首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both a large heart rate (HR) increase at exercise onset and a slow heart rate (HR) recovery following the termination of exercise have been linked to an increased risk for ventricular fibrillation (VF) in patients with coronary artery disease. Endurance exercise training can alter cardiac autonomic regulation. Therefore, it is possible that this intervention could restore a more normal HR regulation in high-risk individuals. To test this hypothesis, HR and HR variability (HRV, 0.24- to 1.04-Hz frequency component; an index of cardiac vagal activity) responses to submaximal exercise were measured 30, 60, and 120 s after exercise onset and 30, 60, and 120 s following the termination of exercise in dogs with healed myocardial infarctions known to be susceptible (n = 19) to VF (induced by a 2-min coronary occlusion during the last minute of a submaximal exercise test). These studies were then repeated after either a 10-wk exercise program (treadmill running, n = 10) or an equivalent sedentary period (n = 9). After 10 wk, the response to exercise was not altered in the sedentary animals. In contrast, endurance exercise increased indexes of cardiac vagal activity such that HR at exercise onset was reduced (30 s after exercise onset: HR pretraining 179 +/- 8.4 vs. posttraining 151.4 +/- 6.6 beats/min; HRV pretraining 4.0 +/- 0.4 vs. posttraining 5.8 +/- 0.4 ln ms(2)), whereas HR recovery 30 s after the termination of exercise increased (HR pretraining 186 +/- 7.8 vs. posttraining 159.4 +/- 7.7 beats/min; HRV pretraining 2.4 +/- 0.3 vs. posttraining 4.0 +/- 0.6 ln ms(2)). Thus endurance exercise training restored a more normal HR regulation in dogs susceptible to VF.  相似文献   

2.
A large heart rate (HR) increase at the onset of exercise has been linked to an increased risk for adverse cardiovascular events, including cardiac death. However, the relationship between changes in cardiac autonomic regulation induced by exercise onset and the confirmed susceptibility to ventricular fibrillation (VF) has not been established. Therefore, a retrospective analysis of the HR response to exercise onset was made in mongrel dogs with healed myocardial infarctions that were either susceptible (S, n = 131) or resistant (R, n = 114) to VF (induced by a 2-min occlusion of the left circumflex artery during the last minute of exercise). The ECG was recorded, and time series analysis of HR variability (vagal activity index, the 0.24-1.04-Hz frequency component of R-R interval variability) was measured before and 30, 60, and 120 s after the onset of exercise (treadmill running). Exercise elicited significantly (ANOVA, P < 0.0001) greater increases in HR in susceptible dogs at all three times (e.g., at 60 s: R, 46.8 +/- 2.3 vs. S, 57.1 +/- 2.2 beats/min). However, the vagal activity index decreased to a similar extent in both groups of dogs (at 60 s: R, -2.8 +/- 0.1 vs. S, -3.0 +/- 0.2 ln ms2). Beta-adrenoceptor blockade (BB, propranolol 1.0 mg/kg iv) reduced the HR increase and eliminated the differences noted between the groups [at 60 s: R (n = 26), 40.4 +/- 3.2 vs. S (n = 31), 37.5 +/- 2.4 beats/min]. After BB, exercise once again elicited similar declines in vagal activity in both groups (at 60 s: R, -3.6 +/- 0.5 vs. S, -3.2 +/- 0.4 ln ms2). When considered together, these data suggest that at the onset of exercise HR increases to a greater extent in animals prone to VF compared with dogs resistant to this malignant arrhythmia due to an enhanced cardiac sympathetic activation in the susceptible dogs.  相似文献   

