首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leishmania are intracellular protozoan parasites that reside primarily in host mononuclear phagocytes. Infection of host macrophages is initiated by infective promastigote stages and perpetuated by an obligate intracellular amastigote stage. Studies undertaken over the last decade have shown that the composition of the complex surface glycocalyx of these stages (comprising lipophosphoglycan, GPI-anchored glycoproteins, proteophosphoglycans and free GPI glycolipids) changes dramatically as promastigotes differentiate into amastigotes. Marked stage-specific changes also occur in the expression of other plasma membrane components, including type-1, polytopic and peripheral membrane proteins, reflecting the distinct microbicidal responses and nutritional environments encountered by these stages. More recently, a number of Leishmania mutants lacking single or multiple surface components have been generated. While some of these mutants are less virulent than wild type parasites, many of these mutants exhibit only mild or no loss of virulence. These studies suggest that, 1) the major surface glycocalyx components of the promastigote stage (i.e. LPG, GPI-anchored proteins) only have a transient or minor role in macrophage invasion, 2) that there is considerable functional redundancy in the surface glycocalyx and/or loss of some components can be compensated for by the acquisition of equivalent host glycolipids, 3) the expression of specific nutrient transporters is essential for life in the macrophage and 4) the role(s) of some surface components differ markedly in different Leishmania species. These mutants will be useful for identifying other surface or intracellular components that are required for virulence in macrophages.  相似文献   

2.
Many eukaryotic cell-surface proteins are post-translationally modified by a glycosylphosphatidylinositol (GPI) moiety that anchors them to the cell membrane. The biosynthesis of GPI anchors is initiated in the endoplasmic reticulum by transfer of GlcNAc from UDP-GlcNAc to phosphatidylinositol. This reaction is catalyzed by GPI GlcNAc transferase, a multisubunit complex comprising the catalytic subunit Gpi3/PIG-A as well as at least five other subunits, including the hydrophobic protein Gpi2, which is essential for the activity of the complex in yeast and mammals, but the function of which is not known. To investigate the role of Gpi2, we exploited Trypanosoma brucei (Tb), an early diverging eukaryote and important model organism that initially provided the first insights into GPI structure and biosynthesis. We generated insect-stage (procyclic) trypanosomes that lack TbGPI2 and found that in TbGPI2-null parasites, (i) GPI GlcNAc transferase activity is reduced, but not lost, in contrast with yeast and human cells, (ii) the GPI GlcNAc transferase complex persists, but its architecture is affected, with loss of at least the TbGPI1 subunit, and (iii) the GPI anchors of procyclins, the major surface proteins, are underglycosylated when compared with their WT counterparts, indicating the importance of TbGPI2 for reactions that occur in the Golgi apparatus. Immunofluorescence microscopy localized TbGPI2 not only to the endoplasmic reticulum but also to the Golgi apparatus, suggesting that in addition to its expected function as a subunit of the GPI GlcNAc transferase complex, TbGPI2 may have an enigmatic noncanonical role in Golgi-localized GPI anchor modification in trypanosomes.  相似文献   

3.
Glycosylphosphatidylinositol (GPI) is widely used by eukaryotic cell surface proteins for membrane attachment. De novo synthesized GPI precursors are attached to proteins post-translationally by the enzyme complex, GPI transamidase. TbGPI16, a component of the trypanosome transamidase, shares similarity with human PIG-T. Here, we show that TbGPI16 is the orthologue of PIG-T and an essential component of GPI transamidase by creating a TbGPI16 knockout. TbGPI16 forms a disulfide-linked complex with TbGPI8. A cysteine to serine mutant of TbGPI16 was unable to fully restore the surface expression of GPI-anchored proteins upon transfection into the knockout cells, indicating that its disulfide linkage with TbGPI8 is important for the full transamidase activity.  相似文献   

