首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For microbial production of CH4 from H2 and CO2, a hollow fiber reactor had been developed to increase an interfacial area between liquid and gas phases. The CH4 production with the hollow fiber reactor was analyzed by applying a plug flow reaction model of a tubular reactor. It was possible to apply the model to the reaction of CH4 production. The relationships between influent gas velocity, length of reactor and reaction yield were simulated by the reaction model. The plug flow reaction model was useful to design a hollow fiber bioreactor for the biomethanation of H2 and CO2.  相似文献   

2.
The initial reaction mechanisms for depositing ZrO2 thin films using ansa-metallocene zirconium (Cp2CMe2)ZrMe2 precursor were studied by density functional theory (DFT) calculations. The (Cp2CMe2)ZrMe2 precursor could be absorbed on the hydroxylated Si(1 0 0) surface via physisorption. Possible reaction pathways of (Cp2CMe2)ZrMe2 were proposed. For each reaction, the activation energies and reaction energies were compared, and stationary points along the reaction pathways were shown. In addition, the influence of dispersion effects on the reactions was evaluated by non-local dispersion corrected DFT calculations.  相似文献   

3.
4.
《Analytical biochemistry》1987,164(1):132-137
Histamine reacts with orthophthalaldehyde (OPA) in an alkaline medium to form an unstable fluorescent adduct (Fbase). Acidification of the solution gives a stable adduct (Facid). In order to elucidate the mechanism of this fluorescence reaction, a kinetic study of this reaction was carried out. Although Fbase was believed to be the precursor of Facid, it was shown not to be the precursor of Facid owing to the effects of the reaction time in an alkaline medium and OPA concentration on the yields of Fbase and Facid. The kinetic analysis of the formation and degradation of Fbase revealed the pathway of the fluorescence reaction. On the basis of the results obtained in this study, the mechanism of the fluorescence reaction is proposed.  相似文献   

5.
Summary The enzymatic hydrolysis reaction in supercritical CO2 to produce glucose from cellulosic material Avicel was investigated. In comparison with the result from the enzymatic hydrolysis reaction of Avicel without CO2 introduced as a reaction medium, the reaction rate and glucose concentration are increased.  相似文献   

6.
The kinetics of folding of the two forms of unfolded ribonuclease A have been measured as a function of solvent viscosity by adding either glycerol or sucrose. The aim is to find out if either reaction is rate limited by segmental motion whose rate depends on external friction. The fast folding reaction (U2 ? N) is known to be the direct folding process, and the slow folding reaction (U1 ? N) is known to be rate limited by an interconversion between two forms (U1 ? U2) which are present after unfolding in strongly denaturing conditions. No dependence on solvent viscosity is found, either for the direct folding reaction or for the interconversion reaction. Each folding reaction has also been tested to see if its rate depends on the concentration of one or more partly folded intermediates, by adding denaturants destabilize any partly folded structures. Different guanidine salts are used as denaturants to vary the denaturing effectiveness of the salt while holding the guanidinium ion concentration constant. The rates both of the direct folding reaction and of the interconversion reaction decrease in relation to the denaturing effectiveness of the salt. However, there is a basic difference between the responses of the fast and slow folding reactions to low concentrations of denaturants. Although each folding reaction produces native protein, there is an 800-fold decrease in the rate of the fast folding reaction in 1M guanidine thiocyanate and only a 13-fold decrease in the rate of the slow folding reaction. This is consistent with the fast reaction being the direct folding process and the slow reaction being rate limited by the initial conversion of the slowrefolding to the fast-refolding form. Both the lack of viscosity dependence and the effects of denaturants indicate that the formation of structure is rate limiting in the direct folding reaction, U2 ? N. The failure to find a viscosity dependence for the interconversion reaction, U1 ? U2, indicates that in this reaction also friction-limited segmental motion is not the rate-limiting process. Since the U1 ? U2 interconversion still occurs when the polypeptide chain is completely unfolded, the surprising result is that its rate in refolding conditions depends significantly on a reaction intermediate which is “denatured” by guanidine salts.  相似文献   