3.
Enhanced cardiac beta(2)-adrenoceptor (beta(2)-AR) responsiveness can increase susceptibility to ventricular fibrillation (VF). Exercise training can decrease cardiac sympathetic activity and could, thereby, reduce beta(2)-AR responsiveness and decrease the risk for VF. Therefore, dogs with healed myocardial infarctions were subjected to 2 min of coronary occlusion during the last minute of a submaximal exercise test; VF was observed in 20 susceptible, but not in 13 resistant, dogs. The dogs were then subjected to a 10-wk exercise-training program (n = 9 susceptible and 8 resistant) or an equivalent sedentary period (n = 11 susceptible and 5 resistant). Before training, the beta(2)-AR antagonist ICI-118551 (0.2 mg/kg) significantly reduced the peak contractile (by echocardiography) response to isoproterenol more in the susceptible than in the resistant dogs: -45.5 +/- 6.5 vs. -19.2 +/- 6.3%. After training, the susceptible and resistant dogs exhibited similar responses to the beta(2)-AR antagonist: -12.1 +/- 5.7 and -16.2 +/- 6.4%, respectively. In contrast, ICI-118551 provoked even greater reductions in the isoproterenol response in the sedentary susceptible dogs: -62.3 +/- 4.6%. The beta(2)-AR agonist zinterol (1 microM) elicited significantly smaller increases in isotonic shortening in ventricular myocytes from susceptible dogs after training (n = 8, +7.2 +/- 4.8%) than in those from sedentary dogs (n = 7, +42.8 +/- 5.8%), a response similar to that of the resistant dogs: +3.0 +/- 1.4% (n = 6) and +3.2 +/- 1.8% (n = 5) for trained and sedentary, respectively. After training, VF could no longer be induced in the susceptible dogs, whereas four sedentary susceptible dogs died during the 10-wk control period and VF could still be induced in the remaining seven animals. Thus exercise training can restore cardiac beta-AR balance (by reducing beta(2)-AR responsiveness) and could, thereby, prevent VF.  相似文献   

4.
Heart rate recovery after exercise, thought to be related to cardiac parasympathetic tone, has been shown to be a prognostic tool for all-cause mortality. However, the relationship between this variable and confirmed susceptibility to ventricular fibrillation (VF) has not been established. Therefore, myocardial ischemia was induced with a 2-min occlusion of the left circumflex artery during the last minute of exercise in mongrel dogs with myocardial infarction (n = 105 dogs). VF was induced in 66 animals (susceptible), whereas the remaining 39 dogs had no arrhythmias (resistant). On a previous day, ECG was recorded and a time-series analysis of heart rate variability was measured 30, 60, and 120 s after submaximal exercise (treadmill running). The heart rate recovery was significantly greater in resistant dogs than in susceptible dogs at all three times, with the most dramatic difference at the 30-s mark (change from maximum: 48.1 +/- 3.6 beats/min, resistant dogs; 31.0 +/- 2.2 beats/min, susceptible dogs). Correspondingly, indexes of parasympathetic tone increased to a significantly greater extent in resistant dogs at 30 and 60 s after exercise. These differences were eliminated by atropine pretreatment. When considered together, these data suggest that resistant animals exhibit a more rapid recovery of vagal activity after exercise than those susceptible to VF. As such, postexercise heart rate recovery may help identify patients with a high risk for VF following myocardial infarction.  相似文献   

5.
The hemodynamic response to submaximal exercise was investigated in 38 mongrel dogs with healed anterior wall myocardial infarctions. The dogs were chronically instrumented to measure heart rate (HR), left ventricular pressure (LVP), LVP rate of change, and coronary blood flow. A 2 min coronary occlusion was initiated during the last minute of an exercise stress test and continued for 1 min after cessation of exercise. Nineteen dogs had ventricular fibrillation (susceptible) while 19 animals did not (resistant) during this test. The cardiac response to submaximal exercise was markedly different between the two groups. The susceptible dogs exhibited a significantly higher HR and left ventricular end-diastolic pressure (LVEDP) but a significantly lower left ventricular systolic pressure (LVSP) in response to exercise than did the resistant animals. (For example, response to 6.4 kph at 8% grade; HR, susceptible 201.4 +/- 5.1 beats/min vs. resistant 176.2 +/- 5.6 beats/min; LVEDP, susceptible 19.4 +/- 1.1 mmHg vs. resistant 12.3 +/- 1.7 mmHg; LVSP, susceptible 136.9 +/- 7.9 mmHg vs. resistant 154.6 +/- 9.8 mmHg.) beta-Adrenergic receptor blockade with propranolol reduced the difference noted in the HR response but exacerbated the LVP differences (response to 6.4 kph at 8% grade; HR, susceptible 163.4 +/- 4.7 mmHg vs. resistant 150.3 +/- 6.4 mmHg; LVEDP susceptible 28.4 +/- 2.1 mmHg vs. resistant 19.6 +/- 3.0 mmHg; LVSP, susceptible 122.2 +/- 8.1 mmHg vs. resistant 142.8 +/- 10.7 mmHg). These data indicate that the animals particularly vulnerable to ventricular fibrillation also exhibit a greater degree of left ventricular dysfunction and an increased sympathetic efferent activity.  相似文献   

