首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of recB and recA mutations on lambda vir and P1 vir restriction by different restriction-modification plasmid systems of E. coli was studied. It was shown that effect of R1 plasmid coded restriction-modification in E. coli K12 and E. coli B strains and pJA4620 plasmid coded restriction in E. coli K12 is observed only in RecB+ strain. Phenomenon of restriction-modification determined by R124, R245 plasmids does not depend of recB mutation. Effect of recA mutation has not been found in cultures harbouring R1, R245, R124 pJA4620 plasmids.  相似文献   

2.
A genomic library of Bacillus centrosporus was obtained using pBR327 as a vector. The total plasmid DNA of the library was cleaved by the BcnI restriction endonuclease and then transformed in Escherichia coli RR1. Two clones possessing restriction and DNA modification profiles of BcnI were identified among the transformants. Their respective plasmids were 13.3 and 9.05 kbp in size. Restriction mapping of both plasmids showed each of them to contain two sites for HindIII and one for both Eco31I and Eco47III, located at the same distance. This was assumed to be the location region of the BcnI restriction-modification genes. Confirmation of the assumption was obtained by deletion mapping of the recombinant plasmids. Special features concerning cloning of the restriction-modification genes are discussed on the basis of the results obtained.  相似文献   

3.
Streptomyces griseus does not readily take up foreign DNA isolated from other Streptomyces species or Escherichia coli, presumably due to its unique restriction-modification systems that function as a barrier for interspecific DNA transfer. To efficiently transform S. griseus by avoiding the restriction barriers, we methylated incoming DNA in vivo and in vitro and treated protoplasts with heat prior to transformation. Whereas heat treatment of protoplasts or methylation of the E. coli-Streptomyces shuttle vectors (pXE4 and pKK1443) did not prominently improve the transformation efficiency, HpaII methylation of the vectors from any E. coli strains tested in this study highly increased the transformation efficiency. The highest transformation efficiency was observed when the shuttle vectors were isolated from the dam, hsd strain of E. coli (GM161) and methylated by AluI and HpaII methyltransferases, and the efficiency was approximately the same as that of the vectors from S. griseus. We identified several restriction-modification systems that decrease the transformation efficiency. This research also led us to understand methylation profiles and restriction-modification systems in S. griseus.  相似文献   

4.
Summary Several mutants ofStreptomyces aureofaciens strain were used for protoplast regeneration and plasmid transformation. All tested mutants (excepting R 8/26) were transformable by number of plasmids and shuttle vectors. The transformation of the CTC production strains by plasmid containing cloned CTC resistance gene resulted in 1,1–4 times higher antibiotic production. From the restriction analysis of plasmid, phage and chromosomal DNAs it was estimated, that all tested mutants normally contain the modification system analogous toNae I (Roberts, 1987). Mutant R 8/26 expresses not only complete restriction-modification system mentioned above but also potential second system restricting several actinophages.  相似文献   

5.
Streptomyces avermitilis contains a unique restriction system that restricts plasmid DNA containing N6-methyladenine or 5-methylcytosine. Shuttle vectors isolated from Escherichia coli RR1 or plasmids isolated from modification-proficient Streptomyces spp. cannot be directly introduced into S. avermitilis. This restriction barrier can be overcome by first transferring plasmids into Streptomyces lividans or a modification-deficient E. coli strain and then into S. avermitilis. The transformation frequency was reduced greater than 1,000-fold when plasmid DNA was modified by dam or TaqI methylases to contain N6-methyladenine or by AluI, HhaI, HphI methylases to contain 5-methylcytosine. Methyl-specific restriction appears to be common in Streptomyces spp., since either N6-methyladenine-specific or 5-methylcytosine-specific restriction was observed in seven of nine strains tested.  相似文献   

