首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Multiple genetic variants may contribute to the risk of developing Alzheimer’s disease. We have analyzed polymorphisms in 9 genes to determine whether particular combinations would contribute to this risk. The genes were APOE, LDLr, CST3, CTSD, TNF, BACE1, MAPT, STH, eNOS, and TFCP2. Three risk groups for the disease were identified. Risk group I was younger, was heterozygous for the CST3 (GA), CTSD2936 (AG), TNF -308 (AG) genetic variants. Risk group II was older, was homozygous for the −427 APOE promoter polymorphism (TT), and heterozygous for the MAPT deletion and for the STH variant (QR). Group III had both the youngest and oldest subjects, were heterozygous for the −863 (AC) and −1031 (CT) TNF promoter polymorphisms. All three groups carried the APOE 4 allele and were heterozygous for both BACE1 polymorphisms. The control groups were carriers of the APOE 3 allele and were homozygous for the BACE1 genetic variants. C. N. Randall, S. N. Morris, A. D. Winkie and G. R. Parker—STAR students. C. N. Randall, D. Strasburger, J. Prozonic, S. N. Morris, A. D. Winkie, G. R. Parker, D. Cheng and E. M. Fennell contributed equally to this study. Special issue article in honor of Dr. George DeVries.  相似文献   

4.
Receptor for advanced glycation end products (RAGE) is a receptor of the immunoglobulin super family that plays various important roles under physiological and pathological conditions. Compelling evidence suggests that RAGE acts as both an inflammatory intermediary and a critical inducer of oxidative stress, underlying RAGE-induced Alzheimer-like pathophysiological changes that drive the process of Alzheimer’s disease (AD). A critical role of RAGE in AD includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. The steady-state level of Aβ depends on the balance between production and clearance. RAGE plays an important role in the Aβ clearance. RAGE acts as an important transporter via regulating influx of circulating Aβ into brain, whereas the efflux of brain-derived Aβ into the circulation via BBB is implemented by LRP1. RAGE could be an important contributor to Aβ generation via enhancing the activity of β- and/or γ-secretases and activating inflammatory response and oxidative stress. However, sRAGE–Aβ interactions could inhibit Aβ neurotoxicity and promote Aβ clearance from brain. Meanwhile, RAGE could be a promoting factor for the synaptic dysfunction and neuronal circuit dysfunction which are both the material structure of cognition, and the physiological and pathological basis of cognition. In addition, RAGE could be a trigger for the pathogenesis of Aβ and tau hyper-phosphorylation which both participate in the process of cognitive impairment. Preclinical and clinical studies have supported that RAGE inhibitors could be useful in the treatment of AD. Thus, an effective measure to inhibit RAGE may be a novel drug target in AD.  相似文献   

5.
6.
Late onset Alzheimer’s disease (LOAD) etiology is influenced by complex interactions between genetic and environmental risk factors. Large-scale genome wide association studies (GWAS) for LOAD have identified 10 novel risk genes: ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single nucleotide polymorphisms (SNPs) and gene expression levels on clinical and pathological measures of AD in brain tissue from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1 expression levels were associated with clinical dementia rating (CDR), with higher expression being associated with more advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains.  相似文献   

7.
Research over the years has shown that causes of Alzheimer’s disease are not well understood, but over the past years, the involvement of epigenetic mechanisms in the developing memory formation either under pathological or physiological conditions has become clear. The term epigenetics represents the heredity of changes in phenotype that are independent of altered DNA sequences. Different studies validated that cytosine methylation of genomic DNA decreases with age in different tissues of mammals, and therefore, the role of epigenetic factors in developing neurological disorders in aging has been under focus. In this review, we summarized and reviewed the involvement of different epigenetic mechanisms especially the DNA methylation in Alzheimer’s disease (AD), late-onset Alzheimer’s disease (LOAD), familial Alzheimer’s disease (FAD), and autosomal dominant Alzheimer’s disease (ADAD). Down to the minutest of details, we tried to discuss the methylation patterns like mitochondrial DNA methylation and ribosomal DNA (rDNA) methylation. Additionally, we mentioned some therapeutic approaches related to epigenetics, which could provide a potential cure for AD. Moreover, we reviewed some recent studies that validate DNA methylation as a potential biomarker and its role in AD. We hope that this review will provide new insights into the understanding of AD pathogenesis from the epigenetic perspective especially from the perspective of DNA methylation.  相似文献   

8.
9.
10.
11.
12.
13.
The substantia nigra plays important roles in the brain function and is critical in the development of many diseases, particularly Parkinson??s disease. Pathological changes of the substantia nigra have also been reported in other neurodegenerative diseases. Using a quantitative proteomic approach, we investigated protein expressions in the substantia nigra of Alzheimer??s disease, Huntington??s disease, and Multiple sclerosis. The expression level of one hundred and four proteins that were identified in at least three samples of each group were compared with the control group, with nineteen, twenty-two and thirteen proteins differentially expressed in Alzheimer??s diseases, Huntington??s disease and Multiple sclerosis respectively. The result indicates that the substantia nigra also undergoes functional adaption or damage in these diseases.  相似文献   

