首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sphingosine 1-phosphate (S1P) is a bioactive lipid that is produced by the sphingosine kinase-catalysed phosphorylation of sphingosine. S1P is an important regulator of cell function, mediating many of its effects through a family of five closely related G protein-coupled receptors (GPCR) termed S1P(1-5) which exhibit high affinity for S1P. These receptors function to relay the effects of extracellular S1P via well-defined signal transduction networks linked to the regulation of cell proliferation, survival, migration etc. Diverse agonists (e.g. cytokines) also activate sphingosine kinase and the resulting S1P formed may bind to specific undefined intracellular targets to elicit cellular responses. The purpose of this review is to discuss some of the spatial/temporal aspects of intracellular S1P signalling and to define the function of sphingosine kinases and lipid phosphate phosphatases (which catalyse dephosphorylation of S1P) in terms of their regulation of cell function. Finally, we survey the function of S1P in relation to disease, where the major challenge is to dissect the role of intracellular versus extracellular actions of S1P in terms of association with defined diseased phenotypes.  相似文献   

2.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate(S1P) are potent lipid growth factors with similar abilities tostimulate cytoskeleton-based cellular functions. Their effects aremediated by a subfamily of G protein-coupled receptors (GPCRs) encoded by endothelial differentiation genes (edgs). Wehypothesize that large quantities of LPA and S1P generated by activatedplatelets may influence endothelial cell functions. Using an in vitrowound healing assay, we observed that LPA and S1P stimulated closure ofwounded monolayers of human umbilical vein endothelial cells and adultbovine aortic endothelial cells, which express LPA receptor Edg2, andS1P receptors Edg1 and Edg3. The two major components of wound healing,cell migration and proliferation, were stimulated individually by bothlipids. LPA and S1P also stimulated intracellular Ca2+mobilization and mitogen-activated protein kinase (MAPK)phosphorylation. Pertussis toxin partially blocked the effects of bothlipids on endothelial cell migration, MAPK phosphorylation, andCa2+ mobilization, implicatingGi/o-coupled Edg receptor signaling inendothelial cells. LPA and S1P did not cross-desensitize each other inCa2+ responses, suggesting involvement of distinctreceptors. Thus LPA and S1P affect endothelial cell functions throughsignaling pathways activated by distinct GPCRs and may contribute tothe healing of wounded vasculatures.

  相似文献   

3.
Sphingosine 1-phosphate (S1P) regulates diverse cellular functions through extracellular ligation to S1P receptors, and it also functions as an intracellular second messenger. Human pulmonary artery endothelial cells (HPAECs) effectively utilized exogenous S1P to generate intracellular S1P. We, therefore, examined the role of lipid phosphate phosphatase (LPP)-1 and sphingosine kinase1 (SphK1) in converting exogenous S1P to intracellular S1P. Exposure of (32)P-labeled HPAECs to S1P or sphingosine (Sph) increased the intracellular accumulation of [(32)P]S1P in a dose- and time-dependent manner. The S1P formed in the cells was not released into the medium. The exogenously added S1P did not stimulate the sphingomyelinase pathway; however, added [(3)H]S1P was hydrolyzed to [(3)H]Sph in HPAECs, and this was blocked by XY-14, an inhibitor of LPPs. HPAECs expressed LPP1-3, and overexpression of LPP-1 enhanced the hydrolysis of exogenous [(3)H]S1P to [(3)H]Sph and increased intracellular S1P production by 2-3-fold compared with vector control cells. Down-regulation of LPP-1 by siRNA decreased intracellular S1P production from extracellular S1P but had no effect on the phosphorylation of Sph to S1P. Knockdown of SphK1, but not SphK2, by siRNA attenuated the intracellular generation of S1P. Overexpression of wild type SphK1, but not SphK2 wild type, increased the accumulation of intracellular S1P after exposure to extracellular S1P. These studies provide the first direct evidence for a novel pathway of intracellular S1P generation. This involves the conversion of extracellular S1P to Sph by LPP-1, which facilitates Sph uptake, followed by the intracellular conversion of Sph to S1P by SphK1.  相似文献   

4.
Sphingosine 1-phosphate (S1P) is a bioactive lipid that has both physiological and pathophysiological roles. It regulates cellular processes such as proliferation, migration, survival and differentiation and affects all organ systems. S1P not only activates S1P-specific receptors to initiate cellular signalling pathways but also directly regulates specific intracellular target proteins. The therapeutic opportunities surrounding S1P signalling are numerous and exemplified by the recent approval of FTY720 (a sphingosine analogue, Gilenya?) for the treatment of relapsing multiple sclerosis. A major focus of research is to develop small-molecule antagonists/agonists/inhibitors that are specific to the different S1P receptor subtypes and the enzymes that regulate S1P levels. This review describes fundamental aspects of S1P biology with an emphasis on the translational potential of intervention therapeutics.  相似文献   