7.
《BBA》1986,849(3):337-346
A comparison of spectral properties of reaction centers from Chloroflexus aurantiacus and Rhodopseudomonas sphaeroides (R-26) is reported. Treatment of reaction centers from Rps. sphaeroides with NaBH4 leads to a decrease of the dipole strength of the 800-nm band by factor of approx. 1.75-1.95 and to the formation of new bacteriopheophytin, BPh-715, which is almost completely removed during the purification of reaction centers. The modification of the reaction centers does not change the quantum yield of P photooxidation and the spectrum of BPh-545 (H1) photoreduction which includes the changing of the 800-nm band. This implies the preservation of the photoactive chain P-B1-H1-QA (where B1 is the bacteriochlorophyll (BChl)-800 molecule situated between P and H1) and the modification of the second BChl-800 (B2). The preparation of modified reaction centers is a mixture of at least three types of reaction centers with different contents of B2 and of the second BPh (H2). Some of the reaction centers (5-25%) contain the original B2 and H2 molecules (type I). In the CD spectrum of modified reaction centers a decrease of the 800-nm band and the appearance of a positive band at 765 nm is observed. This spectrum is similar to the CD spectrum of Chloroflexus reaction centers containing 3 BPh's and 3 BChl's. This implies that in some (approx. 40%) of the modified Rps. sphaeroides reaction centers (type II) B2 has been replaced by BPh a which interacts with H2. Probably some of the modified reaction centers (approx. 40%) have lost both B2 and H2 (type III). The modification of reaction centers leads to a considerable decrease of the CD bands at 800 (+) nm and 810 (−) nm and to a decrease of the absorbance changes near 800 nm in the difference absorption spectrum of the oxidation of P. The data are interpreted in terms of the interaction between P and B1 molecules which gives two transitions at 790-800 and 810 nm with different orientations in modified Rps. sphaeroides as well as in Chloroflexus reaction centers. Similar transitions are observed for the interaction between P and B2. The spectral analysis shows the existence of two chains P-B1-H1, and P-B2-H2 in which the distances between the centers of molecules are 1.3 nm or less.  相似文献   

8.
Summary An empirical equation for representing the course of the reaction has been developed for amylase ofAspergillus oryzae by using the method of time value estimation as a measure of enzyme activity. A convenient form of the equation for calculating and plotting results is t/x=bt+a/(E), where t=reaction time, x=amount of reaction products formed, (E)=enzyme concentration, a/(E)=reciprocal of initial velocity. The parameter b makes the equation of a rather universal applicability over large portions of the reaction curves. If b=0, the reaction is of zero order; if b=1/(S)o, the reaction is of second order; a first order reaction can be represented over a range from 0 to 55% if b≏1/2(S)o. In the case of aMichaelis-Menten mechanism, b=Ks/2(S)o[(S)o+Ks] afterBrant andAlberty (1961, personal communication), and then the ratio of (S)o/Ks limits the range of validity of the empirical equation. As a tool for determining enzyme activity over a wide range of reaction, the equation is most useful in cases where the rate of reaction decreases rapidly,e.g. if (S)o/Ks is small, or if inactivation and/or inhibition of the enzyme during the reaction is involved. For the assay of enzymes the main advantages of the empirical equation over the integratedMichaelis-Menten equation, and other more complicated variations thereof, are ease of handling and applicability to a large number of enzymes.  相似文献   