14.
Recently, a number of single nucleotide polymorphisms (SNPs) were identified to be associated with late-onset Alzheimer disease (LOAD) through genome-wide association study data. Identification of SNP-SNP interaction played an important role in better understanding genetic basis of LOAD. In this study, fifty-eight SNPs were screened in a cohort of 229 LOAD cases and 318 controls from mainland China, and their interaction was evaluated by a series of analysis methods. Seven risk SNPs and six protective SNPs were identified to be associated with LOAD. Risk SNPs included rs9331888 (CLU), rs6691117 (CR1), rs4938933 (MS4A), rs9349407 (CD2AP), rs1160985 (TOMM40), rs4945261 (GAB2) and rs5984894 (PCDH11X); Protective SNPs consisted of rs744373 (BIN1), rs1562990 (MS4A), rs597668 (EXOC3L2), rs9271192 (HLA-DRB5/DRB1), rs157581 and rs11556505 (TOMM40). Among positive SNPs presented above, we found the interaction between rs4938933 (risk) and rs1562990 (protective) in MS4A weakened their each effect for LOAD; for three significant SNPs in TOMM40, their cumulative interaction induced the two protective SNPs effects lost and made the risk SNP effect aggravate for LOAD. Finally, we found rs6656401-rs3865444 (CR1-CD33) pairs were significantly associated with decreasing LOAD risk, while rs28834970-rs6656401 (PTK2B-CR1), and rs28834970-rs6656401 (PTK2B-CD33) were associated with increasing LOAD risk. In a word, our study indicates that SNP-SNP interaction existed in the same gene or cross different genes, which could weaken or aggravate their initial single effects for LOAD.  相似文献   

15.
Problems Associated with Biological Markers of Alzheimer’s Disease   总被引:3,自引:0,他引:3  
The etiopathogenesis of Alzheimer’s disease (AD) is still unclear, although clinical diagnostic criteria exist and the neuropathology of AD has been studied in great detail during the last 20 years. The present study addresses certain problems in the search for biological markers for the diagnosis, as well as in the follow-up of the course of AD and its differential diagnosis and reports some of our own observations in comparison with other studies. These include protein, genetic and neuroimaging markers. The definitions of biological markers and search strategies are also discussed. Special issue dedicated to Dr. Simo S. Oja  相似文献   

16.
17.
Markers of Alzheimer’s disease (AD) are being widely sought with a number of studies suggesting blood measures of inflammatory proteins as putative biomarkers. Here we report findings from a panel of 27 cytokines and related proteins in over 350 subjects with AD, subjects with Mild Cognitive Impairment (MCI) and elderly normal controls where we also have measures of longitudinal change in cognition and baseline neuroimaging measures of atrophy. In this study, we identify five inflammatory proteins associated with evidence of atrophy on MR imaging data particularly in whole brain, ventricular and entorhinal cortex measures. In addition, we observed six analytes that showed significant change (over a period of one year) in people with fast cognitive decline compared to those with intermediate and slow decline. One of these (IL-10) was also associated with brain atrophy in AD. In conclusion, IL-10 was associated with both clinical and imaging evidence of severity of disease and might therefore have potential to act as biomarker of disease progression.  相似文献   

18.
Alzheimer’s disease (AD) is the most common incurable neurodegenerative disorder that affects the processes of memory formation and storage. The loss of dendritic spines and alteration in their morphology in AD correlate with the extent of patient’s cognitive decline. Tubulin had been believed to be restricted to dendritic shafts, until recent studies demonstrated that dynamically growing tubulin microtubules enter dendritic spines and promote their maturation. Abnormalities of tubulin cytoskeleton may contribute to the process of dendritic spine shape alteration and their subsequent loss in AD. In this review, association between tubulin cytoskeleton dynamics and dendritic spine morphology is discussed in the context of dendritic spine alterations in AD. Potential implications of these findings for the development of AD therapy are proposed.  相似文献   

19.
Various types of lipids and their metabolic products associated with the biological membrane play a crucial role in signal transduction, modulation, and activation of receptors and as precursors of bioactive lipid mediators. Dysfunction in the lipid homeostasis in the brain could be a risk factor for the many types of neurodegenerative disorders, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. These neurodegenerative disorders are marked by extensive neuronal apoptosis, gliosis, and alteration in the differentiation, proliferation, and development of neurons. Sphingomyelin, a constituent of plasma membrane, as well as its primary metabolite ceramide acts as a potential lipid second messenger molecule linked with the modulation of various cellular signaling pathways. Excessive production of reactive oxygen species associated with enhanced oxidative stress has been implicated with these molecules and involved in the regulation of a variety of different neurodegenerative and neuroinflammatory disorders. Studies have shown that alterations in the levels of plasma lipid/cholesterol concentration may result to neurodegenerative diseases. Alteration in the levels of inflammatory cytokines and mediators in the brain has also been found to be implicated in the pathophysiology of neurodegenerative diseases. Although several mechanisms involved in neuronal apoptosis have been described, the molecular mechanisms underlying the correlation between lipid metabolism and the neurological deficits are not clearly understood. In the present review, an attempt has been made to provide detailed information about the association of lipids in neurodegeneration especially in Alzheimer’s disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号