings of the 3A-4T base-pair, however, the analysis shows that, for 3A, the C-2'-endo and C3'-endo conformers are equally populated, whereas a more limited data set for the 4T nucleotide restricts the equilibrium to within 65-75% C-2'-endo. The deoxyribose rings of the 1G-6C base-pair have populations of 70-80% C-2'-endo, typical of nucleotides at the ends of a duplex. Although drug-base-pair stacking interactions are an important determinant of the enhanced duplex stability of the complex [Searle, Hall, Denny, & Wakelin (1988) Biochemistry 27, 4340-4349], the current findings make it clear that the same interactions can be associated with considerable variations in the degree of local structural dynamics at the level of the sugar puckers.  相似文献   

17.
A number of N6-substituted 9-[3-(phosphonomethoxy)propyl]adenine derivatives having hydroxymethyl at C-1' position were prepared from the appropriate 6-chloroadenine derivative. The syntheses of the corresponding prodrugs of these compounds are also reported. These compounds showed poor activity against HCV in replicon assay.  相似文献   

18.
Characterization of OH-induced free radicals using 3'-UMP and poly(U) was performed by a method combining spin-trapping and radical chromatography. A N2O-saturated aqueous solution containing 3'-UMP and 2-methyl-2-nitrosopropane as a spin-trap was X-irradiated. The spin adducts generated by the reactions of OH radicals with 3'-UMP were separated by paired-ion HPLC and the separated spin adducts were identified by ESR spectroscopy. In the case of poly(U), the spin adducts were digested to oligonucleotides with RNase A and then separated and identified in the same manner as 3'-UMP. The free radicals observed for poly(U) were identical to those for 3'-UMP. The 5-yl radical and the 6-yl radical were identified as precursors of various oxidized products of the base moiety, and the 4'-yl radical and 5'-yl radical, formed by H-abstraction at the C-4' and C-5' positions of the sugar moieties, respectively, were identified as precursors of strand breaks. The 1'-yl radical, produced by H-abstraction at the C-1' position of the sugar moiety, was also identified. From the similarity of the free radicals of 3'-UMP and poly(U), it is suggested that the reactivities of OH radicals with nucleotides are identical to those in polynucleotides.  相似文献   

19.
UV light-induced DNA lesions block the normal replication machinery. Eukaryotic cells possess DNA polymerase eta (Poleta), which has the ability to replicate past a cis-syn thymine-thymine (TT) dimer efficiently and accurately, and mutations in human Poleta result in the cancer-prone syndrome, the variant form of xeroderma pigmentosum. Here, we test Poleta for its ability to bypass a (6-4) TT lesion which distorts the DNA helix to a much greater extent than a cis-syn TT dimer. Opposite the 3' T of a (6-4) TT photoproduct, both yeast and human Poleta preferentially insert a G residue, but they are unable to extend from the inserted nucleotide. DNA Polzeta, essential for UV induced mutagenesis, efficiently extends from the G residue inserted opposite the 3' T of the (6-4) TT lesion by Poleta, and Polzeta inserts the correct nucleotide A opposite the 5' T of the lesion. Thus, the efficient bypass of the (6-4) TT photoproduct is achieved by the combined action of Poleta and Polzeta, wherein Poleta inserts a nucleotide opposite the 3' T of the lesion and Polzeta extends from it. These biochemical observations are in concert with genetic studies in yeast indicating that mutations occur predominantly at the 3' T of the (6-4) TT photoproduct and that these mutations frequently exhibit a 3' T-->C change that would result from the insertion of a G opposite the 3' T of the (6-4) TT lesion.  相似文献   

20.
The spatial structure of duplex (Phn-NH(CH2)2NH)pd(CCAAACA).pd(TGTTTGGC) having a N-(2-oxyethyl)-phenazinium residue covalently linked with the 5'-terminal phosphate of the heptanucleotide was studied by means of one- and two-dimensional 1H-NMR spectroscopy. The resonances of phenazinium protons, ethylenediamine linker protons, as well as, oligonucleotide H5/H6/H8/CH3 base protons and H1',H2'a, H2'b, H3', H4' deoxyribose protons have been assigned by means of 1H-COSY, 1H-NOESY and 1H-13C-COSY. The presence of the phenazine residue in duplex causes an additional imino proton signal of the terminal (G-7).(C-1) base pair, suggesting a higher stability of the duplex (Phn-NH(CH2)2NH)pd(CCAAACA).pd(TGTTTGGC) as compared to the unmodified duplex pd(CCAAACA).pd(TGTTTGGC). Analysis of NOE interactions between protons of the dye and the oligonucleotides show the phenazinium polycyclic system to intercalate between G-7 and C-8 residues of the octanucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号