4.
The cell surface of the parasitic protozoan Leishmania mexicana is coated by glycosylphosphatidylinositol (GPI)-anchored glycoproteins, a GPI-anchored lipophosphoglycan and a class of free GPI glycolipids. To investigate whether the anchor or free GPIs are required for parasite growth we cloned the L.mexicana gene for dolichol-phosphate-mannose synthase (DPMS) and attempted to create DPMS knockout mutants by targeted gene deletion. DPMS catalyzes the formation of dolichol-phosphate mannose, the sugar donor for all mannose additions in the biosynthesis of both the anchor and free GPIs, except for a alpha1-3-linked mannose residue that is added exclusively to the free GPIs and lipophosphoglycan anchor precursors. The requirement for dolichol-phosphate-mannose in other glycosylation pathways in L.mexicana is minimal. Deletion of both alleles of the DPMS gene (lmdpms) consistently resulted in amplification of the lmdpms chromosomal locus unless the promastigotes were first transfected with an episomal copy of lmdpms, indicating that lmdpms, and possibly GPI biosynthesis, is essential for parasite growth. As evidence presented in this and previous studies indicates that neither GPI-anchored glycoproteins nor lipophosphoglycan are required for growth of cultured parasites, it is possible that the abundant and functionally uncharacterized free GPIs are essential membrane components.  相似文献   

5.
The second step of glycosylphosphatidylinositol anchor biosynthesis in all eukaryotes is the conversion of D-GlcNAcalpha1-6-d-myo-inositol-1-HPO(4)-sn-1,2-diacylglycerol (GlcNAc-PI) to d-GlcNalpha1-6-d-myo-inositol-1-HPO(4)-sn-1,2-diacylglycerol by GlcNAc-PI de-N-acetylase. The genes encoding this activity are PIG-L and GPI12 in mammals and yeast, respectively. Fragments of putative GlcNAc-PI de-N-acetylase genes from Trypanosoma brucei and Leishmania major were identified in the respective genome project data bases. The full-length genes TbGPI12 and LmGPI12 were subsequently cloned, sequenced, and shown to complement a PIG-L-deficient Chinese hamster ovary cell line and restore surface expression of GPI-anchored proteins. A tetracycline-inducible bloodstream form T. brucei TbGPI12 conditional null mutant cell line was created and analyzed under nonpermissive conditions. TbGPI12 mRNA levels were reduced to undetectable levels within 8 h of tetracycline removal, and the cells died after 3-4 days. This demonstrates that TbGPI12 is an essential gene for the tsetse-transmitted parasite that causes Nagana in cattle and African sleeping sickness in humans. It also validates GlcNAc-PI de-N-acetylase as a potential drug target against these diseases. Washed parasite membranes were prepared from the conditional null mutant parasites after 48 h without tetracycline. These membranes were shown to be greatly reduced in GlcNAc-PI de-N-acetylase activity, but they retained their ability to make GlcNAc-PI and to process d-GlcNalpha1-6-d-myo-inositol-1-HPO(4)-sn-1,2-diacylglycerol to later glycosylphosphatidylinositol intermediates. These results suggest that the stabilities of other glycosylphosphatidylinositol pathway enzymes are not dependent on GlcNAc-PI de-N-acetylase levels.  相似文献   

6.
GPI mannosyltransferase I (GPI-MT-I) transfers the first mannose to a GPI-anchor precursor, glucosamine-(acyl)phosphatidylinositol [GlcN-(acyl)PI]. Mammalian GPI-MT-I consists of two components, PIG-M and PIG-X, which are homologous to Gpi14p and Pbn1p in Saccharomyces cerevisiae, respectively. In the present study, we disrupted yeast GPI14 and analysed the phenotype of gpi14 yeast. The gpi14 haploid cells were inviable and accumulated GlcN-(acyl)PI. We cloned PIG-M homologues from human, Plasmodium falciparum (PfPIG-M) and Trypanosoma brucei (TbGPI14), and tested whether they could complement gpi14-disrupted yeast. None of them restored GPI-MT-I activity and cell growth in gpi14-disrupted yeast. However, gpi14-disrupted yeast cells with human PIG-M, but not with PfPIG-M or TbGPI14, grew slowly but significantly when they were supplemented with rat PIG-X. This suggests that the association of PIG-X and PIG-M for GPI-MT-I activity is not interchangeable between mammals and the other lower eukaryotes.  相似文献   