6.
Restriction-modification systems in Streptomyces antibioticus   总被引:2,自引:0,他引:2  
Several restriction systems were detected in different strains of Streptomyces antibioticus by using actinophages as biological indicators. Adsorption of phages to the bacteria, together with the study of the efficiency of plating gave an initial indication of restriction in three strains. The alternation of efficiency of plating values obtained from restricting and nonrestricting hosts, gave evidence for the presence of a restriction-modification system in another strain. No common modification systems were detected among the different strains tested. Two specific endonucleases with a possible role in restriction were detected in strains ATCC 11891 and ETH 7451, respectively.  相似文献   

7.
In contrast to many type II restriction enzymes, dimeric proteins that cleave DNA at individual recognition sites 4-6 bp long, the SfiI endonuclease is a tetrameric protein that binds to two copies of an elongated sequence before cutting the DNA at both sites. The mode of action of the SfiI endonuclease thus seems more appropriate for DNA rearrangements than for restriction. To elucidate its biological function, strains of Escherichia coli expressing the SfiI restriction-modification system were transformed with plasmids carrying SfiI sites. The SfiI system often failed to restrict the survival of a plasmid with one SfiI site, but plasmids with two or more sites were restricted efficiently. Plasmids containing methylated SfI sites were not restricted. No rearrangements of the plasmids carrying SfiI sites were detected among the transformants. Hence, provided the target DNA contains at least two recognition sites, SfiI displays all of the hallmarks of a restriction-modification system as opposed to a recombination system in E. coli cells. The properties of the system in vivo match those of the enzyme in vitro. For both restriction in vivo and DNA cleavage in vitro, SfiI operates best with two recognition sites on the same DNA.  相似文献   

8.
Two restriction-modification systems specified by two plasmids are discovered in the clinical species of Shigella. The plasmids are designated pKMR114 and pKMR115. Both are of 60.800 bp and belong to the IncN incompatibility group. The EcoRI, EcoRV, HindIII restriction patterns of both plasmid DNAs are identical. As shown by efficiency of plating of bacteriophage lambda vir on the strains harbouring plasmids encoding EcoRI, EcoRII, EcoRIII, EcoRIV, EcoRV systems and plasmids studied, the discovered plasmids control synthesis of EcoRII specificity enzymes. The main distinctive feature of the pKMR114 is the ability to decrease efficiency of plating of bacteriophage T4 having glycolised DNA.  相似文献   

9.
Over 60 producing strains of restriction endonucleases type II have been found among 500 different strains, mostly Enterobacteriaceae. The strain Citrobacter freundii 4111 produces restriction endonuclease CfrBI, a new isoschisomer of StyI. The genes of the restriction-modification system CfrBI were located on the multicopy plasmid pZE8 containing the Co1E1-type replicon and cloned to E. coli K802. The deletion variant of 3.2-kb pZE8 which contains intact restriction-modification and a DNA fragment responsible for autonomous plasmid replication was selected among the recombinant plasmids. The strain with higher R. CfrBI production (at least 10,000,000 U/g cells, which is 500-fold higher than the wild strain) was constructed.  相似文献   

10.
The PvuII endonuclease (PvuIIR) is a restriction enzyme from a type II restriction-modification system of Proteus vulgaris coded on plasmid pPvu1. The protein recognizes the DNA sequence 5' CAG'CTG 3' and shows no sequence homology to other restriction enzymes. This makes PvuIIR an interesting subject for structural determination. A purification procedure was developed that yields milligram quantities of the PvuIIR from plasmids expressed in the Escherichia coli strain HB101. The protein was crystallized using ammonium sulphate as precipitant. The crystals are orthorhombic, space group P2(1)2(1)2 with cell dimensions: a = 84.2 A, b = 106.2 A, c = 46.9 A. The asymmetric unit contains one PvuIIR dimer. Diffraction extends to 2.3 A, so the crystals may permit structural determination at atomic resolution.  相似文献   

11.
The ability of Legionella pneumophila to act as a recipient of IncP and IncQ plasmids in matings with Escherichia coli varies widely from strain to strain. We found that the low efficiency of mating of the Philadelphia-1 strain is due to a type II restriction-modification system, and we isolated and characterized a Philadelphia-1 mutant that lacks the restriction enzyme activity.  相似文献   