6.
The present study investigated the effects of long-duration exercise on heart rate variability [as a marker of cardiac vagal tone (VT)]. Heart rate variability (time series analysis) was measured in mongrel dogs (n = 24) with healed myocardial infarctions during 1 h of submaximal exercise (treadmill running at 6.4 km/h at 10% grade). Long-duration exercise provoked a significant (ANOVA, all P < 0.01, means +/- SD) increase in heart rate (1st min, 165.3 +/- 15.6 vs. last min, 197.5 +/- 21.5 beats/min) and significant reductions in high frequency (0.24 to 1.04 Hz) power (VT: 1st min, 3.7 +/- 1.5 vs. last min, 1.0 +/- 0.9 ln ms(2)), R-R interval range (1st min, 107.9 +/- 38.3 vs. last min, 28.8 +/- 13.2 ms), and R-R interval SD (1st min, 24.3 +/- 7.7 vs. last min 6.3 +/- 1.7 ms). Because endurance exercise training can increase cardiac vagal regulation, the studies were repeated after either a 10-wk exercise training (n = 9) or a 10-wk sedentary period (n = 7). After training was completed, long-duration exercise elicited smaller increases in heart rate (pretraining: 1st min, 156.0 +/- 13.8 vs. last min, 189.6 +/- 21.9 beats/min; and posttraining: 1st min, 149.8 +/- 14.6 vs. last min, 172.7 +/- 8.8 beats/min) and smaller reductions in heart rate variability (e.g., VT, pretraining: 1st min, 4.2 +/- 1.7 vs. last min, 0.9 +/- 1.1 ln ms(2); and posttraining: 1st min, 4.8 +/- 1.1 vs. last min, 2.0 +/- 0.6 ln ms(2)). The response to long-duration exercise did not change in the sedentary animals. Thus the heart rate increase that accompanies long-duration exercise results, at least in part, from reductions in cardiac vagal regulation. Furthermore, exercise training attenuated these exercise-induced reductions in heart rate variability, suggesting maintenance of a higher cardiac vagal activity during exercise in the trained state.  相似文献   

7.
Previous studies demonstrated an enhanced beta(2)-adrenoceptor (AR) responsiveness in animals susceptible to ventricular fibrillation (VF) that was eliminated by exercise training. The present study investigated the effects of endurance exercise training on beta(1)-AR and beta(2)-AR expression in dogs susceptible to VF. Myocardial ischemia was induced by a 2-min occlusion of the left circumflex artery during the last minute of exercise in dogs with healed infarctions: 20 had VF [susceptible (S)] and 13 did not [resistant (R)]. These dogs were randomly assigned to either 10-wk exercise training [treadmill running; n = 9 (S) or 8 (R)] or an equivalent sedentary period [n = 11 (S) or 5 (R)]. Left ventricular tissue beta-AR protein and mRNA were quantified by Western blot analysis and RT-PCR, respectively. Because beta(2)-ARs are located in caveolae, caveolin-3 was also quantified. beta(1)-AR gene expression decreased ( approximately 5-fold), beta(2)-AR gene expression was not changed, and the ratio of beta(2)-AR to beta(1)-AR gene expression was significantly increased in susceptible compared with resistant dogs. beta(1)-AR protein decreased ( approximately 50%) and beta(2)-AR protein increased (400%) in noncaveolar fractions of the cell membrane in susceptible dogs. Exercise training returned beta(1)-AR gene expression to levels seen in resistant animals but did not alter beta(2)-AR protein levels in susceptible dogs. These data suggest that beta(1)-AR gene expression was decreased in susceptible dogs compared with resistant dogs and, further, that exercise training improves beta(1)-AR gene expression, thereby restoring a more normal beta-AR balance.  相似文献   