5.
Lysophosphatidic acid (LPA) is an extracellular signaling mediator with a broad range of cellular responses. Three G-protein-coupled receptors (Edg-2, -4, and -7) have been identified as receptors for LPA. In this study, the ectophosphatase lipid phosphate phosphatase 1 (LPP1) has been shown to down-regulate LPA-mediated mitogenesis. Furthermore, using degradation-resistant phosphonate analogs of LPA and stereoselective agonists of the Edg receptors we have demonstrated that the mitogenic and platelet aggregation responses to LPA are independent of Edg-2, -4, and -7. Specifically, we found that LPA degradation is insufficient to account for the decrease in LPA potency in mitogenic assays, and the stereoselectivity observed at the Edg receptors is not reflected in mitogenesis. Additionally, RH7777 cells, which are devoid of Edg-2, -4, and -7 receptor mRNA, have a mitogenic response to LPA and LPA analogs. Finally, we have determined that the ligand selectivity of the platelet aggregation response is consistent with that of mitogenesis, but not with Edg-2, -4, and -7.  相似文献   

6.
Lysophospholipids are bioactive molecules that are implicated in the control of fundamental biological processes such as proliferation, differentiation, survival and motility in different cell types. Here we review the role of sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) in the regulation of skeletal muscle biology. Indeed, a wealth of experimental data indicate that these molecules are crucial players in the skeletal muscle regeneration process, acting by controllers of activation, proliferation and differentiation not only of muscle-resident satellite cells but also of mesenchymal progenitors that originate outside the skeletal muscle. Moreover, S1P and LPA are clearly involved in the regulation of skeletal muscle metabolism, muscle adaptation to different physiological needs and resistance to muscle fatigue. Notably, studies accomplished so far, have highlighted the complexity of S1P and LPA signaling in skeletal muscle cells that appears to be further complicated by their close dependence on functional cross-talks with growth factors, hormones and cytokines. Our increasing understanding of bioactive lipid signaling can individuate novel molecular targets aimed at enhancing skeletal muscle regeneration and reducing the fibrotic process that impairs full functional recovery of the tissue during aging, after a trauma or skeletal muscle diseases. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

7.
8.
A fluorescence-labeled sphingosine and sphingosine 1-phosphate have been successfully synthesized from the oxazolidinone methyl ester derived from glycidol via monoalkylation and the stereoselective reduction of the resulting ketone. The labeled sphingosine was converted into its phosphate by treatment with sphingosine kinase 1 (SPHK1) from mouse, and in platelets, and it was incorporated into the Chinese Hamster Ovarian (CHO) cells. In addition, MAPK was activated by NBD-Sph-1-P through Edg-1, Sph-1-P receptor.  相似文献   

9.
The transactivation of enhanced growth factor receptor (EGFR) by G protein-coupled receptor (GPCR) ligands is recognized as an important signaling mechanism in the regulation of complex biological processes, such as cancer development. Estrogen (E2), which is a steroid hormone that is intimately implicated in breast cancer, has also been suggested to function via EGFR transactivation. In this study, we demonstrate that E2-induced EGFR transactivation in human breast cancer cells is driven via a novel signaling system controlled by the lipid kinase sphingosine kinase-1 (SphK1). We show that E2 stimulates SphK1 activation and the release of sphingosine 1-phosphate (S1P), by which E2 is capable of activating the S1P receptor Edg-3, resulting in the EGFR transactivation in a matrix metalloprotease-dependent manner. Thus, these findings reveal a key role for SphK1 in the coupling of the signals between three membrane-spanning events induced by E2, S1P, and EGF. They also suggest a new signal transduction model across three individual ligand-receptor systems, i.e., "criss-cross" transactivation.  相似文献   

10.
The vascular and immune systems of mammals are closely intertwined: the individual components of the immune system must move between various body compartments to perform their function effectively. Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, exerts effects on the two organ systems and influences the interaction between them. In the resting state, the vascular S1P gradient contributes to control of lymphocyte recirculation through the blood, lymphoid tissue and lymphatic vasculature. The high level of S1P in blood helps maintain endothelial barrier integrity. During the inflammatory process, both the level of S1P in different immune compartments and S1P receptor expression on lymphocytes and endothelial cells are modified, resulting in functionally important changes in endothelial cell and lymphocyte behaviour. These include transient arrest of lymphocytes in secondary lymphoid tissue, crucial for generation of adaptive immunity, and subsequent promotion of lymphocyte recruitment to sites of inflammation. This review begins with an outline of the basic biochemistry of S1P. S1P receptor signalling is then discussed, followed by an exploration of the roles of S1P in the vascular and immune systems, with particular focus on the interface between them. The latter part concerns crosstalk between S1P and other signalling pathways, and concludes with a look at therapies targeting the S1P-S1P receptor axis.  相似文献   

