首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article is inscribed in the general motivation of understanding the dynamics on biochemical networks including metabolic and genetic interactions. Our approach is continuous modeling by differential equations. We address the problem of the huge size of those systems. We present a mathematical tool for reducing the size of the model, master-slave synchronization, and fit it to the biochemical context.  相似文献   

2.
Quantitative microscopy and systems biology: seeing the whole picture   总被引:1,自引:1,他引:0  
Understanding cellular function requires studying the spatially resolved dynamics of protein networks. From the isolated proteins we can only learn about their individual properties, but by investigating their behavior in their natural environment, the cell, we obtain information about the overall response properties of the network module in which they operate. Fluorescence microscopy methods provide currently the only tools to study the dynamics of molecular processes in living cells with high temporal and spatial resolution. Combined with computational approaches they allow us to obtain insights in the reaction-diffusion processes that determine biological function on the scale of cells.  相似文献   

3.
Monotone subsystems have appealing properties as components of larger networks, since they exhibit robust dynamical stability and predictability of responses to perturbations. This suggests that natural biological systems may have evolved to be, if not monotone, at least close to monotone in the sense of being decomposable into a “small” number of monotone components, In addition, recent research has shown that much insight can be attained from decomposing networks into monotone subsystems and the analysis of the resulting interconnections using tools from control theory. This paper provides an expository introduction to monotone systems and their interconnections, describing the basic concepts and some of the main mathematical results in a largely informal fashion. Supported in part by NSF Grants DMS-0504557 and DMS-0614371.  相似文献   

4.
Associative learning in biochemical networks   总被引:1,自引:0,他引:1  
It has been recently suggested that there are likely generic features characterizing the emergence of systems constructed from the self-organization of self-replicating agents acting under one or more selection pressures. Therefore, structures and behaviors at one length scale may be used to infer analogous structures and behaviors at other length scales. Motivated by this suggestion, we seek to characterize various "animate" behaviors in biochemical networks, and the influence that these behaviors have on genomic evolution. Specifically, in this paper, we develop a simple, chemostat-based model illustrating how a process analogous to associative learning can occur in a biochemical network. Associative learning is a form of learning whereby a system "learns" to associate two stimuli with one another. Associative learning, also known as conditioning, is believed to be a powerful learning process at work in the brain (associative learning is essentially "learning by analogy"). In our model, two types of replicating molecules, denoted as A and B, are present in some initial concentration in the chemostat. Molecules A and B are stimulated to replicate by some growth factors, denoted as G(A) and G(B), respectively. It is also assumed that A and B can covalently link, and that the conjugated molecule can be stimulated by either the G(A) or G(B) growth factors (and can be degraded). We show that, if the chemostat is stimulated by both growth factors for a certain time, followed by a time gap during which the chemostat is not stimulated at all, and if the chemostat is then stimulated again by only one of the growth factors, then there will be a transient increase in the number of molecules activated by the other growth factor. Therefore, the chemostat bears the imprint of earlier, simultaneous stimulation with both growth factors, which is indicative of associative learning. It is interesting to note that the dynamics of our model is consistent with certain aspects of Pavlov's original series of conditioning experiments in dogs. We discuss how associative learning can potentially be performed in vitro within RNA, DNA, or peptide networks. We also describe how such a mechanism could be involved in genomic evolution, and suggest relevant bioinformatics studies that could potentially resolve these issues.  相似文献   

5.
Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.  相似文献   

6.
Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment.  相似文献   

7.
We bring together recent results that connect the structure of a mass-action reaction network to its capacity for concentration robustness — that is, its capacity to keep the concentration of a critical bio-active species within narrow limits, even against large fluctuations in the overall supply of the network’s constituents.  相似文献   

8.
9.
Robustness is the ability to resume reliable operation in the face of different types of perturbations. Analysis of how network structure achieves robustness enables one to understand and design cellular systems. It is typically true that all parameters simultaneously differ from their nominal values in vivo, but there have been few intelligible measures to estimate the robustness of a system's function to the uncertainty of all parameters.We propose a numerical and fast measure of a robust property to the uncertainty of all kinetic parameters, named quasi-multiparameter sensitivity (QMPS), which is defined as the sum of the squared magnitudes of single-parameter sensitivities. Despite its plain idea, it has hardly been employed in analysis of biological models. While QMPS is theoretically derived as a linear model, QMPS can be consistent with the expected variance simulated by the widely used Monte Carlo method in nonlinear biological models, when relatively small perturbations are given. To demonstrate the feasibility of QMPS, it is employed for numerical comparison to analyze the mechanism of how specific regulations generate robustness in typical biological models.QMPS characterizes the robustness much faster than the Monte Carlo method, thereby enabling the extensive search of a large parameter space to perform the numerical comparison between alternative or competing models. It provides a theoretical or quantitative insight to an understanding of how specific network structures are related to robustness. In circadian oscillators, a negative feedback loop with multiple phosphorylations is demonstrated to play a critical role in generating robust cycles to the uncertainty of multiple parameters.  相似文献   

