首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A new cellulase gene was cloned and expressed inEscherichia coli from a thermophilic anaerobe, strain NA10. A 7.4 kbEcoRI fragment of NA10 DNA encoded the cellulase which hydrolyzed carboxymethyl cellulose, lichenan, andp-nitrophenyl--d-cellobioside, but could not digest laminarin andp-nitrophenyl--d-glucoside. The cloned enzyme could digest cellooligosaccharides and release cellobiose as a main product from cellotetraose but could not digest cellobiose. It was distinct from the endoglucanase which was cloned by us previously from NA10 strain in terms ofp-nitrophenyl--d-cellobioside degradation activity and the location of restriction enzyme sites. The enzyme produced byE. coli transformant was extremely heat-stable and the optimum temperature for the enzymatic reaction was 80°C. Fifty three percent of the cloned enzyme was detected in the periplasm and the remaining activity existed in the cellular fraction in theE. coli transformant.  相似文献   

2.
Summary The nucleotide sequence of a 2.8 kb DNA segment containing an endoglucanase gene (end1) from Butyrivibrio fibrisolvens H17c was determined. The B. fibrisolvens H17c gene was expressed from its own regulatory region in Escherichia coli and three putative consensus promoter sequences were identified upstream of a ribosome binding site and an ATG start codon. The complete amino acid sequence (547 residues) was deduced and homology with the Clostridium thermocellum ME gene product (EGE) was demonstrated. The endoglucanase contained a typical amino-terminal signal sequence and five repeated sequences (PDPTPVD) between amino acids 412–447. The endoglucanase showed relatively high endoglucanase activity against endoglucanase-specific substrates with 1-4 linkages but low activity against xylan and an exoglucanasespecific substrate, p-nitrophenyl--d-cellobioside.Abbreviations CMCase carboxymethylcellulase - DNS dinitrosalicylic acid - end1 gene coding for End1 - End1 endo-1,4--glucanase - nt nucleotide - ORF open reading frame  相似文献   

3.
Summary The nucleotide sequence of a 3.6 kb DNA fragment containing a cellodextrinase gene (celA) fromRuminococcus flavefaciens FD-1 was determined. The gene was expressed from its own regulatory region inEscherichia coli and a putative consensus promoter sequence was identified upstream of a ribosome binding site and a TTG start codon. The complete amino acid sequence of the CeIA enzyme (352 residues) was deduced and showed no significant homology to cellulases from other oganisms. Two lysozymetype active sites were found in the amino-terminal third of the enzyme. InE. coli the cloned CeIA protein was translocated into the periplasm. The lack of a typical signal sequence, and the results of transposonphoA mutagenesis experiments indicated that CeIA is secreted by a mechanism other than a leader peptide.Abbreviations CMCase carboxymethylcellulase - celA gene coding for CeIA - CelA cellodextrinase - ORF open reading frame - phoA gene encoding alkaline phosphatase - pNPC p-nitrophenyl--d-cellobioside  相似文献   

4.
Pleurotus ostreatus mycelium produced extracellular cellulases when grown on ground wheat straw. No cellulase activity was detectable when glucose or aqueous extracts of vegetable material were used as substitutes for straw in culture media. The specific activity of excreted cellulases did not vary significantly by increasing the straw concentration from 1 to 6%. Chromatographic fractionation of extracellular proteins gave rise to five fractions with cellulolytic activity. The hydrolytic properties of these partially purified fractions were analysed by using several substrates (carboxymethylcellulose, cellobiose,p-nitrophenyl--d-cellobioside,p-nitrophenyl--d-lactoside). The results indicate that the cellulase system ofP. ostreatus includes at least a -glucosidase, two endocellulases, an exoglucohydrolase and an exocellobiohydrolase.  相似文献   

5.
An extracellular -glucosidase (EC 3.2.2.21) from the anaerobic fungus Piromyces sp. strain E2 was purified. The enzyme is a monomer with a molecular mass of 45 kDa and a pI of 4.15. The enzyme readily hydrolyzes p-nitrophenyl--d-glycoside, p-nitrophenyl--d-fucoside, cellobiose, cellotriose, cellotetraose and cellopentaose but is not active towards Avicel, carboxymethylcellulose, xylan, p-nitrophenyl--d-galactoside and p-nitrophenyl--d-xyloside. To cleave p-nitrophenyl--d-glucoside the maximum activity is reached at pH 6.0 and 55°C, and the enzyme is stable up to 72 h at 40°C. Activity is inhibited by d-glucurono--lactone, cellobiose, sodium dodecyl sulfate, Hg2+ and Cu2+ cations. With p-nitrophenyl--d-glycoside, p-nitrophenyl--d-fucoside, and. cellobiose as enzyme substrates, the K m and V max balues are 1.5 mM and 25.5 IU·mg-1, 1.1. mM and 133 IU·mg-1, and 0.05 mM and 55.6 IU·mg-1, respectively.  相似文献   