11.
This review highlights an emerging role for sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) in many different types of fibrosis. Indeed, both LPA and S1P are involved in the multi-process pathogenesis of fibrosis, being implicated in promoting the well-established process of differentiation of fibroblasts to myofibroblasts and the more controversial epithelial–mesenchymal transition and homing of fibrocytes to fibrotic lesions. Therefore, targeting the production of these bioactive lysolipids or blocking their sites/mechanisms of action has therapeutic potential. Indeed, LPA receptor 1 (LPA1) selective antagonists are currently being developed for the treatment of fibrosis of the lung as well as a neutralising anti-S1P antibody that is currently in Phase 1 clinical trials for treatment of age related macular degeneration. Thus, LPA- and S1P-directed therapeutics may not be too far from the clinic. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

12.
Autotaxin (ATX) or nucleotide pyrophosphatase/phosphodiesterase 2 (NPP2) is an NPP family member that promotes tumor cell motility, experimental metastasis, and angiogenesis. ATX primarily functions as a lysophospholipase D, generating the lipid mediator lysophosphatidic acid (LPA) from lysophosphatidylcholine. ATX uses a single catalytic site for the hydrolysis of both lipid and non-lipid phosphodiesters, but its regulation is not well understood. Using a new fluorescence resonance energy transfer-based phosphodiesterase sensor that reports ATX activity with high sensitivity, we show here that ATX is potently and specifically inhibited by LPA and sphingosine 1-phosphate (S1P) in a mixed-type manner (Ki approximately 10(-7) M). The homologous ecto-phosphodiesterase NPP1, which lacks lysophospholipase D activity, is insensitive to LPA and S1P. Our results suggest that, by repressing ATX activity, LPA can regulate its own biosynthesis in the extracellular environment, and they reveal a novel role for S1P as an inhibitor of ATX, in addition to its well established role as a receptor ligand.  相似文献   

13.
Three lipid phosphate phosphatases (LPPs) regulate cell signaling by modifying the concentrations of a variety of lipid phosphates versus their dephosphorylated products. In particular, the LPPs are normally considered to regulate signaling by the phospholipase D (PLD) pathway by converting phosphatidate (PA) to diacylglycerol (DAG). LPP activities do modulate the accumulations of PA and DAG following PLD activation, but this could also involve an effect upstream of PLD activation. The active sites of the LPPs are on the exterior surface of plasma membranes, or on the luminal surface of internal membranes. Consequently, the actions of the LPPs in metabolizing PA formed by PLD1 or PLD2 should depend on the access of this substrate to the active site of the LPPs. Alternatively, PA generated on the cytosolic surface of membranes should be readily accessible to the family of specific phosphatidate phosphatases, namely the lipins. Presently, there is only indirect evidence for the lipins participating in cell signaling following PLD activation. So far, we know relatively little about how individual LPPs and specific phosphatidate phosphatases (lipins) modulate cell signaling through controlling the turnover of bioactive lipids that are formed after PLD activation.  相似文献   

14.
Cellular signalling by sphingosine kinase and sphingosine 1-phosphate   总被引:2,自引:0,他引:2  
Leclercq TM  Pitson SM 《IUBMB life》2006,58(8):467-472
Sphingosine kinases, through the formation of the bioactive phospholipid sphingosine 1-phosphate, have been implicated in a diverse range of cellular processes, including cell proliferation, apoptosis, calcium homeostasis, angiogenesis and vascular maturation. The last few years have seen a number of significant advances in understanding of the mechanisms of action, activation, cellular localisation and biological roles of these enzymes. Here we review the current understanding of the regulation of and cellular signalling by sphingosine kinase and sphingosine 1-phosphate and discuss recent findings implicating sphingosine kinase as a potential therapeutic target for the control of cancer, inflammation and a number of other diseases. We suggest that, since the activation and subcellular localization of these enzymes appear to play critical roles in their biological functions, targeting these processes may provide more specific therapeutic options than direct catalytic inhibitors.  相似文献   