9.
Photocatalytic production of the electron (e-) and positive hole (h+) in an aqueous suspension of TiO2 (anatase form) under illumination by near-UV light (295-390 nm) generated the superoxide (O2 -) and hydroxyl radical (?OH), which both proceeded linearly with reaction time, while H2O2 accumulated non-linearly. Under anaerobic conditions (introduced Ar gas), the yields of three active species of oxygen were decreased to 10-20% of those detected in the air-saturated reaction. The electron spin resonance (ESR) signal characteristics of ?OH were obtained when a spin trap of 5,5-dimthyl-1-pyrroline-N-oxide (DMPO) was included in the illuminating mixture. The intensity of the ESR signal was increased by Cu/Zn superoxide dismutase, and decreased under anaerobic conditions, amounting to only 20% of the intensity detected in the aerobic reaction. The addition of H2O2 to the reaction mixture resulted in about an 8-fold increase of ?OH production in the anaerobic reaction, but only about 1.5-fold in the aerobic reaction, indicating that e- generated by the photocatalytic reaction reduced H2O2 to produce ?OH plus OH-. On the other hand, D2O lowered the yield of ?OH generation to 18% under air and 40% under Ar conditions, indicating the oxidation of H2O by h+. The addition of Fe(III)-EDTA as an electron acceptor effectively increased ?OH generation, 2.3-fold in the aerobic reaction and 8.4-fold in the anaerobic reaction, the yield in the latter exceeding that in the air-saturated reaction.  相似文献   

10.
Inhibition of electron transport and damage to the protein subunits by ultraviolet-B (UV-B, 280–320 nm) radiation have been studied in isolated reaction centers of the non-sulfur purple bacterium Rhodobacter sphaeroides R26. UV-B irradiation results in the inhibition of charge separation as detected by the loss of the initial amplitude of absorbance change at 430 nm reflecting the formation of the P+(QAQB) state. In addition to this effect, the charge recombination accelerates and the damping of the semiquinone oscillation increases in the UV-B irradiated reaction centers. A further effect of UV-B is a 2 fold increase in the half- inhibitory concentration of o-phenanthroline. Some damage to the protein subunits of the RC is also observed as a consequence of UV-B irradiation. This effect is manifested as loss of the L, M and H subunits on Coomassie stained gels, but not accompanied with specific degradation products. The damaging effects of UV-B radiation enhanced in reaction centers where the quinone was semireduced (QB ) during UV-B irradiation, but decreased in reaction centers which lacked quinone at the QB binding site. In comparison with Photosystem II of green plant photosynthesis, the bacterial reaction center shows about 40 times lower sensitivity to UV-B radiation concerning the activity loss and 10 times lower sensitivity concerning the extent of reaction center protein damage. It is concluded that the main effect of UV-B radiation in the purple bacterial reaction center occurs at the QAQB quinone acceptor complex by decreasing the binding affinity of QB and shifting the electron equilibration from QAQB to QA QB. The inhibitory effect is likely to be caused by modification of the protein environment around the QB binding pocket and mediated by the semiquinone form of QB. The UV-resistance of the bacterial reaction center compared to Photosystem II indicates that either the QAQB acceptor complex, which is present in both types of reaction centers with similar structure and function, is much less susceptible to UV damage in purple bacteria, or, more likely, that Photosystem II contains UV-B targets which are more sensitive than its quinone complex.Abbreviations Bchl bacteriochlorophyll - P Bchl dimer - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - RC reaction center - UV-B ultraviolet-B  相似文献   

11.
A critical challenge of PEGylation is the production of the desired PEGylated protein form at a high yield. In this study, a kinetic model was constructed successfully to describe the PEGylation reaction of recombinant hirudin variant-2 (HV2) with monomethoxy-PEG-succinimidyl carbonate (mPEG-SC) by fitting the experimental data. Moreover, PEGylation reaction conditions were investigated using the established model and the corresponding experiments to determine the optimal condition to achieve the mono-PEG-HV2 at the desired yield. The model predictions agreed well with the experimental data. Several important process parameters (maximum theoretical yield of mono-PEG-HV2 (ymax), critical PEG/HV2 molar ratio (mcrit) and reaction time to achieve ymax (tmax)) and their mathematical equations were obtained to determine the optimum reaction conditions. Among reaction conditions affecting the PEGylation rates, pH and temperature displayed little effect on ymax, but ymax increased as PEG size increased. Optimal reaction condition to produce mono-PEG-HV2 was as follows: pH and temperature could vary in a certain range; whereas PEG/HV2 molar ratio should be slightly greater than mcrit and the reaction should be stopped at tmax. The results of this study indicate that the proposed reaction kinetic model can provide a possible mechanism interpretation for real PEGylation reactions and optimize efficiently the PEGylation step.  相似文献   