6.
Summary The complete nucleotide sequences of Ruminococcus albus genes celA and celB coding for endoglucanase A (EGA) and endoglucanase B (EGB), respectively, have been determined. The celA structural gene consists of an open reading frame of 1095 bp. Confirmation of the nucleotide sequence was obtained by comparing the predicted amino acid sequence with that derived by N-terminal analysis of purified EGA. The celB structural gene consists of an open reading frame of 1227 bp; 7 by upstream of the translational start codnn of celB is a typical gram-positive Shine-Dalgarno sequence. The deduced N-terminal region of EGB conforms to the general pattern for the signal peptides of secreted prokaryotic proteins. The complete celB gene, cloned into pUC vectors, caused lethality in Escherichia coli. In contrast, celA cloned in pUC18, under the control of lacZp, directed high-level synthesis of EGA in E. coli JM83. EGA in cell-free extract, purified to near homogeneity by ionexchange chromatography, had a Mr of 44.5 kDa. Gene deletion and subcloning studies with celA revealed that EGA hydrolysed both CMC and xylan, and did not contain discrete functional domains. EGA and EGB showed considerable homology with each other, in addition to exhibiting similarity with Egl (R. albus), EGE (Clostridium thermocellum) and End (Butyrivibrio fibrisolvens).Abbreviations CMC carboxymethylcellulose - CMCase carboxymethylcellulase - celA gene coding for EGA - EGA endoglucanase A - celB gene coding for EGB - EGB endoglucanase B - S-D Shine-Dalgarno  相似文献   

7.
Summary A fast and efficient separation procedure for the analysis of the cellulase components of the thermophilic anaerobe Clostridium stercorarium was developed. Culture respernatants were concentrated without loss of cellulase activity by tangential flow ultrafiltration. Resolution of the cellulase system was achieved by fast protein liquid chromatography (FPLC) on a Mono Q anion exchange column. Enzyme fractions were assayed for hydrolysis of Avicel, carboxymethylcellulose (CMC), -nitrophenyl--d-cellobioside, and p-nitrophenyl--d-glucoside. Two Avicelases, two -cellobiosidases, and one -glucosidase were identified and characterized by SDS-polyacrylamide electrophoresis and isoelectric focusing. On the basis of their activities towards CMC, Avicelase I was classified as endo--glucanase and Avicelase II as exo--glucanase. Efficient hydrolysis of microcrystalline cellulose was shown to result from the combined action of both Avicelases.  相似文献   

8.
A cartridge was constructed which contained the divergent tet promoters of transposon Tn10 between an exoglucanase gene (cex) and an endoglucanase gene (cenA) of Cellulomonas fimi. When carried in a broad-host-range vector, the cartridge gave expression of cex and cenA in Escherichia coli, Rhodobacter capsulatus and Klebsiella pneumoniae.Abbreviations CM-cellulose carboxymethyl cellulose - MUC methylumbelliferyl--d-cellobioside - pNPC p-nitrophenyl--d-cellobioside - TBE 89 mM Tris-borate-89 mM boric acid-8 mM EDTA, pH 8.0 CFB and RAJW dedicate this paper to John L. Ingraham, stimulating teacher, wise counsel, and good friend, on the occasion of his retirement  相似文献   

9.
The extracellular -glucosidase has been purified from culture broth of Myceliophthora thermophila ATCC 48104 grown on crystalline cellulose. The enzyme was purified approximately 30-fold by (NH4)2SO4 precipitation and column chromatography on DEAE-Sephadex A-50, Sephadex G-200 and DEAE-Sephadex A-50. The molecular mass of the enzyme was estimated to be about 120 kD by both sodium dodecyl sulphate gel electrophoresis and gel filtration chromatography. It displayed optimal activity at pH 4.8 and 60°C. The purified enzyme in the absence of substrate was stable up to 60°C and pH between 4.5 and 5.5. The enzyme hydrolysed p-nitrophenyl--d-glucoside, cellobiose and salicin but not carboxymethyl cellulose or crystalline cellulose. The K m of the enzyme was 1.6mm for p-nitrophenyl--d-glucoside and 8.0mm for cellobiose. d-Glucose was a competitive inhibitor of the enzyme with a K of 22.5mm. Enzyme K activity was inhibited by HgCl2, FeSO4, CuSO4, EDTA, sodium dodecyl sulphate, p-chloromercurobenzoate and iodoacetamide and was stimulated by 2-mercaptoethanol, dithiothreitol and glutathione. Ethanol up to 1.7 m had no effect on the enzyme activity.The authors are with the Department of Microbiology, Bose Institute, 93/1, A.P.C. Road, Calcutta 700 009, India. S.K. Raha is presently with the Department of Medicine, University of Saskatchewan, Saskatoon, Canada S7N OXO.  相似文献   