15.
Lipid phosphate monoesters including phosphatidic acid, lysophosphatidic acid, sphingosine 1-phosphate and ceramide 1-phosphate are intermediates in phosho- and sphingo-lipid biosynthesis and also play important roles in intra- and extra-cellular signaling. Dephosphorylation of these lipids terminates their signaling actions and, in some cases, generates products with additional biological activities or metabolic fates. The key enzymes responsible for dephosphorylation of these lipid phosphate substrates are collectively termed lipid phosphate phosphatases (LPPs). They are integral membrane enzymes with a core domain of six transmembrane spanning alpha-helices linked by extramembrane loops. LPPs are oriented in the membrane with their N- and C-termini facing the cytoplasm. LPPs exhibit isoform and cell specific localization patterns being variably distributed between endomembrane compartments (primarily the endoplasmic reticulum and Golgi apparatus) and the plasma membrane. The active site of these enzymes is formed from residues within two of the extramembrane loops and faces the lumen of endomembrane compartments or, when localized to the plasma membrane, towards, the extracellular space. Biochemical, pharmacological, cell biological and genetic studies identify roles for LPPs in both intracellular lipid metabolism and the regulation of both intra- and extra-cellular signaling pathways that control cell growth, survival and migration. This article describes procedures for the expression of LPPs in insect and mammalian cells and their analysis by SDS-PAGE and Western blotting. The most straightforward way to determine LPP activity is to measure release of the substrate phosphate group. We described methods for the synthesis and purification of [(32)P]-labeled LPP substrates. We describe the use of both radiolabeled and fluorescent lipid substrates for the detection, quantitation and analysis of the enzymatic activities of the LPPs measured using intact or broken cell preparations as the source of enzyme.  相似文献   

16.
17.
18.
Plastidic phosphatidic acid phosphatase (PAP) dephosphorylates phosphatidic acid to yield diacylglycerol, which is a precursor for galactolipids, a primary and indispensable component of photosynthetic membranes. Despite its functional importance, the molecular characteristics and phylogenetic origin of plastidic PAP were unknown because no potential homologs have been found. Here, we report the isolation and characterization of plastidic PAPs in Arabidopsis that belong to a distinct lipid phosphate phosphatase (LPP) subfamily with prokaryotic origin. Because no homolog of mammalian LPP was found in cyanobacteria, we sought an LPP ortholog in a more primitive organism, Chlorobium tepidum, and its homologs in cyanobacteria. Arabidopsis had five homologs of cyanobacterial LPP, three of which (LPP gamma, LPP epsilon 1, and LPP epsilon 2) localized to chloroplasts. Complementation of yeast Delta dpp1 Delta lpp1 Delta pah1 by plastidic LPPs rescued the relevant phenotype in vitro and in vivo, suggesting that they function as PAPs. Of the three LPPs, LPP gamma activity best resembled the native activity. The three plastidic LPPs were differentially expressed both in green and nongreen tissues, with LPP gamma expressed the highest in shoots. A knock-out mutant for LPP gamma could not be obtained, although a lpp epsilon 1 lpp epsilon 2 double knock-out showed no significant changes in lipid composition. However, lpp gamma homozygous mutant was isolated only under ectopic overexpression of LPP gamma, suggesting that loss of LPP gamma may cause lethal effect on plant viability. Thus, in Arabidopsis, there are three isoforms of plastidic PAP that belong to a distinct subfamily of LPP, and LPP gamma may be the primary plastidic PAP.  相似文献   

19.
Sphingosine 1-phosphate (S1P) is a membrane-derived lysophospholipid that acts primarily as an ex­tracellular signaling molecule. Signals initiated by S1P are transduced by five G protein-coupled receptors, named S1P1–5. Cellular and temporal expression of the S1P receptors (S1PRs) determine their specific roles in various organ systems, but they are particularly critical for regulation of the cardiovascular, immune, and nervous systems, with the most well-known contributions of S1PR signaling being modulation of vascular barrier function, vascular tone, and regulation of lymphocyte trafficking. However, our knowledge of S1PR biology is rapidly increasing as they become attractive therapeutic targets in several diseases, such as chronic inflammatory pathologies, autoimmunity, and cancer. Understanding how the S1PRs regulate interactions between biological systems will allow for greater efficacy in this novel therapeutic strategy as well as characterization of complex physiological networks. Because of the rapidly expanding body of research, this review will focus on the most recent advances in S1PRs.  相似文献   

20.
This review discusses multiple effects of sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) on endothelial cells and proposes that S1P and LPA are important regulators of the vascular system. Two physiologic sources of S1P and LPA are platelets and lipoproteins. S1P is an inducer of angiogenesis in vivo whereas LPA is not. S1P and LPA act through endothelial cell surface Edg receptors. S1P stimulates endothelial cell migration, but inhibits migration of most nonendothelial cells. Edg1 and Edg3 receptors, working through G(i), play an important role in regulation of S1P-stimulated endothelial cell migration. LPA effects on endothelial cells are more restricted than the effects of S1P on endothelial cells. LPA stimulates migration of certain endothelial cells on certain extracellular matrix proteins. However, LPA acts like S1P in its effects on the endothelial cell cytoskeleton, proliferation, cell-cell adhesion molecule expression, and vascular permeability. LPA receptors on endothelial cells are likely Edg2 and Edg4. Future studies should better delineate the roles of Edg receptors and downstream pathways on effects of extracellular S1P and LPA and the contributions of intracellularly generated S1P and nitric oxide (NO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号