7.
A Trypanosoma brucei TbGPI12 null mutant that is unable to express cell surface procyclins and free glycosylphosphatidylinositols (GPI) revealed that these are not the only surface coat molecules of the procyclic life cycle stage. Here, we show that non-GPI-anchored procyclins are N-glycosylated, accumulate in the lysosome, and appear as proteolytic fragments in the medium. We also show, using lectin agglutination and galactose oxidase-NaB3H4 labeling, that the cell surface of the TbGPI12 null parasites contains glycoconjugates that terminate in sialic acid linked to galactose. Following desialylation, a high-apparent-molecular-weight glycoconjugate fraction was purified by ricin affinity chromatography and gel filtration and shown to contain mannose, galactose, N-acetylglucosamine, and fucose. The latter has not been previously reported in T. brucei glycoproteins. A proteomic analysis of this fraction revealed a mixture of polytopic transmembrane proteins, including P-type ATPase and vacuolar proton-translocating pyrophosphatase. Immunolocalization studies showed that both could be labeled on the surfaces of wild-type and TbGPI12 null cells. Neither galactose oxidase-NaB3H4 labeling of the non-GPI-anchored surface glycoconjugates nor immunogold labeling of the P-type ATPase was affected by the presence of procyclins in the wild-type cells, suggesting that the procyclins do not, by themselves, form a macromolecular barrier.The tsetse fly-transmitted protozoan parasite Trypanosoma brucei causes human sleeping sickness and the cattle disease Nagana in sub-Saharan Africa. The organism undergoes a complex life cycle between the mammalian host and the insect, tsetse, vector. The bloodstream form of the parasite expresses a dense monolayer of glycosylphosphatidylinositol (GPI)- anchored variant surface glycoprotein dimers and avoids specific immune responses through antigenic variation (32, 47). Following ingestion in a blood meal, the parasites differentiate into procyclic-form parasites that colonize the tsetse midgut. The procyclic trypanosomes express a radically different cell surface coat that includes about 3 × 106 procyclin glycoproteins (28, 36, 37) and about 1 × 106 poly-N-acetyllactosamine-containing free GPIs (19, 29, 39, 55). The procyclins are polyanionic, rod-like (38, 50) proteins encoded by procyclin genes. In T. brucei strain 427, used in this study, the parasites contain (per diploid genome) two copies of the GPEET1 gene, encoding 6 Gly-Pro-Glu-Glu-Thr repeats; one copy each of the EP1-1 and EP1-2 genes, encoding EP1 procyclins with 30 and 25 Glu-Pro repeats, respectively; two copies of the EP2-1 gene, encoding EP2 procyclin with 25 Glu-Pro repeats; and two copies of the EP3-1 gene, encoding EP3 procyclin with 22 Glu-Pro repeats (1). The EP1 and EP3 procyclins contain a single N-glycosylation site, occupied exclusively by a conventional Man5GlcNAc2 oligosaccharide, at the N-terminal side of the Glu-Pro repeat domain (1, 50). Whereas neither EP2 nor GPEET procyclin is N-glycosylated, GPEET1 procyclin is phosphorylated on six out of seven Thr residues (25). In culture, the procyclin expression profile depends on the carbon source (56) and metabolic state of the cells (27), and in the tsetse fly, there appears to be a program of procyclin expression such that GPEET procyclin is expressed early, giving way to EP1 and EP3 procyclin expression (2, 54). GPEET and EP procyclins contain similar GPI membrane anchors. These are based on the ubiquitous ethanolamine-P-6Manα1-2Manα1-6Manα1-4GlcNα1-6PI core (where, in this case, the PI lipid is a 2-O-acyl-myo-inositol-1-P-sn-2-lyso-1-O-acylglycerol structure [50]), but they also contain the largest and most complex known GPI side chains. These side chains are large poly-disperse-branched poly-N-acetyllactosamine structures (with an average of about 8 to 12 repeats, depending on the preparation) that can terminate with α2- and α3-linked sialic acid residues (9, 50). Sialic acid is transferred from serum sialoglycoconjugates to terminal β-galactosidase residues by the action of a cell surface GPI-anchored trans-sialidase enzyme (7, 26, 34). The trans-sialylation of surface components plays a role in the successful colonization of the tsetse fly (29). In vivo, the N termini of the procyclins are removed by tsetse fly gut proteases (2), though the role of this event is unclear (20) and it is thought that the underlying (protease-resistant) anionic repeat units and associated GPI anchor side chains might protect the parasite from the approach of tsetse fly gut hydrolases (2).The cell surface architecture of procyclic trypanosomes has been manipulated by the gene knockout of the procyclin genes themselves (55, 57), by galactose starvation (39), and by the knockout or knockdown of genes encoding enzymes of the GPI biosynthetic pathway, i.e., TbGPI10, TbGPI8, and TbGPI12 (11, 19, 29, 30). The procyclin TbGPI10 and TbGPI8 knockouts all resulted in parasites devoid of GPI-anchored procyclins, but this was compensated for by an upregulation in free GPI expression. However, the TbGPI12 null mutants that cannot synthesize GPI structures beyond GlcNAc-PI, revealed the presence of previously unidentified non-GPI-anchored surface coat components. In this paper, we characterize the fate of non-GPI-anchored procyclin protein and characterize the non-GPI-anchored surface coat components.  相似文献   