12.
(1) In the pH range between 5.0 and 8.0, the rate constants for the reaction of ferrocytochrome c with both the high- and low-affinity sites on cytochrome aa3 increase by a factor of approx. 2 per pH unit. (2) The pre-steady-state reaction between ferrocytochrome c and cytochrome aa3 did not cause a change in the pH of an unbuffered medium. Furthermore, it was found that this reaction and the steady-state reaction are equally fast in H2O and 2H2O. From these results it was concluded that no protons are directly involved in a rate-determining reaction step. (3) Arrhenius plots show that the reaction between ferrocytochrome c and cytochrome aa3 requires a higher enthalpy of activation at temperatures below 20°C (15–16 kcal/mol) as compared to that at higher temperature (9 kcal/mol). We found no effect of ionic strength on the activation enthalpy of the pre-steady-state reaction, nor on that of the steady-state reaction. This suggests that ionic strength does not change the character of these reactions, but merely affects the electrostatic interaction between both cytochromes.  相似文献   

13.
A high-affinity form of ribulose diphosphate carboxylase, observed transiently in spinach-leaf extracts soon after extraction, was inhibited by O2 competitively with respect to CO2. Analogously, the ribulose diphosphate oxygenase activity for this form was inhibited by CO2, competitively with respect to O2. For each gas, the Km for the reaction in which it was a substrate was similar to its Ki for the reaction it inhibited. The Arrhenius activation energy for the oxygenase reaction was 1.5 times that of the carboxylase. These characteristics are consistent with ribulose diphosphate oxygenase being the enzymatic reaction responsible for synthesizing the substrate for photorespiration and with the concept that the balance between photosynthesis and photorespiration of leaves is a reflection of the ratio between the two activities of this bi-functional enzyme.  相似文献   

14.
In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium methoxide. We found that during the transesterification with ethanol, soap formation is more important than in the case of methanol. The saponification reaction consumes an important fraction of the catalyst. The amount of catalyst consumed by this reaction is 100% in the case of using hydroxides as catalyst (KOH or NaOH), and 25%, and 28% when using CH3ONa and CH3OK as catalysts, respectively. Ethanol increases the catalyst solubility in the oil-ethyl ester phase, thus accelerating the saponification reaction.It is possible to obtain high conversions in a one-step reaction, with a total glycerine concentration close to 0.25%.  相似文献   

15.
In BF3-MeOH medium, the principal ozonolysis reaction products of oleic acid were methyl nonanoate (MMC9) and dimethyl azelate (DMC9) in yields of 98% with formation of minor secondary reaction products (methyl octanoate, nonaldehyde with nonaldehyde dimethyl acetal and dimethyl suberate, plus the C9 half-ester-aldehyde, with its corresponding acetal). The gas-liquid chromatographic analysis of the ozonolysis reaction products in BCl3- and HCl-MeOH revealed the existence of 4 major components with low yields of methyl nonanoate and dimethyl azelate (45–50%). The two other major reaction products, isolated by a combination of thin-layer chromatography (TLC) and high-pressure liquid chromatography (HPLC), were identified as the chlorinated acetals, 1,1-dimethoxy-2-chloro-nonane and the 8-chloro-9,9-dimethoxy methyl nonanoate.  相似文献   