12.
The genes coding for the GGPyPuCC-specific (BanI) and ATCGAT-specific (BanIII) restriction-modification systems of Bacillus aneurinolyticus IAM1077 were cloned and expressed in Escherichia coli using pBR322 as a vector. The plasmids carrying the BanI and BanIII restriction-modification genes were designated pBanIRM8 and pBanIIIRM12, respectively. The restriction maps of these recombinant plasmids were constructed. These two plasmids were stably maintained in E. coli HB101. However, when E. coli JM109 was used as a host, pBanIIIRM12 was efficiently propagated but pBanIRM8 was not. The HB101 cells carrying only the restriction gene of BanIII were viable, but the BanI restriction gene carrier could not form colonies on agar plates. The growth of bacteriophage λ was strongly restricted only in the F. coli HB101 cells harboring pBanIRM8. These facts indicate that the BanI restriction enzyme is expressed and functions more efficiently than BanI modification enzyme in E. coli.  相似文献   

13.
Streptomyces lividans ISP 5434 contains four small high copy number plasmids: pIJ101 (8.9 kb), pIJ102 (4.0 kb), pIJ103 (3.9 kb) and pIJ104 (4.9 kb). The three smaller species appear to be naturally occurring deletion variants of pIJ101. pIJ101 and its in vivo and in vitro derivatives were studied after transformation into S. lividans 66. pIJ101 was found to be self-transmissible by conjugation, to elicit "lethal zygosis" and to promote chromosomal recombination at high frequency in both S. lividans 66 and S. coelicolor A3(2). A restriction endonuclease cleavage map of pIJ101 was constructed for 11 endonucleases; sites for five others were lacking. Many variants of pIJ101 were constructed in vitro by inserting DNA fragments determining resistance to neomycin, thiostrepton or viomycin, and having BamHI termini, into MboI or BclI sites on the plasmid, sometimes with deletion of segments of plasmid DNA. The physical maps of these plasmids were related to their phenotypes in respect of lethal zygosis and transfer properties. In vivo recombination tests between pairs of variant plasmids were also done. These physical and genetic studies indicated that determinants of conjugal transfer occupy less than 2.1 kb of the plasmid. A second segment is required for spread of the plasmid within a plasmid-free culture to produce the normal lethal zygosis phenotype: insertion of foreign DNA in this region caused a marked reduction in the diameter of lethal zygosis zones. The minimum replicon was deduced to be 2.1 kb or less in size; adjacent to this region is a 0.5 kb segment which may be required for stable inheritance of the plasmid. The copy number of several derivatives of pIJ101 in S. lividans 66 was between 40 and 300 per chromosome and appeared to vary with the age or physiological state of the culture. pIJ101 derivatives have a wide host range within the genus Streptomyces: 13 out of 18 strains, of diverse species, were successfully transformed. Knowledge of dispensable DNA segments and the availability of restriction sites for the insertion of DNA, deduced from the properties of plasmids carrying the E. coli plasmid pACYC184 introduced at various sites, was used in the construction of several derivatives of pIJ101 suitable as DNA cloning vectors. These were mostly designed to be non-conjugative and to carry pairs of resistance genes for selection. They include a bifunctional shuttle vector for E. coli and Streptomyces; a Streptomyces viomycin resistance gene of this plasmid is expressed in both hosts.  相似文献   