8.
The consumption of omega-3 polyunsaturated fatty acids (n-3 PUFAs) has been reported to decrease resting heart rate (HR) and increase heart rate variability (HRV). However, the effects of n-3 PUFAs on these variables in response to a physiological stress (e.g., exercise or acute myocardial ischemia), particularly in postmyocardial infarction (MI) patients, are unknown. Therefore, HR and HRV (high frequency and total R-R interval variability) were evaluated at rest, during submaximal exercise, and during a 2-min coronary artery occlusion at rest and before and 3 mo after n-3 PUFA treatment in dogs with healed MI (n = 59). The dogs were randomly assigned to either placebo (1 g/day corn oil, n = 19) or n-3 PUFA supplement (docosahexaenoic acid + eicosapentaenoic acid ethyl esters; 1 g/day, n = 6; 2 g/day, n = 12; or 4 g/day, n = 22) groups. The treatment elicited significant (P < 0.01) dose-dependent increases in right atrial n-3 PUFA levels but dose-independent reductions in resting HR and increases in resting HRV. In contrast, n-3 PUFAs did not attenuate the large changes in HR or HRV induced by either the coronary occlusion or submaximal exercise. These data demonstrate that dietary n-3 PUFA decreased resting (i.e., preexercise or preocclusion) HR and increased resting HRV but did not alter the cardiac response to physiologic challenges.  相似文献   

9.
Passive electrical remodeling following myocardial infarction (MI) is well established. These changes can alter electrotonic loading and trigger the remodeling of repolarization currents, a potential mechanism for ventricular fibrillation (VF). However, little is known about the role of passive electrical markers as tools to identify VF susceptibility post-MI. This study investigated electrotonic remodeling in the post-MI ventricle, as measured by myocardial electrical impedance (MEI), in animals prone to and resistant to VF. MI was induced in dogs by a two-stage left anterior descending (LAD) coronary artery ligation. Before infarction, MEI electrodes were placed in remote (left circumflex, LCX) and infarcted (LAD) myocardium. MEI was measured in awake animals 1, 2, 7, and 21 days post-MI. Subsequently, VF susceptibility was tested by a 2-min LCX occlusion during exercise; 12 animals developed VF (susceptible, S) and 12 did not (resistant, R). The healing infarct had lower MEI than the normal myocardium. This difference was stable by day 2 post-MI (287 +/- 32 Omega vs. 425 +/- 62 Omega, P < 0.05). Significant differences were observed between resistant and susceptible animals 7 days post-MI; susceptible dogs had a wider electrotonic gradient between remote and infarcted myocardium (R: 89 +/- 60 Omega vs. S: 180 +/- 37 Omega). This difference increased over time in susceptible animals (252 +/- 53 Omega at 21 days) due to post-MI impedance changes on the remote myocardium. These data suggest that early electrotonic changes post-MI could be used to assess later arrhythmia susceptibility. In addition, passive-electrical changes could be a mechanism driving active-electrical remodeling post-MI, thereby facilitating the induction of arrhythmias.  相似文献   

10.
The determinants of heart rate (HR) recovery after exercise are not well known, although attenuated HR recovery is associated with an increased risk of cardiovascular mortality. Because acetylcholine receptor subtype M2 (CHRM2) plays a key role in the cardiac chronotropic response, we tested the hypothesis that, in healthy individuals, the CHRM2 gene polymorphisms might be associated with HR recovery 1 min after the termination of a maximal exercise test, both before and after endurance training. The study population consisted of sedentary men and women (n = 95, 42 +/- 5 yr) assigned to a training (n = 80) or control group (n = 15). The study subjects underwent a 2-wk laboratory-controlled endurance training program, which included five 40-min sessions/wk at 70-80% of maximal HR. HR recovery differed between the intron 5 rs324640 genotypes at baseline (C/C, -33 +/- 10; C/T, -33 +/- 7; and T/T, -40 +/- 11 beats/min, P = 0.008). Endurance training further strengthened the association: the less common C/C homozygotes showed 6 and 12 beats/min lower HR recovery than the C/T heterozygotes or the T/T homozygotes (P = 0.001), respectively. A similar association was found between A/T transversion at the 3'-untranslated region of the CHRM2 gene and HR recovery at baseline (P = 0.025) and after endurance training (P = 0.005). These data suggest that DNA sequence variation at the CHRM2 locus is a potential modifier of HR recovery in the sedentary state and after short-term endurance training in healthy individuals.  相似文献   

