共查询到20条相似文献,搜索用时 15 毫秒
1.
The calcium-depleted form of alpha-lactalbumin (alpha-LA) at neutral pH can be induced to adopt a partly folded state or molten globule upon moderate heating, by dissolving the protein in aqueous TFE or by adding oleic acid. This last folding variant of the protein, named HAMLET, can induce apoptosis in tumor cells. The aim of the present work was to unravel from circular dichroism (CD) measurements and proteolysis experiments structural features of the molten globule of apo-alpha-LA at neutral pH. CD spectra revealed that the molten globule of apo-alpha-LA can be obtained upon mild heating at 45 degrees C, as well as at room temperature in the presence of 15% TFE or by adding to the protein solution 7.5 equivalents of oleic acid. Under these various conditions the far- and near-UV CD spectra of apo-alpha-LA are essentially identical to those of the most studied molten globule of alpha-LA at pH 2.0 (A-state). Proteolysis of the 123-residue chain of apo-alpha-LA by proteinase K at 4 degrees C occurs slowly as an all-or-none process leading to small peptides only. At 37 degrees C, proteinase K preferentially cleaves apo-alpha-LA at peptide bonds Ser34-Gly35, Gln39-Ala40, Gln43-Asn44, Phe53-Gln54, and Asn56-Asn57. All these peptide bonds are located at level of the beta-subdomain of the protein (chain region 34-57). Similar sites of preferential cleavage have been observed with the TFE- and oleic acid-induced molten globule of apo-alpha-LA. A protein species given by the N-terminal fragment 1-34 linked via the four disulfide bridges to the C-terminal fragment 54-123 or 57-123 can be isolated from the proteolytic mixture. The results of this study indicate that the same molten globule state of apo-alpha-LA can be obtained at neutral pH under mildly denaturing conditions, as indicated by using a classical spectroscopic technique such as CD and a simple biochemical approach as limited proteolysis. We conclude that the molten globule of alpha-LA maintains a native-like tertiary fold characterized by a rather well-structured alpha-domain and a disordered chain region encompassing the beta-subdomain 34-57 of the protein. 相似文献
2.
Limited proteolysis of bovine alpha-lactalbumin: isolation and characterization of protein domains 下载免费PDF全文
Polverino de Laureto P Scaramella E Frigo M Wondrich FG De Filippis V Zambonin M Fontana A 《Protein science : a publication of the Protein Society》1999,8(11):2290-2303
The partly folded states of alpha-lactalbumin (alpha-LA) exposed to acid solution at pH 2.0 (A-state) or at neutral pH upon EDTA-mediated removal of the single protein-bound calcium ion (apo form) have been probed by limited proteolysis experiments. These states are nowadays commonly considered to be molten globules and thus protein-folding intermediates. Pepsin was used for proteolysis at acid pH, while proteinase K and chymotrypsin at neutral pH. The expectations were that these proteolytic probes would detect sites and/or chain regions in the partly folded states of alpha-LA sufficiently dynamic, or even unfolded, capable of binding and adaptation to the specific stereochemistry of the protease's active site. A time-course analysis of the proteolytic events revealed that the fast, initial proteolytic cuts of the 123-residue chain of alpha-LA in its A-state or apo form by the three proteases occur at the same chain region 39-54, the actual site(s) of cleavage depending upon the protease employed. This region in native alpha-LA encompasses the beta-sheets of the protein. Subsequent cleavages occur mostly at chain regions 31-35 and 95-105. Four fragment species of alpha-LA have been isolated by reverse-phase high-performance liquid chromatography, and their conformational properties examined by circular dichroism and fluorescence emission spectroscopy. The single chain fragment 53-103, containing all the binding sites for calcium in native alpha-LA and cross-linked by two disulfide bridges, maintains in aqueous buffer and in the presence of calcium ions a folded structure characterized by the same content of alpha-helix of the corresponding chain segment in native alpha-LA. Evidence for some structure was also obtained for the two-chain species 1-40 and 104-123, as well as 1-31 and 105-123, both systems being covalently linked by two disulfide bonds. In contrast, the protein species given by fragment 1-34 connected to fragment 54-123 or 57-123 via four disulfide bridges adopts in solution a folded structure with the helical content expected for a native-like conformation. Of interest, the proteolytic fragment species herewith isolated correspond to the structural domains and subdomains of alpha-LA that can be identified by computational analysis of the three-dimensional structure of native alpha-LA (Siddiqui AS, Barton GI, 1995, Protein Sci 4:872-884). The fast, initial cleavages at the level of the beta-sheet region of native alpha-LA indicate that this region is highly mobile or even unfolded in the alpha-LA molten globule(s), while the rest of the protein chain maintains sufficient structure and rigidity to prevent extensive proteolysis. The subsequent cleavages at chain segment 95-105 indicate that also this region is somewhat mobile in the A-state or apo form of the protein. It is concluded that the overall domain topology of native alpha-LA is maintained in acid or at neutral pH upon calcium depletion. Moreover, the molecular properties of the partly folded states of alpha-LA deduced here from proteolysis experiments do correlate with those derived from previous NMR and other physicochemical measurements. 相似文献
3.