8.
The survival of Trypanosoma brucei, the causative agent of Sleeping Sickness and Nagana, is facilitated by the expression of a dense surface coat of glycosylphosphatidylinositol (GPI)-anchored proteins in both its mammalian and tsetse fly hosts. We have characterized T. brucei GPI8, the gene encoding the catalytic subunit of the GPI:protein transamidase complex that adds preformed GPI anchors onto nascent polypeptides. Deletion of GPI8 (to give Deltagpi8) resulted in the absence of GPI-anchored proteins from the cell surface of procyclic form trypanosomes and accumulation of a pool of non-protein-linked GPI molecules, some of which are surface located. Procyclic Deltagpi8, while viable in culture, were unable to establish infections in the tsetse midgut, confirming that GPI-anchored proteins are essential for insect-parasite interactions. Applying specific inducible GPI8 RNAi with bloodstream form parasites resulted in accumulation of unanchored variant surface glycoprotein and cell death with a defined multinuclear, multikinetoplast, and multiflagellar phenotype indicative of a block in cytokinesis. These data show that GPI-anchored proteins are essential for the viability of bloodstream form trypanosomes even in the absence of immune challenge and imply that GPI8 is important for proper cell cycle progression.  相似文献   

9.
African trypanosomes (Trypanosoma brucei) are digenetic parasites whose lifecycle alternates between the mammalian bloodstream and the midgut of the tsetse fly vector. In mammals, proliferating long slender parasites transform into non-diving short stumpy forms, which differentiate into procyclic forms when ingested by the tsetse fly. A hallmark of differentiation is the replacement of the bloodstream stage surface coat composed of variant surface glycoprotein (VSG) with a new coat composed of procylin. An undefined endoprotease and endogenous glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) have been implicated in releasing the old VSG coat. However, GPI hydrolysis has been considered unimportant because (i) GPI-PLC null mutants are fully viable and (ii) cytosolic GPI-PLC is localized away from cell surface VSG. Utilizing an in vitro differentiation assay with pleomorphic strains we have investigated these modes of VSG release. Shedding is initially by GPI hydrolysis, which ultimately accounts for a substantial portion of total release. Surface biotinylation assays indicate that GPI-PLC does gain access to extracellular VSG, suggesting that this mode is primed in the starting short stumpy population. Proteolytic release is up-regulated during differentiation and is stereoselectively inhibited by peptidomimetic collagenase inhibitors, implicating a zinc metalloprotease. This protease may be related to TbMSP-B, a trypanosomal homologue of Leishmania major surface protease (MSP) described in the accompanying paper (LaCount, D. J., Gruszynski, A. E., Grandgenett, P. M., Bangs, J. D., and Donelson, J. E. (2003) J. Biol. Chem. 278, 24658-24664). Overall, our results demonstrate that surface coat remodeling during differentiation has multiple mechanisms and that GPI-PLC plays a more significant role in VSG release than previously thought.  相似文献   