11.
The contribution of intracellular calcium to ventricular fibrillation (VF) was investigated using chronically instrumented dogs with healed myocardial infarctions. A 2-minute coronary occlusion was initiated during the last minute of exercise. Fourteen animals developed ventricular fibrillation (susceptible) whereas the remaining 12 did not (resistant) during this exercise plus ischemia test. The test was then repeated for the susceptible animals after pretreatment with the intracellular calcium chelator BAPTA-AM (1.0 mg/kg). BAPTA-AM significantly reduced left ventricular dp/dt max and prevented VF in 8 of 12 susceptible animals. Conversely, myocardial cytosolic calcium levels were increased in resistant animals using the calcium channel agonist Bay K 8644 (30 micrograms/kg) or phenylephrine (10 micrograms.kg-1.min-1 3-5 min before occlusion). Bay K 8644 induced VF in all 5 resistant animals tested whereas phenylephrine induced VF in 8 of 12 resistant animals. BAPTA-AM pretreatment attenuated the hemodynamic effects of Bay K 8644 or phenylephrine and prevented VF in five of five Bay K 8644- and four of seven phenylephrine-treated animals. Finally, the endogenous level of calcium/calmodulin (Ca-CaM)-dependent phosphorylation of 170- and 55-kDa substrate proteins was measured (as an index of intracellular free calcium concentration). In the susceptible dog heart, the endogenous level of Ca-CaM-dependent phosphorylation was estimated to be two- to threefold higher than that observed in resistant dog heart. Treatment of resistant dog tissue with the calcium ionophore A23187 increased the level of Ca-CaM-dependent phosphorylation of these two proteins to the level observed in susceptible dog heart. These data suggest that elevated cytosolic calcium facilitates development of malignant arrhythmias and that elevated cytosolic calcium levels may be present in animals particularly susceptible to ventricular fibrillation.  相似文献   

12.
We tested the hypothesis that elevation in heart rate (HR) during submaximal exercise in the heat is related, in part, to increased percentage of maximal O(2) uptake (%Vo(2 max)) utilized due to reduced maximal O(2) uptake (Vo(2 max)) measured after exercise under the same thermal conditions. Peak O(2) uptake (Vo(2 peak)), O(2) uptake, and HR during submaximal exercise were measured in 22 male and female runners under four environmental conditions designed to manipulate HR during submaximal exercise and Vo(2 peak). The conditions involved walking for 20 min at approximately 33% of control Vo(2 max) in 25, 35, 40, and 45 degrees C followed immediately by measurement of Vo(2 peak) in the same thermal environment. Vo(2 peak) decreased progressively (3.77 +/- 0.19, 3.61 +/- 0.18, 3.44 +/- 0.17, and 3.13 +/- 0.16 l/min) and HR at the end of the submaximal exercise increased progressively (107 +/- 2, 112 +/- 2, 120 +/- 2, and 137 +/- 2 beats/min) with increasing ambient temperature (T(a)). HR and %Vo(2 peak) increased in an identical fashion with increasing T(a). We conclude that elevation in HR during submaximal exercise in the heat is related, in part, to the increase in %Vo(2 peak) utilized, which is caused by reduced Vo(2 peak) measured during exercise in the heat. At high T(a), the dissociation of HR from %Vo(2 peak) measured after sustained submaximal exercise is less than if Vo(2 max) is assumed to be unchanged during exercise in the heat.  相似文献   

13.
The present investigation was undertaken to evaluate the vagal function of trained (T) and sedentary (S) rats by use of different approaches in the same animal. After 13 wk of exercise training (treadmill for 1 h 5 times/wk at 26.8 m/min and 15% grade), T rats had a resting heart rate (HR) slightly but significantly lower than S rats (299 +/- 3 vs. 308 +/- 3 beats/min). T rats had marked reduction of the intrinsic HR (329 +/- 4 vs. 369 +/- 5 beats/min) after blockade by methylatropine and propranolol. They also exhibited depressed vagal and sympathetic tonus. Baroreflex bradycardia (phenylephrine injections) was reduced, bradycardic responses produced by electrical stimulation of the vagus were depressed, and responses to methacholine injection were decreased in T rats. Therefore several evidences of vagal function impairment were observed in T rats. The resting bradycardia after exercise training is more likely to be dependent on alterations of the pacemaker cells, inasmuch as the intrinsic HR was markedly reduced.  相似文献   

14.
Endurance-trained athletes have increased heart rate variability (HRV), but it is not known whether exercise training improves the HRV and baroreflex sensitivity (BRS) in sedentary persons. We compared the effects of low- and high-intensity endurance training on resting heart rate, HRV, and BRS. The maximal oxygen uptake and endurance time increased significantly in the high-intensity group compared with the control group. Heart rate did not change significantly in the low-intensity group but decreased significantly in the high-intensity group (-6 beats/min, 95% confidence interval; -10 to -1 beats/min, exercise vs. control). No significant changes occurred in either the time or frequency domain measures of HRV or BRS in either of the exercise groups. Exercise training was not able to modify the cardiac vagal outflow in sedentary, middle-aged persons.  相似文献   