Polverino de Laureto P Taddei N Frare E Capanni C Costantini S Zurdo J Chiti F Dobson CM Fontana A 《Journal of molecular biology》2003,334(1):129-141
The SH3 domains are small protein modules of 60-85 amino acid residues that are found in many proteins involved in intracellular signal transduction. The SH3 domain of the p85alpha subunit of bovine phosphatidylinositol 3'-kinase (PI3-SH3) under acidic solution adopts a compact denatured state from which amyloid fibrils are readily formed. This aggregation process has been found to be modulated substantially by solution conditions. Here, we have analyzed the conformational features of the native and acid denatured states of PI3-SH3 by limited proteolysis experiments using proteinase K and pepsin, respectively. Moreover, we have analyzed the propensity of PI3-SH3 to be hydrolyzed by pepsin at different stages in the process of aggregation and amyloid formation at pH 1.2 and 2.0 and compared the sites of proteolysis under these conditions with the conformational features of both native and aggregated PI3-SH3. The results demonstrate that the denatured state of PI3-SH3 formed at low pH is relatively resistant to proteolysis, indicating that it is partially folded. The long loop connecting beta-strands b and c in the native protein is the region in this structure most susceptible to proteolysis. Remarkably, aggregates of PI3-SH3 that are formed initially from this denatured state in acid solution display enhanced susceptibility to proteolysis of the long loop, suggesting that the protein becomes more unfolded in the early stages of aggregation. By contrast, the more defined amyloid fibrils that are formed over longer periods of time are completely resistant to proteolysis. We suggest that the protein aggregates formed initially are relatively dynamic species that are able readily to reorganize their interactions to enable formation of very well ordered fibrillar structures. In addition, the disordered and non-native character of the polypeptide chains in the early aggregates could be important in determining the high cytotoxicity that has been revealed in previous studies of these species. 相似文献
4.
A partly folded state of hen egg-white lysozyme has been characterized in 50% DMSO. Low concentrations of DMSO (<10%) have little effect on the overall folded conformation of lysozyme as seen from 1H NMR chemical shift dispersion. At increasing DMSO concentrations (>10%) a cooperative transition of the structure to a new, partially folded state is observed. This transition is essentially complete by ∼50% DMSO. NMR studies show an overall decrease in chemical shift dispersion with marked broadening of many resonances. A substantial number of backbone and side chain–side chain NOEs suggests the presence of secondary and tertiary interactions in the intermediate state. Tertiary organization of the aromatic residues is also demonstrated by enhanced near-UV circular dichroism and limited exposure of tryptophans as monitored by iodide quenching of fluorescence. The intermediate state exhibits enhanced binding to hydrophobic dyes. Further, the structural transition from this state to a largely unfolded conformation is cooperative. H/D exchange rates of several amide protons and four indole protons of tryptophans (W28, W108, W111, and W123), measured by refolding from 50% DMSO at different time intervals reveal that protection factors are high for the helical domain, whereas NH groups in the triple stranded antiparallel β-sheet domain are largely solvent-exposed. An ordered hydrophobic core in the intermediate state comprising of helix A, helix B, and helix D is consistent with the high protection factors observed. The structured intermediate in 50% DMSO resembles the early kinetic intermediate observed in the refolding of hen egg white lysozyme, as well as a molten globule state of equine lysozyme at low pH. The results demonstrate the potential use of nonaqueous structure perturbing solvents like DMSO to stabilize partially folded conformations of proteins. Proteins 29:492–507, 1997. © 1997 Wiley-Liss, Inc. 相似文献
5.