10.
Virtually all cell surface proteins and many cell membrane lipids are glycosylated, creating a cell surface glycocalyx. The glycan chains attached to cell surface glycoproteins and glycolipids are complex structures with specific additions that determine functions of the glycans in cell–cell communication and cell sensing of the environment. One type of specific modification of cell surface glycans is decoration of glycan termini by sialic acids. On T cells, these terminal sialic acid residues are involved in almost every aspect of T cell fate and function, from cell maturation, differentiation, and migration to cell survival and cell death. The roles that sialylated glycans play in T cell development and function, including binding to specific sialic acid-binding lectins, are reviewed here.  相似文献   

11.
Previous studies have shown that the GDP-fucose:N-acetylglucosaminide 3-alpha-L-fucosyltransferase (alpha (1,3) fucosyltransferase (Fuc-T)) activities expressed by the Chinese hamster ovary cell mutants LEC11 (Fuc-TI) and LEC12 (Fuc-TII) are different enzymes and indicated that Fuc-TI might act on sialylated lactosamine sequences (Campbell, C., and Stanley, P. (1984) J. Biol. Chem. 259, 11208-11214). In this paper we show that CSLEX-1, a monoclonal antibody specific for NeuNac alpha (2,3)Gal beta (1,4)(Fuc alpha (1,3))GlcNAc beta 1 sequences, bound to LEC11 cells but not to LEC12 cells. Direct evidence that Fuc-TI could act on sialylated substrates was sought with a series of glycolipid acceptors. Optimal assay conditions in crude cell extracts were determined with nLc4, a glycolipid which accepted fucose with both Fuc-TI and Fuc-TII to generate the Lex antigenic determinant. The two enzymes differed in their detergent sensitivities, pH optima, Mn2+ requirements, and apparent Km values for nLc4. When sialylated glycolipids were examined as substrates, Fuc-TI added fucose to IV3NeuNAcnLc4 but not to IV6NeuNAcnLc4, whereas Fuc-TII was unable to utilize either glycolipid as a substrate. Further studies showed that Fuc-TI and Fuc-TII possess novel specificities for glycolipids containing two lactosamine sequences as potential fucose acceptors. Fuc-TI exhibited good activities with VI3NeuNAcnLc6 and VI6NeuNAcnLc6 whereas Fuc-TII had very low activity with both substrates. Glycosidase digestions of the labeled products showed that Fuc-TI added fucose primarily to the internal N-acetylglucosamine of both glycolipids. The same preference for the internal N-acetylglucosamine was shown by Fuc-TI when nLc6 was the acceptor. In contrast, Fuc-TII preferred to transfer fucose to the external acceptor site of nLc6, consistent with the low activities of Fuc-TII with sialylated nLc6 derivatives. Thus the two enzymes preferentially add fucose to different N-acetylglucosamines in the same substrate, nLc6. This indicates that the biosynthetic pathway for fucosylation of polylactosamine sequences in glycolipids and glycoproteins will vary depending upon the particular alpha (1,3)fucosyltransferase present.  相似文献   