10.
Inherently, biochemical regulatory networks suffer from process delays, internal parametrical perturbations as well as external disturbances. Robustness is the property to maintain the functions of intracellular biochemical regulatory networks despite these perturbations. In this study, system and signal processing theories are employed for measurement of robust stability and filtering ability of linear and nonlinear time-delay biochemical regulatory networks. First, based on Lyapunov stability theory, the robust stability of biochemical network is measured for the tolerance of additional process delays and additive internal parameter fluctuations. Then the filtering ability of attenuating additive external disturbances is estimated for time-delay biochemical regulatory networks. In order to overcome the difficulty of solving the Hamilton Jacobi inequality (HJI), the global linearization technique is employed to simplify the measurement procedure by a simple linear matrix inequality (LMI) method. Finally, an example is given in silico to illustrate how to measure the robust stability and filtering ability of a nonlinear time-delay perturbative biochemical network. This robust stability and filtering ability measurement for biochemical network has potential application to synthetic biology, gene therapy and drug design.  相似文献   

11.
Metabolic pathways exhibit structures resulting from an evolutionary process. Pathways have been inherited through time with modification, from the earliest periods of life. It is possible to compare the structure of pathways as done in comparative anatomy, i.e. for inferring ancestral pathways or parts of it (ancestral enzymatic functions), using standard phylogenetic reconstruction. Thus a phylogenetic tree of pathways provides a relative ordering of the rise of enzymatic functions. It even becomes possible to order the birth of each complete pathway in time. This particular "DNA-free" conceptual approach to evolutionary biochemistry is reviewed, gathering all the justifications given for it. Then, the method of assigning a given pathway to a time span of biochemical development is revisited. The previous method used an implicit "clock" of metabolic development that is difficult to justify. We develop a new clock-free approach, using functional biochemical arguments. Results of the two methods are not significantly different; our method is just more precise. This suggests that the clock assumed in the first method does not provoke any important artefact in describing the development of biochemical evolution. It is just unnecessary to postulate it. As a result, most of the amino acid metabolic pathways develop forwards, confirming former models of amino acid catabolism evolution, but not those for amino acid anabolism. The order of appearance of sectors of universal cellular metabolism is: (1) amino acid catabolism, (2) amino acid anabolism and closure of the urea cycle, (3) glycolysis and glycogenesis, (4) closure of the pentose-phosphate cycle, (5) closure of the Krebs cycle and fatty acids metabolism, (6) closure of the Calvin cycle.  相似文献   

12.
The criterion of minimum intermediate concentrations in steady states is suggested to be of essential relevance in the evolution of biochemical reaction networks. This extremum principle is phrased in two different ways, firstly in terms of total osmolarity of intermediates and, secondly, as a multiple criterion problem. The relationships between the two problems are elucidated and a solving method for the latter is then given. It turns out that in each optimal state, the network can be subdivided into a slow and a fast subsystem. The notion of convex conservation relations is introduced and the implications of such relations for the optimization problem are investigated.  相似文献   

13.
The multiobjective problem of minimizing all intermediate concentrations is solved for a model of glycolysis, the pentose monophosphate shunt and the glutathione system in human erythrocytes. It turns out that one solution out of four obtained corresponds qualitatively to the real system. Furthermore, it is shown that for any reaction system, the mentioned optimality principle implies distinct time hierarchy in that some reactions are infinitely fast and subsist in quasi-equilibrium. Finally, the relationships to the standard method of deriving enzymatic rate laws are discussed.  相似文献   

14.
Understanding the genetic regulatory network comprising genes, RNA, proteins and the network connections and dynamical control rules among them, is a major task of contemporary systems biology. I focus here on the use of the ensemble approach to find one or more well-defined ensembles of model networks whose statistical features match those of real cells and organisms. Such ensembles should help explain and predict features of real cells and organisms. More precisely, an ensemble of model networks is defined by constraints on the "wiring diagram" of regulatory interactions, and the "rules" governing the dynamical behavior of regulated components of the network. The ensemble consists of all networks consistent with those constraints. Here I discuss ensembles of random Boolean networks, scale free Boolean networks, "medusa" Boolean networks, continuous variable networks, and others. For each ensemble, M statistical features, such as the size distribution of avalanches in gene activity changes unleashed by transiently altering the activity of a single gene, the distribution in distances between gene activities on different cell types, and others, are measured. This creates an M-dimensional space, where each ensemble corresponds to a cluster of points or distributions. Using current and future experimental techniques, such as gene arrays, these M properties are to be measured for real cells and organisms, again yielding a cluster of points or distributions in the M-dimensional space. The procedure then finds ensembles close to those of real cells and organisms, and hill climbs to attempt to match the observed M features. Thus obtains one or more ensembles that should predict and explain many features of the regulatory networks in cells and organisms.  相似文献   