14.
The conjugative plasmid pIJ101 and its conjugative nondeletion derivatives pIJ303 and pIJ211 were tested for their transferability between strains of Streptomyces on laboratory media and in the soil environment. Their roles in the mobilization of the cloning vector plasmid pIJ702, a nonconjugative deletion derivative of pIJ101, were also examined. Biparental and triparental crosses were performed on agar slants and in sterile soil between the plasmid donor Streptomyces lividans and several recipient Streptomyces strains previously isolated from soil. Conjugative plasmids were transferred to seven recipients in slant crosses and to three recipients in soil. Plasmids isolated from recipients showed restriction fragment patterns identical to that of the original plasmid in S. lividans. Plasmid pIJ303 was transferred less frequently in soil than on slants, and the frequency of transfer was higher at 30 degrees C than at the other temperatures examined. Transconjugant Streptomyces strains differed in their ability to maintain pIJ303. The nonconjugative plasmid pIJ702 was mobilized on agar slants into S. coelicolor 2708, which already contains a self-transmissible plasmid. Plasmid pIJ702 was also mobilized into S. flavovirens, Streptomyces sp. strain 87A, and S. parvulus on slants and in sterile soil after triparental crosses with two donors, one containing pIJ702 and the other containing either pIJ101 or pIJ211. The presence of a conjugative plasmid donor was required for the transfer of pIJ702 to S. parvulus 1234, S. flavovirens 28, and Streptomyces sp. strain 87A. Plasmid pIJ702 was always transferred in its normal, autonomous form. Chromosomal recombination also occurred in transconjugants after the transfer of pIJ702. This is the first report of gene transfer between Streptomyces strains in soil.  相似文献   

15.
The conjugative plasmid pIJ101 and its conjugative nondeletion derivatives pIJ303 and pIJ211 were tested for their transferability between strains of Streptomyces on laboratory media and in the soil environment. Their roles in the mobilization of the cloning vector plasmid pIJ702, a nonconjugative deletion derivative of pIJ101, were also examined. Biparental and triparental crosses were performed on agar slants and in sterile soil between the plasmid donor Streptomyces lividans and several recipient Streptomyces strains previously isolated from soil. Conjugative plasmids were transferred to seven recipients in slant crosses and to three recipients in soil. Plasmids isolated from recipients showed restriction fragment patterns identical to that of the original plasmid in S. lividans. Plasmid pIJ303 was transferred less frequently in soil than on slants, and the frequency of transfer was higher at 30 degrees C than at the other temperatures examined. Transconjugant Streptomyces strains differed in their ability to maintain pIJ303. The nonconjugative plasmid pIJ702 was mobilized on agar slants into S. coelicolor 2708, which already contains a self-transmissible plasmid. Plasmid pIJ702 was also mobilized into S. flavovirens, Streptomyces sp. strain 87A, and S. parvulus on slants and in sterile soil after triparental crosses with two donors, one containing pIJ702 and the other containing either pIJ101 or pIJ211. The presence of a conjugative plasmid donor was required for the transfer of pIJ702 to S. parvulus 1234, S. flavovirens 28, and Streptomyces sp. strain 87A. Plasmid pIJ702 was always transferred in its normal, autonomous form. Chromosomal recombination also occurred in transconjugants after the transfer of pIJ702. This is the first report of gene transfer between Streptomyces strains in soil.  相似文献   

16.
A novel plasmid-mediated DNA restriction-modification system in E. coli   总被引:1,自引:0,他引:1  
R plasmids from 101 clinical isolates were transferred to E. coli J62 by conjugation and tested for the presence of R plasmid-mediated restriction-modification DNA systems. Thirty R plasmids were found to inhibit phage λ. vir development. Ten plasmids determined restriction modification system; nine of them proved identical with R.M. EcoRII. One transconjugant, E. coli J62 pLG74, was shown to have a restriction-modification system different from all the known R plasmid-mediated systems. Site-specific endonuclease has been isolated from E. coli J62 pLG74 which differed from all the known restriction endonucleases in the number of cleavage sites on phages λ, φX 174, virus SV40, plasmid pBR322 DNA molecules.  相似文献   

17.