12.
Terminal sialic acid residues are found in abundance in glycan chains of glycoproteins and glycolipids on the surface of all live cells forming an outer layer of the cell originally known as glycocalyx. Their presence affects the molecular properties and structure of glycoconjugates, modifying their function and interactions with other molecules. Consequently, the sialylation state of glycoproteins and glycolipids has been recognized as a critical factor modulating molecular recognitions inside the cell, between the cells, between the cells and the extracellular matrix, and between the cells and certain exogenous pathogens. Until recently sialyltransferases that catalyze transfer of sialic acid residues to the glycan chains in the process of their biosynthesis were thought to be mainly responsible for the creation and maintenance of a temporal and spatial diversity of sialylated moieties. However, the growing evidence suggests that in mammalian cells, at least equally important roles belong to sialidases/neuraminidases, which are located on the cell surface and in intracellular compartments, and may either initiate the catabolism of sialoglycoconjugates or just cleave their sialic acid residues, and thereby contribute to temporal changes in their structure and functions. The current review summarizes emerging data demonstrating that mammalian neuraminidase 1, well known for its lysosomal catabolic function, is also targeted to the cell surface and assumes the previously unrecognized role as a structural and functional modulator of cellular receptors.  相似文献   

13.
Terminal sialic acid residues are found in abundance in glycan chains of glycoproteins and glycolipids on the surface of all live cells forming an outer layer of the cell originally known as glycocalyx. Their presence affects the molecular properties and structure of glycoconjugates, modifying their function and interactions with other molecules. Consequently, the sialylation state of glycoproteins and glycolipids has been recognized as a critical factor modulating molecular recognitions inside the cell, between the cells, between the cells and the extracellular matrix, and between the cells and certain exogenous pathogens. Sialyltransferases that attach sialic acid residues to the glycan chains in the process of their initial synthesis were thought to be mainly responsible for the creation and maintenance of a temporal and spatial diversity of sialylated moieties. However, the growing evidence also suggests that in mammalian cells, at least equally important roles belong to sialidases/neuraminidases, which are located on the cell surface and in intracellular compartments, and may either initiate the catabolism of sialoglycoconjugates or just cleave their sialic acid residues, and thereby contribute to temporal changes in their structure and functions. The current review summarizes emerging data demonstrating that neuraminidase 1 (NEU1), well known for its lysosomal catabolic function, can be also targeted to the cell surface and assume the previously unrecognized role as a structural and functional modulator of cellular receptors.  相似文献   

14.
Modification of the cell surface with synthetic glycolipids opens up a wide range of possibilities for studying the function of glycolipids. Synthetic glycolipids called Function-Spacer-Lipids (FSL; where F is a glycan or label, S is a spacer, and L is dioleoylphosphatidyl ethanolamine) easily and controllably modify the membrane of a living cells. This current study investigates the dynamics and mechanism of the FSL insertion and release/loss. FSL insert into the cell membrane (~1 million molecules per cell) within tens of minutes, almost regardless of the nature of the cells (including the thickness of their glycocalyx) and the size of the FSL glycan. FSLs do not accumulate uniformly, but instead form patches >300 nm in size either entrapped in the glycocalyx, or integrated in the plane of the plasma membrane, but always outside the cell rafts. The natural release (loss) of FSL from the modified cell was two orders of magnitude slower than attachment/insertion and occurred mainly in the form of released microvesicles with a size of 140 ± 5 nm. The accumulation of FSL as patches in the cell membrane is similar to the coalescence of natural glycosphingolipids and supports (along with their long residence time in the membrane) the use of FSL as probes for the study of glycosphingolipid-protein interactions.  相似文献   