15.
Goel A  Li SS  Wilkins MR 《Proteomics》2011,11(13):2672-2682
Protein-protein interaction networks are typically built with interactions collated from many experiments. These networks are thus composite and show all interactions that are currently known to occur in a cell. However, these representations are static and ignore the constant changes in protein-protein interactions. Here we present software for the generation and analysis of dynamic, four-dimensional (4-D) protein interaction networks. In this, time-course-derived abundance data are mapped onto three-dimensional networks to generate network movies. These networks can be navigated, manipulated and queried in real time. Two types of dynamic networks can be generated: a 4-D network that maps expression data onto protein nodes and one that employs 'real-time rendering' by which protein nodes and their interactions appear and disappear in association with temporal changes in expression data. We illustrate the utility of this software by the analysis of singlish interface date hub interactions during the yeast cell cycle. In this, we show that proteins MLC1 and YPT52 show strict temporal control of when their interaction partners are expressed. Since these proteins have one and two interaction interfaces, respectively, it suggests that temporal control of gene expression may be used to limit competition at the interaction interfaces of some hub proteins. The software and movies of the 4-D networks are available at http://www.systemsbiology.org.au/downloads_geomi.html.  相似文献   

16.
17.
Mitochondria are pivotal for cellular bioenergetics, but are also a core component of the cell death machinery. Hypothesis-driven research approaches have greatly advanced our understanding of the role of mitochondria in cell death and cell survival, but traditionally focus on a single gene or specific signalling pathway at a time. Predictions originating from these approaches become limited when signalling pathways show increased complexity and invariably include redundancies, feedback loops, anisotropies or compartmentalisation. By introducing methods from theoretical chemistry, control theory, and biophysics, computational models have provided new quantitative insights into cell decision processes and have led to an increased understanding of the key regulatory principles of apoptosis. In this review, we describe the currently applied modelling approaches, discuss the suitability of different modelling techniques, and evaluate their contribution to the understanding of the mitochondrial apoptosis pathway. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

18.
Finding control strategies of cells is a challenging and important problem in the post-genomic era. This paper considers theoretical aspects of the control problem using the Boolean network (BN), which is a simplified model of genetic networks. It is shown that finding a control strategy leading to the desired global state is computationally intractable (NP-hard) in general. Furthermore, this hardness result is extended for BNs with considerably restricted network structures. These results justify existing exponential time algorithms for finding control strategies for probabilistic Boolean networks (PBNs). On the other hand, this paper shows that the control problem can be solved in polynomial time if the network has a tree structure. Then, this algorithm is extended for the case where the network has a few loops and the number of time steps is small. Though this paper focuses on theoretical aspects, biological implications of the theoretical results are also discussed.  相似文献   

19.
Cryptococcus neoformans (Cn) is the most common cause of fungal meningitis worldwide. In infected patients, growth of the fungus can occur within the phagolysosome of phagocytic cells, especially in non‐activated macrophages of immunocompromised subjects. Since this environment is characteristically acidic, Cn must adapt to low pH to survive and efficiently cause disease. In the present work, we designed, tested, and experimentally validated a theoretical model of the sphingolipid biochemical pathway in Cn under acidic conditions. Simulations of metabolic fluxes and enzyme deletions or downregulation led to predictions that show good agreement with experimental results generated post hoc and reconcile intuitively puzzling results. This study demonstrates how biochemical modeling can yield testable predictions and aid our understanding of fungal pathogenesis through the design and computational simulation of hypothetical experiments.  相似文献   

20.
Understanding biochemical system dynamics is becoming increasingly important for insights into the functioning of organisms and for biotechnological manipulations, and additional techniques and methods are needed to facilitate investigations of dynamical properties of systems. Extensions to the method of Ingalls and Sauro, addressing time-dependent sensitivity analysis, provide a new tool for executing such investigations. We present here the results of sample analyses using time-dependent sensitivities for three model systems taken from the literature, namely an anaerobic fermentation pathway in yeast, a negative feedback oscillator modeling cell-cycle phenomena, and the Mitogen Activated Protein (MAP) kinase cascade. The power of time-dependent sensitivities is particularly evident in the case of the MAPK cascade. In this example it is possible to identify the emergence of a concentration of MAPKK that provides the best response with respect to rapid and efficient activation of the cascade, while over- and under-expression of MAPKK relative to this concentration have qualitatively different effects on the transient response of the cascade. Also of interest is the quite general observation that phase-plane representations of sensitivities in oscillating systems provide insights into the manner with which perturbations in the envelope of the oscillation result from small changes in initial concentrations of components of the oscillator. In addition to these applied analyses, we present an algorithm for the efficient computation of time-dependent sensitivities for Generalized Mass Action (GMA) systems, the most general of the canonical system representations of Biochemical Systems Theory (BST). The algorithm is shown to be comparable to, or better than, other methods of solution, as exemplified with three biochemical systems taken from the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号