Background  

Many microbes possess restriction-modification systems that protect them from parasitic DNA molecules. Unfortunately, the presence of a restriction-modification system in a given microbe also hampers genetic analysis. Although plasmids can be successfully conjugated into the enteropathogenic Escherichia coli strain E2348/69 and optimized protocols for competent cell preparation have been developed, we found that a large, low copy (~15) bioluminescent reporter plasmid, pJW15, that we modified for use in EPEC, was exceedingly difficult to transform into E2348/69. We reasoned that a restriction-modification system could be responsible for the low transformation efficiency of E2348/69 and sought to identify and inactivate the responsible gene(s), with the goal of creating an easily transformable strain of EPEC that could complement existing protocols for genetic manipulation of this important pathogen.  相似文献   

18.
W H Rodgers  W Springer  F E Young 《Gene》1982,18(2):133-141
A Streptomyces fradiae DNA sequence, which codes for a neomycin phosphotransferase, has been subcloned from the Streptomyces recombinant plasmid pIJ2 [a chimera between the Streptomyces plasmid SLP1.2 and chromosomal DNA containing a neomycin (Nm) resistance gene] into the BamHI restriction enzyme site of pHV14. Three different recombinant plasmids (pWHR1, pWHR2, pWHR3) have been isolated which transform Escherichia coli to Nm resistance. Southern transfer hybridization experiments show that the recombinant plasmids contain the cloned Streptomyces Nm resistance gene, and lysates of E. coli containing the recombinant plasmids were shown to have Nm phosphotransferase activity, demonstrating that a gene from Streptomyces can be expressed in E. coli.  相似文献   

19.
Plasmid DNA modified by in vitro treatments was transformed in E. coli bacterial cells. A streptomycin-resistant strain, carrying the peculiar rpsL421 mutation, was used as a recipient for the cloning vector pNO1523, which carries the wild-type (streptomycin-sensitive) rpsL allele. Transformants were streptomycin-sensitive unless a change in plasmid sequence had occurred. The analysis of the MaeI restriction pattern of plasmids isolated from streptomycin-resistant transformants, together with the detection of the phenotype that they conferred to a streptomycin-dependent strain, allowed us to identify plasmids that had undergone recombination with the host chromosome. The number of these plasmids exceeded by far that of plasmids resulting from mutational events.  相似文献   

20.
A plasmid transformation system for Rhodococcus sp. strain H13-A was developed by using an Escherichia coli-Rhodococcus shuttle plasmid constructed in this study. Rhodococcus sp. strain H13-A contains three cryptic indigenous plasmids, designated pMVS100, pMVS200, and pMVS300, of 75, 19.5, and 13.4 kilobases (kb), respectively. A 3.8-kb restriction fragment of pMVS300 was cloned into pIJ30, a 6.3-kb pBR322 derivative, containing the E. coli origin of replication (ori) and ampicillin resistance determinant (bla), as well as a Streptomyces gene for thiostrepton resistance, tsr. The resulting 10.1-kb recombinant plasmid, designated pMVS301, was isolated from E. coli DH1(pMVS301) and transformed into Rhodococcus sp. strain AS-50, a derivative of strain H13-A, by polyethylene glycol-assisted transformation of Rhodococcus protoplasts and selection for thiostrepton-resistant transformants. Thiostrepton-resistant transformants were also ampicillin resistant and were shown to contain pMVS301, which was subsequently isolated and transformed back into E. coli. The cloned 3.8-kb fragment of Rhodococcus DNA in pMVS301 contains a Rhodococcus origin of replication, since the hybrid plasmid was capable of replication in both genera. The plasmid was identical in E. coli and Rhodococcus transformants as determined by restriction analysis and was maintained as a stable, independent replicon in both organisms. Optimization of the transformation procedure resulted in transformation frequencies in the range of 10(5) transformants per micrograms of pMVS301 DNA in Rhodococcus sp. strain H13-A and derivative strains. The plasmid host range extends to strains of Rhodococcus erythropolis, R. globulerus, and R. equi, whereas stable transformants were not obtained with R. rhodochrous or with several coryneform bacteria tested as recipients. A restriction map demonstrated 14 unique restriction sites in pMVS301, some of which are potentially useful for molecular cloning in Rhodococcus spp. and other actinomycetes. This is the first report of plasmid transformation and of heterologous gene expression in a Rhodococcus sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号