15.
Glycosylphosphatidylinositols (GPI) are essential components in the plasma membrane of the protozoan parasite Leishmania mexicana, both as membrane anchors for the major surface macromolecules and as the sole class of free glycolipids. We provide evidence that L.mexicana dolichol-phosphate-mannose synthase (DPMS), a key enzyme in GPI biosynthesis, is localized to a distinct tubular subdomain of the endoplasmic reticulum (ER), based on the localization of a green fluorescent protein (GFP)-DPMS chimera and subcellular fractionation experiments. This tubular membrane (termed the DPMS tubule) is also enriched in other enzymes involved in GPI biosynthesis, can be specifically stained with the fluorescent lipid, BODIPY-C5-ceramide, and appears to be connected to specific subpellicular microtubules that underlie the plasma membrane. Perturbation of microtubules and DPMS tubule structure in vivo results in the selective accumulation of GPI anchor precursors, but not free GPIs. The DPMS tubule is closely associated morphologically with the single Golgi apparatus in non-dividing and dividing cells, appears to exclude luminal ER resident proteins and is labeled, together with the Golgi apparatus, with another GFP chimera containing the heterologous human Golgi marker beta1,2-N-acetylglucosaminyltransferase-I. The possibility that the DPMS-tubule is a stable transitional ER is discussed.  相似文献   

16.
Summary The conformational state of the glycocalyx of the intact and altered erythrocyte membrane was studied by means of the topo-optical toluidine blue reaction, i.e. induced membrane birefringence. High membrane anisotropy represents the normal glycocalyx structure and its decline represents their perturbation. The results show that the glycocalyx structure is changed during ageing of the erythrocytes in vivo as well as in vitro. During fluid preservation, in vitro ageing and vesiculation of cells in vitro, a subpopulation of cells showed a decline of membrane anisotropy, but other cells demonstrated abnormally high values. In the latter cases, there is usually a correlation to spherocytes. From this point of view, it is to be assumed that spherogenesis during cell ageing is induced by cell vesiculation. This leads to a remodelling of an intact plasmalemma. In contrast, the cell fractions which are probably non-vesiculating seem to be more or less damaged by membrane and/or plasmic hydrolases. This can be mimicked by neuraminidase and protease treatment of erythrocytes in vitro. Membrane lesions caused by freeze preservation of red blood cells are rare. The topo-optical results are interpreted according to the assumptions of the theory of membrane anisotropy, i.e. the formation of dye-stuff micelles at distinct, clustered, sialylated carbohydrate chains of the gluycophorin A.  相似文献   

17.
Glycosylphosphatidylinositol (GPI)-anchored proteins are involved in cell wall integrity and cell-cell interactions. We disrupted the Candida albicans homologue of the Saccharomyces cerevisiae GPI7/LAS21 gene, which encodes a GPI anchor-modifying activity. In the mutant and on solid media, the yeast-to-hyphae transition was blocked, whereas chlamydospore formation was enhanced. However, the morphogenetic switch was normal in liquid medium. Abnormal budding patterns, cytokinesis and cell shape were observed in both liquid and solid media. The cell wall structure was also modified in the mutants, as shown by hypersensitivity to Calcofluor white. In vitro and in vivo assays revealed that the mutant interacted with its host in a modified way, resulting in reduced virulence in mice and reduced survival in the gastrointestinal environment of mice. The mitogen-activated protein (MAP) kinase pathway of macrophages was downregulated by the wild-type cells but not by the DeltaCagpi7 null strains. In agreement with this abnormal behaviour, mutant cells were more sensitive to the lytic action of macrophages. Our results indicate that a functional GPI anchor is required for full hyphal formation in C. albicans, and that perturbation of the GPI biosynthesis results in hypersensitivity to host defences.  相似文献   