Thermodynamics of melittin tetramerization determined by circular dichroism and implications for protein folding. 下载免费PDF全文
The tetramerization of melittin, a 26-amino acid peptide from Apis mellifera bee venom, has been studied as a model for protein folding. Melittin converts from a monomeric random coil to an alpha-helical tetramer as the pH is raised from 4.0 to 9.5, as ionic strength is increased, as temperature is raised or lowered from about 37 degrees C, or as phosphate is added. The thermodynamics of this tetramerization (termed "folding") are explored using circular dichroism. The melittin tetramer has two pKa values of 7.5 and 8.5 corresponding to protonation of the N-terminus and Lys 23, respectively. pKa values calculated with the program DelPhi (Gilson, M.K., Sharp, K.A., & Honig, B.H., 1987, J. Comp. Chem. 9, 327-335; Gilson, M.K. & Honig, B.H., 1988a, Proteins 3, 32-52; Gilson, M.K. & Honig, B.H., 1988b, Proteins 4, 7-18) agree with experimental titration data. Greater electrostatic repulsion of these protonated groups destabilizes the tetramer by 3.6 kcal/mol at pH 4.0 compared to pH 9.5. Increasing the concentration of NaCl in the solution from 0 to 0.5 M stabilizes the tetramer by 5-6 kcal/mol at pH 4.0. The effect of NaCl is modeled with a ligand-binding approach. The melittin tetramer is found to have a temperature of maximum stability ranging from 35.5 to 43 degrees C depending on the pH, unfolding above and below that temperature. delta Cp0 for folding ranges from -0.085 to -0.102 cal g-1 K-1, comparable to that of other small globular proteins (Privalov, P.L., 1979, Adv. Protein Chem. 33, 167-241). delta H0 and delta S0 are found to decrease with temperature, presumably due to the hydrophobic effect (Kauzmann, W., 1959, Adv. Protein Chem. 14, 1-63). Phosphate is found to perturb the equilibrium substantially with a maximal effect at 150 mM, stabilizing the tetramer at pH 7.4 and 25 degrees C by 4.6 kcal/mol. The enthalpy change due to addition of phosphate (-7.5 kcal/mol at 25 degrees C) can be accounted for by simple dielectric screening. Both circular dichroism and crystallographic results suggest that phosphate may bind Lys 23 at the ends of the elongated tetramer. These detailed measurements give insight into the relative importance of various forces for the stability of melittin in the folded form and may provide an experimental standard for future tests of computational energetics on this simple protein system. 相似文献
6.
Comparison of protein fragments identified by limited proteolysis and by computational cutting of proteins 下载免费PDF全文
Tsai CJ Polverino de Laureto P Fontana A Nussinov R 《Protein science : a publication of the Protein Society》2002,11(7):1753-1770
Here we present a comparison between protein fragments produced by limited proteolysis and those identified by computational cutting based on the building block folding model. The principles upon which the two methods are based are different. Limited proteolysis of natively folded proteins occurs at flexible sites and never at the level of chain segments of regular secondary structure such as alpha-helices. Therefore, the targets for limited proteolysis are locally unfolded regions. In contrast, the computational cutting algorithm considers the compactness of the fragments, their nonpolar buried surface area, and their isolatedness, that is, the surface area which was buried prior to the cutting and becomes exposed subsequently. Despite the different criteria, there is an overall correspondence between sites or regions of limited proteolysis with those identified by computational cutting. The computational cutting method has been applied to several model proteins for which detailed limited proteolysis data are available, namely apomyoglobin, cytochrome c, ribonuclease A, alpha-lactalbumin, and thermolysin. As expected, more cuts are obtained computationally than experimentally and the agreement is better when a number of proteolytic enzymes are used. For example, cytochrome c is cleaved by thermolysin at 56-57, 45-46, and at 80-81, and by proteinase K at 48-49 and 50-51. Incubation of the noncovalent and native-like complex of cytochrome c fragments 1-56 and 57-104 with proteinase K yielded the gapped protein species 1-48/57-104 and finally 1-40/57-104. Computational cutting of cytochrome c reproduced the major experimental observations, with cuts at 47, 64-65 or 65-66 and 80-81 and an unstable 32-47 region not assigned to any building block. The next step, not addressed in this work, is to probe the ability of the generated fragments to fold independently. Since both the computational algorithm and limited proteolysis attempt to dissect the protein folding problem, the general agreement between the two procedures is gratifying. This consistency allows us to propose the use of limited proteolysis to produce protein fragments that can adopt an independent folding and, therefore, to study folding intermediates. The results of the present study appear to validate the building block folding model and are in line with the proposal that protein folding is a hierarchical process, where parts constituting local minima of energy fold first, with their subsequent association and mutual stabilization to finally yield the global fold. 相似文献
7.