10.
Bacteroides polypragmatus, a mesophilic obligate anaerobe, was shown to simultaneously ferment glucose and cellobiose giving ethanol as a major metabolic end-product. A mixture of higher cellodextrins was also utilized. The bacterium produced a -glucosidase with a pI value of 4.2 and a molecular weight of approximately 100000 daltons. The enzyme was intracellular and functioned optimally at pH 7. The K m values obtained with p-nitrophenyl--d-glucoside and cellobiose as substrates were 0.73 mM and 100 mM, respectively. The enzyme was quite stable at elevated temperatures; in the presence of 10% glycerol (v/v), it had a half-life of 4 h at 55°C. It was also stable during long-term storage at either 4°C or-20°C, provided that 10% (v/v) glycerol was added to preparations maintained at-20°C.Abbreviations HPLC high-performance liquid chromatography - IEF isoelectric focusing - pNPG p-nitrophenyl--d-glucoside NRCC No. 25676  相似文献   

11.
Summary The mglB gene of Salmonella typhimurium LT2 coding for the galactose-binding protein (GBP) was sequenced. We compared the deduced amino acid sequence with the GBP sequence of Escherichia coli K12. The mature proteins differ in only 19 of 309 amino acid residues, corresponding to 94% homology. Analysis of the mglB control region by promoter-probe vectors revealed that two promoters, P1 and P2, constitute the mgl control region (P mgl ). P1 and P2 function in a synergistic way. P1 is the main promoter of the operon; its activity is 20 times the activity of P2. Both promoters are activated by the cyclic adenosine monophosphate catabolite activator protein (cAMP/CAP) complex. While P1 is inactive in the absence of the cAMP/CAP complex, there is residual activity of P2 under these conditions. Studies on the inducibility of the mglBAEC operon using multicopy plasmid promoter-probe vectors were hampered by the titration of the mgl repressor resulting in a partially constitutive expression of the mgl operon. The results indicate that only P1 is responding to induction by D-fucose. A weak promoter, P D , within the P1 region but divergent to it was found. P D is neither stimulated by the cAMP/CAP complex nor by D-fucose. We cloned the gene located downstream to P D and found it to strongly repress the expression of the mgl operon. We termed this gene mglD. The presence of D-fucose abolished the repression caused by the plasmid-encoded mglD gene product.Abbreviations IPTG isopropyl-1-thic--D-galatopyranoside - ONPG 2-nitrophenyl--D-galatopyranoside - XG 5-bromo-4-chloro-3-indolyl--D-galatopyranoside - Kanr Kanamycin resistance  相似文献   

12.
Summary The cloning, expression and nucleotide sequence of a 3 kb DNA segment on pLS206 containing a xylanase gene (xynB) from Butyrivibrio fibrisolvens H17c was investigated. The open reading frame (ORF) of 1905 by encoded a xylanase of 635 amino acid residues (Mr 73156). At least 850 by at the 3 end of the gene could be deleted without loss of xylanase activity. The deduced amino acid sequence was confirmed by purifying the enzyme and subjecting it to N-terminal amino acid sequence analysis. In Escherichia coli C600 (pLS206) cells the xylanase was localized in the cytoplasm. Its optimum pH for activity was between pH 5.4 and 6, and optimum temperature 55° C. The primary structure of the xylanase showed a significant level of identity with a cellobiohydrolase/endoglucanase of Caldocellum saccharolyticum, as well as with the xylanases of the alkaliphilic Bacillus sp. strain C-125, B. fibrisolvens strain 49, and Pseudomonas fluorescens subsp. cellulosa.Abbreviations ORF open reading frame - pNPCase p-nitrophen-yl--d-cellobiosidase - (xynB) gene coding for XynB - XynB xylanase  相似文献   