18.
Glycosylphosphatidylinositols (GPIs) are attached to the C termini of some glycosylated secretory proteins, serving as membrane anchors for many of those on the cell surface. Biosynthesis of GPIs is initiated by the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to phosphatidylinositol. This reaction is carried out at the endoplasmic reticulum (ER) by an enzyme complex called GPI-N-acetylglucosaminyltransferase (GPI-GlcNAc transferase). The human enzyme has six known subunits, at least four of which, GPI1, PIG-A, PIG-C, and PIG-H, have functional homologs in the budding yeast Saccharomyces cerevisiae. The uncharacterized yeast gene YDR437w encodes a protein with some sequence similarity to human PIG-P, a fifth subunit of the GPI-GlcNAc transferase. Here we show that Ydr437w is a small but essential subunit of the yeast GPI-GlcNAc transferase, and we designate its gene GPI19. Similar to other mutants in the yeast enzyme, temperature-sensitive gpi19 mutants display cell wall defects and hyperactive Ras phenotypes. The Gpi19 protein associates with the yeast GPI-GlcNAc transferase in vivo, as judged by coimmuneprecipitation with the Gpi2 subunit. Moreover, conditional gpi19 mutants are defective for GPI-GlcNAc transferase activity in vitro. Finally, we present evidence for the topology of Gpi19 within the ER membrane.  相似文献   

19.
Many eukaryotic proteins are anchored to the cell surface via glycosylphosphatidylinositol (GPI), which is posttranslationally attached to the carboxyl-terminus by GPI transamidase. The mammalian GPI transamidase is a complex of at least four subunits, GPI8, GAA1, PIG-S, and PIG-T. Here, we report Chinese hamster ovary cells representing a new complementation group of GPI-anchored protein-deficient mutants, class U. The class U cells accumulated mature and immature GPI and did not have in vitro GPI transamidase activity. We cloned the gene responsible, termed PIG-U, that encoded a 435-amino-acid hydrophobic protein. The GPI transamidase complex affinity-purified from cells expressing epitope-tagged-GPI8 contained PIG-U and four other known components. Cells lacking PIG-U formed complexes of the four other components normally but had no ability to cleave the GPI attachment signal peptide. Saccharomyces cerevisiae Cdc91p, with 28% amino acid identity to PIG-U, partially restored GPI-anchored proteins on the surface of class U cells. PIG-U and Cdc91p have a functionally important short region with similarity to a region conserved in long-chain fatty acid elongases. Taken together, PIG-U and the yeast orthologue Cdc91p are the fifth component of GPI transamidase that may be involved in the recognition of either the GPI attachment signal or the lipid portion of GPI.  相似文献   

20.
In addition to serving as membrane anchors for cell surface proteins, glycosylphosphatidylinositols (GPIs) can be found abundantly as free glycolipids in mammalian cells. In this study we analyze the subcellular distribution and intracellular transport of metabolically radiolabeled GPIs in three different cell lines. We use a variety of membrane isolation techniques (subcellular fractionation, plasma membrane vesiculation to isolate pure plasma membrane fractions, and enveloped viruses to sample cellular membranes) to provide direct evidence that free GPIs are not confined to their site of synthesis, the endoplasmic reticulum, but can redistribute to populate other subcellular organelles. Over short labeling periods (2.5 h), radiolabeled GPIs were found at similar concentration in all subcellular fractions with the exception of a mitochondria-enriched fraction where GPI concentration was low. Pulse-chase experiments over extended chase periods showed that although the total amount of cellular radiolabeled GPIs decreased, the plasma membrane complement of labeled GPIs increased. GPIs at the plasma membrane were found to populate primarily the exoplasmic leaflet as detected using periodate oxidation of the cell surface. Transport of GPIs to the cell surface was inhibited by Brefeldin A and blocked at 15 degrees C, suggesting that GPIs are transported to the plasma membrane via a vesicular mechanism. The rate of transport of radiolabeled GPIs to the cell surface was found to be comparable with the rate of secretion of newly synthesized soluble proteins destined for the extracellular space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号