Slow-folding kinetics of ribonuclease-A by volume change and circular dichroism: evidence for two independent reactions. 下载免费PDF全文
The slow refolding of guanidine-HCl-denatured ribonuclease-A was studied by volume change and by kinetic CD at 222 and 276 nm. Dilatometric measurements revealed that on refolding there is a fast volume change of +232 mL/mol of protein. This is followed by a very slow nonexponential change that takes about 25 min to reach equilibrium. By adding varying amounts of (NH4)2SO4, the slow volume change curve was resolved into 2 concurrent reactions. The faster of the 2 slow events entails a negative volume change of -64 mL/mol of protein and appears to arise from proline isomerization. The slower process, attended by a positive change of +53 mL/mol of protein, has properties consistent with the "XY" reaction of Lin and Brands (1983, Biochemistry 22:563-573). This reaction is so named because the conformational nature of neither its initial (Y) nor its final state (X) is known; the transition is characterized solely by its absorbance and fluorescence kinetics. These are the first direct physical measures attributable to the "XY" process. The early formation of a compact structure in the event responsible for the rapid +232-mL/mol volume change, however, is consistent with the sequential model of folding (Cook KH, Schmid FX, Baldwin RL, 1979, Proc Natl Acad Sci USA 76:6157-6161; Kim PS, Baldwin RL, 1980, Biochemistry 19:6124-6129). The usefulness of volume change measurements as a method of detecting structural rearrangements was confirmed by finding agreement between time constants obtained from parallel volume change and kinetic CD experiments. The measured volume changes arise from both changes in hydration and changes in the packing of atoms in the interior of the protein. 相似文献
8.
Hexafluoroacetone hydrate as a structure modifier in proteins: characterization of a molten globule state of hen egg-white lysozyme. 下载免费PDF全文
S. Bhattacharjya P. Balaram 《Protein science : a publication of the Protein Society》1997,6(5):1065-1073
A molten globule-like state of hen egg-white lysozyme has been characterized in 25% aqueous hexafluoroacetone hydrate (HFA) by CD, fluorescence, NMR, and H/D exchange experiments. The far UV CD spectra of lysozyme in 25% HFA supports retention of native-like secondary structure while the loss of near UV CD bands are indicative of the overall collapse of the tertiary structure. The intermediate state in 25% HFA exhibits an enhanced affinity towards the hydrophobic dye, ANS, and a native-like tryptophan fluorescence quenching. 1-D NMR spectra indicates loss of native-like tertiary fold as evident from the absence of ring current-shifted 1H resonances. CD, fluorescence, and NMR suggest that the transition from the native state to a molten globule state in 25% HFA is a cooperative process. A second structural transition from this compact molten globule-like state to an "open" helical state is observed at higher concentrations of HFA (> or = 50%). This transition is characterized by a dramatic loss of ANS binding with a concomitant increase in far UV CD bands. The thermal unfolding of the molten globule state in 25% HFA is sharply cooperative, indicating a predominant role of side-chain-side-chain interactions in the stability of the partially folded state. H/D exchange experiments yield higher protection factors for many of the backbone amide protons from the four alpha-helices along with the C-terminal 3(10) helix, whereas little or no protection is observed for most of the amide protons from the triple-stranded antiparallel beta-sheet domain. This equilibrium molten globule-like state of lysozyme in 25% HFA is remarkably similar to the molten globule state observed for alpha-lactalbumin and also with the molten globule state transiently observed in the kinetic refolding experiments of hen lysozyme. These results suggest that HFA may prove generally useful as a structure modifier in proteins. 相似文献
9.