16.
The mechanism of the cycloaddition reaction CH3M≡MCH3 (M=C, Si, Ge) with C2H4 has been studied at the CCSD(T)/6-311++G(d,p)//MP2/6-311++G(d,p) level. Vibrational analysis and intrinsic reaction coordinate (IRC), calculated at the same level, have been applied to validate the connection of the stationary points. The breakage and formation of the chemical bonds of the titled reactions are discussed by the topological analysis of electron density. The calculated results show that, of the three titled reactions, the CH3Si≡SiCH3+C2H4 reaction has the highest reaction activity because it has the lowest energy barriers and the products with the lowest energy. The CH3C≡CCH3+C2H4 reaction occurs only with difficulty since it has the highest energy barriers. The reaction mechanisms of the title reactions are similar. A three-membered-ring is initially formed, and then it changed to a four-membered-ring structure. This means that these reactions involve a [2+1] cycloaddition as the initial step, instead of a direct [2+2] cycloaddition.  相似文献   

17.
Homotropic effect of CO 2 in ribulose-1,5-diphosphate carboxylase reaction   总被引:4,自引:0,他引:4  
The concentration effect of aqueous CO2 on the reaction velocity of spinach leaf ribulose-1,5-diphosphate carboxylase has been reevaluated. The homotropic effect of CO2 in the enzyme reaction supports the previously reported allosteric nature of the enzyme in the CO2-fixation process in chloroplasts. The concentration of CO2 giving the half maximal reaction velocity, S0.5, has been calculated to be 1.47 × 10−5M.  相似文献   

18.
Quantum chemical studies on the reaction of binding CO2 by amidine base diazabicyclo [5.4.0]-undec-7-ene (DBU) and alcohol were carried out at the B3LYP/6-31g(d) level in order to find the reaction mechanism. The structures of reactants and product were optimised, and thermodynamic analyses were also carried out using the single point energy calculation and frequency analyses. It is noted that the reaction of binding CO2 by DBU and propanol is thermodynamically feasible and qualitatively in accordance with the experimental observations. The results of thermodynamic and kinetic analyses demonstrate that the possible reaction mechanisms can be a two-step bimolecular reaction and a one-step trimolecular reaction. In the two-step bimolecular mechanism, the first step is the formation of intermediate by DBU and CO2, and the second step is the nucleophilic attack of propanol on the intermediate. In the one-step trimolecular mechanism, O and H atoms of hydroxyl in propanol form an O–C bond with CO2 and an H–N bond with DBU, respectively. The one-step trimolecular reaction seems a more reasonable mechanism because of the consideration of kinetic parameters.  相似文献   

19.
In the presence of acetone and an excess of exogenous plant pheophytins, bacterio-pheophytins in the reaction centers from Rhodobacter sphaeroides RS601 were replaced by pheophytins at sites HA and HB, when incubated at 43.5℃ for more than 15 min. The substitution of bacteriopheophytins in the reaction centers was 50% and 71% with incubation of 15 and 60 min, respectively. In the absorption spectra of pheophytin-replaced reaction centers (Phe RCs), bands assigned to the transition moments Qx (537 nm) and QY (758 nm) of bacteriopheophytin disappeared, and three distinct bands assigned to the transition moments Qx (509/542 nm) and QY (674 nm) of pheophytin appeared instead. Compared to that of the control reaction centers, the photochemical activities of Phe RCs are 78% and 71% of control, with the incubation time of 15 and 60 min. Differences might exist between the redox properties of Phe RC and of native reaction centers, but the substitution is significant, and the new system is available for further  相似文献   

20.
The reaction mechanisms of H2 with OCS have been investigated theoretically by using density function theory method. Three possible pathways leading to major products CO and H2S, as well as two possible pathways leading to by-product CH4 have been proposed and discussed. For these reaction pathways, the structure parameters, vibrational frequencies and energies for each stationary point have been calculated, and the corresponding reaction mechanism has been given by the potential energy surface, which is drawn according to the relative energies. The calculated results show that the corresponding major products CO and H2S as well as by-product CH4 are in agreement with experimental findings, which provided a new illustration and guidance for the reaction of H2 with OCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号