15.
The time course of heart rate (HR) and venous blood norepinephrine concentration [NE], as an expression of the sympathetic nervous activity (SNA), was studied in six sedentary young men during recovery from three periods of cycle ergometer exercise at 21% +/- 2.8%, 43% +/- 2.1% and 65% +/- 2.3% of VO2max respectively (mean +/- SE). The HR decreased mono-exponentially with tau values of 13.6 +/- 1.6 s, 32.7 +/- 5.6 s and 55.8 +/- 8.1 s respectively in the three periods of exercise. At the low exercise level no change in [NE] was found. At medium and high exercise intensity: (a) [NE] increased significantly at the 5th min of exercise (delta [NE] = 207.7 +/- 22.5 pg.ml-1 and 521.3 +/- 58.3 pg.ml-1 respectively); (b) after a time lag of 1 min [NE] decreased exponentially (tau = 87 s and 101 s respectively); (c) in the 1st min HR decreased about 35 beats.min-1; (d) from the 2nd to 5th min of recovery HR and [NE] were linearly related (100 pg.ml-1 delta [NE] congruent to 5 beats.min-1). In the 1st min of recovery, independent of the exercise intensity, the adjustment of HR appears to have been due mainly to the prompt restoration of vagal tone. The further decrease in HR toward the resting value could then be attributed to the return of SNA to the pre-exercise level.  相似文献   

16.
After acclimatization to high altitude, maximal exercise cardiac output (QT) is reduced. Possible contributing factors include 1) blood volume depletion, 2) increased blood viscosity, 3) myocardial hypoxia, 4) altered autonomic nervous system (ANS) function affecting maximal heart rate (HR), and 5) reduced flow demand from reduced muscle work capability. We tested the role of the ANS reduction of HR in this phenomenon in five normal subjects by separately blocking the sympathetic and parasympathetic arms of the ANS during maximal exercise after 2-wk acclimatization at 3,800 m to alter maximal HR. We used intravenous doses of 8.0 mg of propranolol and 0.8 mg of glycopyrrolate, respectively. At altitude, peak HR was 170 +/- 6 beats/min, reduced from 186 +/- 3 beats/min (P = 0.012) at sea level. Propranolol further reduced peak HR to 139 +/- 2 beats/min (P = 0.001), whereas glycopyrrolate increased peak HR to sea level values, 184 +/- 3 beats/min, confirming adequate dosing with each drug. In contrast, peak O(2) consumption, work rate, and QT were similar at altitude under all drug treatments [peak QT = 16.2 +/- 1.2 (control), 15.5 +/- 1.3 (propranolol), and 16.2 +/- 1.1 l/min (glycopyrrolate)]. All QT results at altitude were lower than those at sea level (20.0 +/- 1.8 l/min in air). Therefore, this study suggests that, whereas the ANS may affect HR at altitude, peak QT is unaffected by ANS blockade. We conclude that the effect of altered ANS function on HR is not the cause of the reduced maximal QT at altitude.  相似文献   

17.
Twenty-seven sedentary college women trained on a treadmill 3 times weekly over a 9-wk experimental period. Subjects exercised at a heart rate (HR) of either 50 or 65% of the HR reserve added to the resting HR with the duration of each session limited to the time required to elicit 1,000 beats above the resting value. Treadmill speed was adjusted automatically to maintain the prescribed exercise heart rate (EHR) within +/- 5 beats-min(-1). A comparison of the pretraining and posttraining results revealed that both training intensities caused significant increases in VO2max (1-min(-1) and ml-kg(-1)-min(-1)), V at VO2max, and O2 pulse at VO2max, and a significant decrease in VEO2 at VO2max. There was no alteration in EHR at VO2max for either intensity. For every dependent variable in which training effects were noted, the absolute gain made by the subjects training at the 65% intensity was greater than for those exercising at 50%. In no instance, however, was the difference between groups statistically significant. It was concluded that training at an EHR of either 50 or 65% of the HR reserve plus resting HR is sufficient to elicit a training response.  相似文献   