13.
The microorganism hydrolyzing carboxymethylcellulose (CMC) was isolated from seawater, identified as Bacillus subtilis subsp. subtilis by analyses of 16S rDNA and partial sequences of the gyrA gene, and named as B. subtilis subsp. subtilis A-53. The molecular weight of the purified carboxymethylcellulase (CMCase) was estimated to be about 56 kDa with the analysis of SDS-PAGE. The purified CMCase hydrolyzed carboxymethylcellulose (CMC), cellobiose, filter paper, and xylan, but not avicel, cellulose, and p-nitrophenyl-β-d-glucospyranoside (PNPG). Optimal temperature and pH for the CMCase activity were determined to be 50 °C and 6.5, respectively. More than 70% of original CMCase activity was maintained at relative low temperatures ranging from 20 to 40 °C after 24 h incubation at 50 °C. The CMCase activity was enhanced by EDTA and some metal ions in order of EDTA, K+, Ni2+, Sr2+, Pb2+, and Mn2+, but inhibited by Co2+ and Hg2+.  相似文献   

14.
Summary Using an Escherichia coli lac deletion strain lysogenized with lambda phage carrying a metF-lacZ gene fusion (Flac), in which -galactosidase levels are dependent on metF gene expression, cis-acting mutations were isolated that affect regulation of the Salmonella typhimurium metF gene. The mutations were located in a region previously defined as the metF operator by its similarity to the E. coli metF operator sequence. Regulation of the metF gene was examined by measuring -galactosidase levels in E. coli strains lysogenized with the wild-type Flac phage and mutant Flac phage. The results suggest that the mutations disrupt the methionine control system mediated by the metJ gene product, but not the vitamin B12 control system mediated by the metH gene product. The results also demonstrate that negative control of the metF gene by the metH gene product and vitamin B12 is dependent on a functional metJ gene product.Abbreviations Ap ampicillin - dNTP deoxyribonucleoside triphosphates - GM glucose minimal - Km kanamycin - L-agar Luria agar - LM lactose minimal - SAM s-adenosyl-L-methionine - TPEG phenylethyl -D-thiogalactoside - X-gal 5-bromo-4-chloro-3-indolyl -D-galactopyranoside - [] designates plasmid-carrier state - :: novel joint  相似文献   

15.
Summary The nucleotide sequence of engD, an endo--1,4-glucanase gene from Clostridium cellulovorans was determined (Genbank Accession No. M37434). The COON-terminal part of the gene product, EngD, contained a Thr-Thr-Pro repeated sequence followed by a region that has homology to the exoglucanase of Cellulomonas fimi. EngD and EngB, another C. cellulovorans endoglucanase, show 75% amino acid sequence homology at their NH2-termini, in contrast to their carboxyterminal domains which show no homology. EngD had endoglucanase activity on carboxymethylcellulose (CMC), cellobiosidase activity on p-nitrophenyl-cellobioside (p-NPC), and partial hydrolytic activity on crystalline cellulose (Avicel), while EngB showed hydrolytic activity against only CMC. Chimeric proteins between EngB and EngD were constructed by exchanging the non-homologous COOH-terminal regions. Chimeric proteins that contained the NH2-terminus of EngD retained cellobiosidase activity but chimeras with the EngB NH2-terminus showed no cellobiosidase activity. Hydrolysis of crystalline cellulose (Avicelase activity) was observed only with the enzyme containing the EngD NH2-terminus and EngD COOH-terminus.  相似文献   

16.
H. grisea produced an extracellular -glucosidase (EC 3.2.1.21) at high activity in media supplemented with carboxymethyl cellulose (CMC) or cellobiose. Cellobiose-induced -glucosidase was insensitive to glucose repression whereas that of CMC-supplemented cultures was partially repressed. Molecular sieving revealed three main active components (Mr 50, 128 and 240 kDa). Glucose competitively inhibited -glucosidase activities with Ki values of 0.9mM and 3.3mM (extracellular) and 10.2mM and 22.6mM (cytosolic), induced in the presence of CMC or cellobiose respectively.The authors are with the Departamento de Biologia, Faculdade de Filosofia. Ciências e Letras de Ribeirão Preto, Universidade de São Paulo-14040-901 Ribeirão Preto, São Paulo, Brasil;  相似文献   