Equilibrium unfolding of Escherichia coli ribonuclease H: characterization of a partially folded state. 总被引:4,自引:3,他引:1 下载免费PDF全文
J. M. Dabora S. Marqusee 《Protein science : a publication of the Protein Society》1994,3(9):1401-1408
We have examined the equilibrium unfolding of Escherichia coli ribonuclease HI (RNase H), a member of a family of enzymes that cleaves RNA from RNA:DNA hybrids. A completely synthetic gene was constructed that expresses a variant of the wild-type sequence with all 3 cysteines replaced with alanine. The resulting recombinant protein is active and folds reversibly. Denaturation studies monitored by circular dichroism and tryptophan fluorescence yield coincident curves that suggest the equilibrium unfolding reaction is a 2-state process. Acid denaturation, however, reveals a cooperative transition at approximately pH 1.8 to a partially folded state. This acid state can be further denatured in a reversible manner by the addition of heat or urea as monitored by either CD or tryptophan fluorescence. Analytical ultracentrifugation studies indicate that the acid state of RNase H is both compact and monomeric. Although compact, the acid state does not resemble the native protein: the acid state displays a near-UV CD spectrum similar to the unfolded state and binds to and enhances the fluorescence of the dye 1-anilinonaphthalene, 8-sulfonate much more than either the native or unfolded states. Therefore, the acid state of E. coli RNase H has the characteristics of a molten globule: it retains a high degree of secondary structure, remains compact, yet does not appear to contain a tightly packed core. 相似文献
10.
11.
We have studied the refolding and thermal denaturation of hen egg white lysozyme in a wide range of pH values (from 1.5 to 9.4) using stopped-flow circular dichroism (CD) and differential scanning calorimetry (DSC). A linear correlation was found between the thermal denaturation temperature (T(m)) and the logarithm of the refolding rate of the slow folding phase of hen egg white lysozyme (lnk(2)). 相似文献
12.
A partially folded intermediate conformation is induced in pectate lyase C by the addition of 8-anilino-1-naphthalenesulfonate (ANS) 下载免费PDF全文
Addition of 8-anilino-1-naphthalenesulfonate (ANS) to acid-denatured pectate lyase C (pelC) leads to a large increase in the fluorescence quantum yield near 480 nm. The conventional interpretation of such an observation is that the ANS is binding to a partially folded intermediate such as a molten globule. Far-ultraviolet circular dichroism demonstrates that the enhanced fluorescence results from the induction of a partially folded protein species that adopts a large fraction of native-like secondary structure on binding ANS. Thus, ANS does not act as a probe to detect a partially folded species, but induces such a species. Near-ultraviolet circular dichroism suggests that ANS is bound to the protein in a specific conformation. The mechanism of ANS binding and structure induction was probed. The interaction of acid-unfolded pelC with several ANS analogs was investigated. The results strongly indicate that the combined effects of hydrophobic and electrostatic interactions account for the relatively high binding affinity of ANS for acid-unfolded pelC. These results demonstrate the need for caution in interpreting enhancement of ANS fluorescence as evidence for the presence of molten globule or other partially folded protein intermediates. 相似文献
13.
Koichi Matsuo Hidenori Watanabe Shin‐ichi Tate Hideki Tachibana Kunihiko Gekko 《Proteins》2009,77(1):191-201
To elucidate the effects of specific disulfide bridges (Cys6‐Cys127, Cys30‐Cys115, Cys64‐Cys80, and Cys76‐Cys94) on the secondary structure of hen lysozyme, the vacuum‐ultraviolet circular dichroism (VUVCD) spectra of 13 species of disulfide‐deficient variants in which Cys residues were replaced with Ala or Ser residues were measured down to 170 nm at pH 2.9 and 25°C using a synchrotron‐radiation VUVCD spectrophotometer. Each variant exhibited a VUVCD spectrum characteristic of a considerable amount of residual secondary structures depending on the positions and numbers of deleted disulfide bridges. The contents of α‐helices, β‐strands, turns, and unordered structures were estimated with the SELCON3 program using the VUVCD spectra and PDB data of 31 reference proteins. The numbers of α‐helix and β‐strand segments were also estimated from the VUVCD data. In general, the secondary structures were more effectively stabilized through entropic forces as the number of disulfide bridges increased and as they were formed over larger distances in the primary structure. The structures of three‐disulfide variants were similar to that of the wild type, but other variants exhibited diminished α‐helices with a border between the ordered and disordered structures around the two‐disulfide variants. The sequences of the secondary structures were predicted for all the variants by combining VUVCD data with a neural‐network method. These results revealed the characteristic role of each disulfide bridge in the formation of secondary structures. Proteins 2009. © 2009 Wiley‐Liss, Inc. 相似文献
14.