18.
The response to beta-adrenergic receptor (beta-AR) stimulation was evaluated in both isolated cardiomyocytes (video edge detection) and the intact animal (echocardiography) in dogs either susceptible (S) or resistant (R) to ventricular fibrillation induced by a 2-min coronary occlusion during the last minute of exercise. In the intact animal, velocity of circumferential fiber shortening (Vcf) was evaluated both before (n = 27, S = 12 and R = 15) and after myocardial infarction. Before infarction, increasing doses of isoproterenol provoked similar contractile and heart rate responses in each group of dogs. Either beta(1)-AR (bisoprolol) or beta(2)-AR (ICI-118551) antagonists reduced the isoproterenol response, with a larger reduction noted after the beta(1)-AR blockade. In contrast, after infarction, isoproterenol induced a significantly larger Vcf and heart rate response in the susceptible animals that was eliminated by beta(2)-AR blockade. The single-cell isotonic shortening response to isoproterenol (100 nM) was also larger in cells obtained from susceptible compared with resistant dogs and was reduced to a greater extent by beta(2)-AR blockade in the susceptible dog myocytes (S, -48%, n = 6; R, -15%, n = 9). When considered together, these data suggest that myocardial infarction provoked an enhanced beta(2)-AR response in susceptible, but not resistant, animals.  相似文献   

19.
We sought to examine the influence of exercise intensity on carotid baroreflex (CBR) control of heart rate (HR) and mean arterial pressure (MAP) at the onset of exercise in humans. To accomplish this, eight subjects performed multiple 1-min bouts of isometric handgrip (HG) exercise at 15, 30, 45 and 60% maximal voluntary contraction (MVC), while breathing to a metronome set at eupneic frequency. Neck suction (NS) of -60 Torr was applied for 5 s at end expiration to stimulate the CBR at rest, at the onset of HG (<1 s), and after approximately 40 s of HG. Beat-to-beat measurements of HR and MAP were recorded throughout. Cardiac responses to NS at onset of 15% (-12 +/- 2 beats/min) and 30% (-10 +/- 2 beats/min) MVC HG were similar to rest (-10 +/- 1 beats/min). However, HR responses to NS were reduced at the onset of 45% and 60% MVC HG (-6 +/- 2 and -4 +/- 1 beats/min, respectively; P < 0.001). In contrast to HR, MAP responses to NS were not different from rest at exercise onset. Furthermore, both HR and MAP responses to NS applied at approximately 40s of HG were similar to rest. In summary, CBR control of HR was transiently blunted at the immediate onset of high-intensity HG, whereas MAP responses were preserved demonstrating differential baroreflex control of HR and blood pressure at exercise onset. Collectively, these results suggest that carotid-cardiac baroreflex control is dynamically modulated throughout isometric exercise in humans, whereas carotid baroreflex regulation of blood pressure is well-maintained.  相似文献   

20.
We examined the transfer function of autonomic heart rate (HR) control in anesthetized sedentary and exercise-trained (16 wk, treadmill for 1 h, 5 times/wk at 15 m/min and 15-degree grade) rats for comparison to HR variability assessed in the conscious resting state. The transfer function from sympathetic stimulation to HR response was similar between groups (gain, 4.2 ± 1.5 vs. 4.5 ± 1.5 beats·min(-1)·Hz(-1); natural frequency, 0.07 ± 0.01 vs. 0.08 ± 0.01 Hz; damping coefficient, 1.96 ± 0.55 vs. 1.69 ± 0.15; and lag time, 0.7 ± 0.1 vs. 0.6 ± 0.1 s; sedentary vs. exercise trained, respectively, means ± SD). The transfer gain from vagal stimulation to HR response was 6.1 ± 3.0 in the sedentary and 9.7 ± 5.1 beats·min(-1)·Hz(-1) in the exercise-trained group (P = 0.06). The corner frequency (0.11 ± 0.05 vs. 0.17 ± 0.09 Hz) and lag time (0.1 ± 0.1 vs. 0.2 ± 0.1 s) did not differ between groups. When the sympathetic transfer gain was averaged for very-low-frequency and low-frequency bands, no significant group effect was observed. In contrast, when the vagal transfer gain was averaged for very-low-frequency, low-frequency, and high-frequency bands, exercise training produced a significant group effect (P < 0.05 by two-way, repeated-measures ANOVA). These findings suggest that, in the frequency domain, exercise training augments the dynamic HR response to vagal stimulation but not sympathetic stimulation, regardless of the frequency bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号