17.
Two extracellular xylanases were purified to homogeneity from the culture filtrate of the anaerobic fungus Piromyces sp. strain E2 and their properties were studied. The enzymes are present in a High Molecular Mass complex (HMM-complex) and as free protein in nearly equal amounts. Both enzymes are most likely identical as all biochemical characteristics were identical. The molecular masses of the enzymes are 12.5 kDa, as estimated by gel chromatography and electrophoretic mobility. The activities of both enzymes are optimal at pH 6.0 and 50°C and the enzymes are stable up to 72h at 40°C. The enzymes have a pI of 9.1. The K m and V max, determined with xylan from oat spelts, were 3 mg · ml-1 and 2600 IU · mg-1 protein. The enzymes are active both on soluble and insoluble oat spelt xylan. The purified xylanases are inactive against Avicel, carboxymethylcellulose, p-nitrophenyl--d-glucoside, and p-nitrophenyl--d-xyloside. The products of the pure enzymes are predominantly xylo-oligosaccharides, indicating that the enzymes act as endoxylanases (1,4--d-xylan xylanohydrolases, EC 3.2.1.8).  相似文献   

18.
Summary Plasmid-coded -glucosidase produced byEscherichia coli was characterized and compared to the enzyme produced byCellulomonas flavigena. Cell-free extracts, non-denaturing PAGE and 5-bromo-4-chloro-3-indolyl--d-glucopyranoside (X-glu) as substrate were used to compare both enzymes. The -glucosidase was assayed for cellobiose andp-nitrophenyl-glucopyranoside (PNPG). Cellobiose hydrolysis was performed at 50°C for the enzyme fromC. flavigena and at 37°C for that fromE. coli pJS3, both with an optimal pH of 6.5. For PNPG hydrolysis, the optimal conditions were pH 5.5 and 37°C for both cell extracts. Most of the -glucosidase activity was intracellular. When cultures ofC. flavigena were grown with cellobiose or carboxymethylcellulose (CMC) as inducers, the expression of -glucosidase was increased considerably.E. coli pJS3 produces a cellobiase which hydrolyzes cellobiose and PNPG. TheK m values for cellobiose and PNPG indicated that the -glucosidase activity ofC. flavigena had a higher affinity for cellobiose as substrate, whereas the -glucosidase fromE. coli pJS3 showed higher affinity for PNPG.  相似文献   

19.
The occurrence of cellobiose cleavage by phosphorolysis and by hydrolysis was investigated in Cellulomonas spec., C. uda, C. flavigena, and C. cartalyticum. Cellobiose phosphorylase (EC 2.4.1.20) was shown to be produced by Cellulomonas spec. when cellobiose or cellulose was used as sole source of energy and carbon but not with glycerol or glucose. Using inhibitors of protein synthesis as well as double labelling techniques it was shown that cellobiose phosphorylase is synthesized de novo in Cellulomonas spec. Aryl--D-glucosidase which was shown to be present in crude extracts of this microorganism as well is not involved in cellobiose cleavage.Abbreviations oNPGluc ortho-nitrophenyl--D-glucopyranoside - oNPGlucase ortho-nitrophenyl--D-glucopyranoside hydrolase (aryl--D-glucosidase) - CMC carboxymethyl-cellulose - CMCase carboxymethyl-cellulase - PAGE polyacrylamde disc gel electrophoresis Parts of this work were presented on the Herbsttagung der Gesellschaft für Biologische Chemie (Schimz et al. 1979) and on the 14th FEBS Meeting (Schimz et al. 1981)  相似文献   

20.
One thermostable endoglucanase (CMCase) was purified to homogeneity from the culture supernatant of a new isolated thermophilic bacterium Caldibacillus cellulovorans. The molecular weight of the enzyme was 85.1 kDa as determined by SDS Polyacrylamide gel electrophoresis (PAGE) and 174 kDa by size-exclusion chromatography. The isoelectric point of the enzyme was at pH 4.12. The temperature for maximum activity was 80 °C, with half-lives of 32 min at 80 °C, and 2 min at 85 °C, and 83% activity remaining after 3 h at 70 °C. Thermostability of the enzyme was increased twofold by the addition of bovine serum albumin. Maximal activity was observed between pH 6.5 and 7.0. The enzyme activity was significantly inhibited by Zn2+, Hg2+, and p-chloromercuribenzenesulphonic acid. The enzyme showed high activity on carboxymethylcellulose (CMC) with much lower activity on Avicel; a low level of activity was also found against xylan. Cellobiose was the major product of hydrolysis of amorphous cellulose and CMC. Viscometric analysis indicated that the enzyme hydrolysed CMC in an exo-acting fashion. Cellotriose and cellobiose were not degraded and at least four contiguous glucosyl residues were necessary for degradation by the enzyme. The K m and V max of the enzyme for CMC were 3.4 mg ml–1 and 44.7 mol min–1 (mg protein)–1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号