Khadijeh Rajabi Julia Reuther Elke Deuerling Sheena E Radford Alison E Ashcroft 《Protein science : a publication of the Protein Society》2015,24(8):1282-1291
The kinetics and thermodynamics of protein folding are commonly studied in vitro by denaturing/renaturing intact protein sequences. How these folding mechanisms relate to de novo folding that occurs as the nascent polypeptide emerges from the ribosome is much less well understood. Here, we have employed limited proteolysis followed by mass spectrometry analyses to compare directly free and ribosome-tethered polypeptide chains of the Src-homology 3 (SH3) domain and its unfolded variant, SH3-m10. The disordered variant was found to undergo faster proteolysis than SH3. Furthermore, the trypsin cleavage patterns observed show minor, but significant, differences for the free and ribosome-bound nascent chains, with significantly fewer tryptic peptides detected in the presence of ribosome. The results highlight the utility of limited proteolysis coupled with mass spectrometry for the structural analysis of these complex systems, and pave the way for detailed future analyses by combining this technique with chemical labeling methods (for example, hydrogen-deuterium exchange, photochemical oxidation) to analyze protein folding in real time, including in the presence of additional ribosome-associated factors. 相似文献
15.
The thermal denaturation of lysozyme dissolved in aqueous phosphate buffer (pH 5.1) and glycerol was studied by Fourier-transform infrared (FTIR) spectroscopy. In both solvents, a single temperature-induced conformational transition was observed but at the distinctly different temperatures of 73 °C in aqueous buffer and 94 ± 2 °C in glycerol. No changes in the secondary structure were observed in glycerol up to 90 °C. Thus, FTIR data were consistent with the formation of a highly ordered molten globule state at temperatures below 90 °C followed by lysozyme unfolding at higher temperatures in glycerol. 相似文献
16.
Thelma A Pertinhez Regina Krybus Eduardo M Cilli Antonio C M Paivac Clóvis R Nakaie Lorella Franzoni Giorgio Sartor Alberto Spisni Shirley Schreier 《Journal of peptide science》2002,8(1):23-35
The conformation of three synthetic peptides encompassing the proximal and distal half of the third intracellular loop (Ni3 and Ci3) and a portion of the cytoplasmic tail (fCT) of the angiotensin II AT1A receptor has been studied using circular dischroism and fluorescence spectroscopies. The results show that the conformation of the peptides is modulated in various ways by the environmental conditions (pH, ionic strength and dielectric constant). Indeed, Ni3 and fCT fold into helical structures that possess distinct stability and polarity due to the diverse forces involved: mainly polar interactions in the first case and a combination of polar and hydrophobic interactions in the second. The presence of these various features also produce distinct intermolecular interactions. Ci3, instead, exists as an ensemble of partially folded states in equilibrium. Since the corresponding regions of the angiotensin II AT1A receptor are known to play an important role in the receptor function, due to their ability to undergo conformational changes, these data provide some new clues about their different conformational plasticity. 相似文献
17.
Subdomain interactions as a determinant in the folding and stability of T4 lysozyme. 总被引:4,自引:4,他引:4
The folding of large, multidomain proteins involves the hierarchical assembly of individual domains. It remains unclear whether the stability and folding of small, single-domain proteins occurs through a comparable assembly of small, autonomous folding units. We have investigated the relationship between two subdomains of the protein T4 lysozyme. Thermodynamically, T4 lysozyme behaves as a cooperative unit and the unfolding transition fits a two-state model. The structure of the protein, however, resembles a dumbbell with two potential subdomains: an N-terminal subdomain (residues 13-75), and a C-terminal subdomain (residues 76-164 and 1-12). To investigate the effect of uncoupling these two subdomains within the context of the native protein, we created two circular permutations, both at the subdomain interface (residues 13 and 75). Both variants adopt an active wild-type T4 lysozyme fold. The protein starting with residue 13 is 3 kcal/mol less stable than wild type, whereas the protein beginning at residue 75 is 9 kcal/mol less stable, suggesting that the placement of the termini has a major effect on protein stability while minimally affecting the fold. When isolated as protein fragments, the C-terminal subdomain folds into a marginally stable helical structure, whereas the N-terminal subdomain is predominantly unfolded. ANS fluorescence studies indicate that, at low pH, the C-terminal subdomain adopts a loosely packed acid state. An acid state intermediate is also seen for all of the full-length variants. We propose that this acid state is comprised of an unfolded N-terminal subdomain and a loosely folded C-terminal subdomain. 相似文献
18.
Mini review: Instrumentation for vibrational circular dichroism spectroscopy,still a role for dispersive instruments 下载免费PDF全文
Vibrational circular dichroism (VCD) has become a standard method for determination of absolute stereochemistry, particularly now that reliable commercial instrumentation has become available. These instruments use a now well‐documented Fourier transform infrared‐based approach to measure VCD that has virtually displaced initial dispersive infrared‐based designs. Nonetheless, many papers have appeared reporting dispersive VCD data, especially for biopolymers. Instrumentation designed with these original methods, particularly after more recent updates optimizing performance in selected spectral regions, has been shown still to have advantages for specific applications. This article presents a mini‐review of dispersive VCD instrument designs and includes sample spectra obtained for various biopolymer (particularly peptide) samples. Complementary reviews of Fourier transform‐VCD designs are broadly available. 相似文献
19.
Compactness of the kinetic molten globule of bovine alpha-lactalbumin: a dynamic light scattering study. 下载免费PDF全文
K. Gast D. Zirwer M. Müller-Frohne G. Damaschun 《Protein science : a publication of the Protein Society》1998,7(9):2004-2011
During folding of globular proteins, the molten globule state was observed as an equilibrium intermediate under mildly denaturing conditions as well as a transient intermediate in kinetic refolding experiments. While the high compactness of the equilibrium intermediate of alpha-lactalbumin has been verified, direct measurements of the compactness of the kinetic intermediate have not been reported until now. Our dynamic light scattering measurements provide a complete set of the hydrodynamic dimensions of bovine alpha-lactalbumin in different conformational states, particularly in the kinetic molten globule state. The Stokes radii for the native, kinetic molten globule, equilibrium molten globule, and unfolded states are 1.91, 1.99, 2.08, and 2.46 nm, respectively. Therefore, the kinetic intermediate appears to be even more compact than its equilibrium counterpart. Remarkable differences in the concentration dependence of the Stokes radius exist revealing strong attractive but repulsive intermolecular interactions in the kinetic and equilibrium molten globule states, respectively. This underlines the importance of extrapolation to zero protein concentration in measurements of the molecular compactness. 相似文献
20.
Stefania Brocca Mária Šamalíková Vladimir N. Uversky Marina Lotti Marco Vanoni Lilia Alberghina Rita Grandori 《Proteins》2009,76(3):731-746
Intrinsically disordered proteins (IDPs) carry out important biological functions and offer an instructive model system for folding and binding studies. However, their structural characterization in the absence of interactors is hindered by their highly dynamic conformation. The cyclin‐dependent‐kinase inhibitor (Cki) Sic1 from Saccharomyces cerevisiae is a key regulator of the yeast cell cycle, which controls entrance into S phase and coordination between cell growth and proliferation. Its last 70 out of 284 residues display functional and structural homology to the inhibitory domain of mammalian p21 and p27. Sic1 has escaped systematic structural characterization until now. Here, complementary biophysical methods are applied to the study of conformational properties of pure Sic1 in solution. Based on sequence analysis, gel filtration, circular dichroism (CD), electrospray‐ionization mass spectrometry (ESI‐MS), and limited proteolysis, it can be concluded that the whole molecule exists in a highly disordered state and can, therefore, be classified as an IDP. However, the results of these experiments indicate, at the same time, that the protein displays some content in secondary and tertiary structure, having properties similar to those of molten globules or premolten globules. Proteolysis‐hypersensitive sites cluster at the N‐terminus and in the middle of the molecule, whereas the most structured region resides at the C‐terminus, including part of the inhibitory domain and the casein‐kinase‐2 (CK2) phosphorylation target S201. The mutations S201A and S201E, which are known to affect Sic1 function, do not have significant effects on the conformational properties of the pure protein. Proteins 2009;76:731–746. © 2009 Wiley‐Liss, Inc. 相似文献