首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnitude of transmembrane potential Δψ in cells of Escherichia coli K12 was determined by the method of flow cytofluorometry for different phases of growth. It was large in the log phase, whereas in the lag and stationary phases, the population was shown to consist of two subpopulations with low and large values of Δψ in cells. In the presence of 200 mg/l of 2,4,6-trinitrotoluene (TNT), this bimodal distribution of Δψ over the population was observed during the entire growth period until TNT was almost completely eliminated from the cultivation medium (to a concentration of 18–20 mg/l). The mean value of Δψ in cells of the population grown in the presence of TNT was substantially smaller than that in controls due to the larger fraction of the subpopulation with a low value of Δψ. Upon elimination of TNT, the distribution of Δψ in cells of the culture became unimodal and close to that in the control culture in the early log phase of growth. These findings are discussed from the standpoint that considers heterogeneity of the culture of Escherichia coli K12 as a mechanism of its adaptation to the presence of xenobiotics.  相似文献   

2.
2,4,6-Trinitrotoluene present in a culture of Escherichia coli K12, at a concentration of 200 mg/l, caused a decrease in the total cell population and the population of colony-forming units, increased permeability of the external lipoprotein envelope, and increased the refractive index of cells. The shape of some cells changed from rod-like to coccoid, and cell size decreased. The specific rate of glucose consumption and the content of NADH (NADPH) in cells decreased. The changes of these morphological and physiological features were reversible, tending to normalize after reduction of 2,4,6-trinitrotoluene concentration in the course of cultivation.  相似文献   

3.
The sensitivity of Escherichia coli strains K-12 and 055 to 2,4,6-trinitrotoluene (TNT) was found to correlate with the structural and functional properties of the outer lipoprotein membrane. The protective ability of the membrane of strain 055 is much lower than that of K-12. This is the cause of the greater sensitivity of 055 to the toxic action of TNT. High TNT concentrations (100-200 mg/l) suppressed the growth of 055, whereas K-12 grew at all TNT concentrations studied. Both strains adapted to high TNT concentrations by converting it by either nitroreduction or denitritation depending on concentration. The denitritation system of strain 055 started TNT degradation earlier than that of K-12.  相似文献   

4.
Using Bacillus subtilis SK1 as an example, it was demonstrated for the first time that 2,4,6-trinitrotoluene (TNT) transformation pathways change with TNT concentration. The growth of cultured B. subtilis SK1, delayed at 20 mg/l TNT (minimum toxic concentration), was resumed following TNT transformation. Aromatic amines were predominant metabolites detected in the culture medium at early stages of TNT transformation. The culture growth was completely inhibited by 200 mg/l TNT. As this took place, nitrites accumulated in the culture medium.  相似文献   

5.
2,4,6-Trinitrotoluene present in a culture of Escherichia coli K12, at a concentration of 200 mg/l, caused a decrease in the total cell population and the population of colony-forming units, increased permeability of the external lipoprotein envelope, and increased the refractive index of cells. The shape of some cells changed from rod-like to coccoid, and cell size decreased. The specific rate of glucose consumption and the content of NADH (NADPH) in cells decreased. The changes of these morphological and physiological features were reversible, tending to normalize after reduction of 2,4,6-trinitrotoluene concentration in the course of cultivation.  相似文献   

6.
7.
The radiosensitizing effect of triacetoneamine N-oxyl (TAN) on anoxic suspensions of two x-ray-sensitive mutants of E. coli K12 was investigated. With one mutant, AB2463 recA13, TAN increased the sensitivity (based on the dose required to give 1% surviving fraction) of anoxic cells by a factor of 3.9, while oxygen increased the sensitivity by a factor of only 1.9. On the other hand, on the same basis, TAN was only about one-half as effective as oxygen in sensitizing the mutant AB3058 rec-22. The results are interpreted in terms of the relative ability of the cells to recover from radiation damage produced in the presence of TAN and in the presence of oxygen.  相似文献   

8.
In an effort to use whey for lysine production, we isolated from a β-galactosidase-hyperproducing strain of E. coli K 12 multiple mutants – auxotrophic, regulatory and penicillin-resistant. These mutants exhibited for the most part a high reversion rate but some of them produced about 2 mg/ml lysine in an enriched fermentation medium.  相似文献   

9.
Degradation of 2,4,6-trinitrotoluene by Serratia marcescens   总被引:1,自引:0,他引:1  
A strain of Serratia marcescens, isolated from the soil of a contaminated site, degraded 2,4,6-trinitrotoluene (TNT) as the sole source of carbon and energy. At an initial concentration of 50mg , TNT was totally degraded in 48h under aerobic conditions in a minimal salt medium. Reduction intermediates (4-amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene) were observed. The presence of a surfactant (Tween 80) is essential to facilitate rapid degradation.  相似文献   

10.
The primary explosive found in most land mines, 2,4,6-trinitrotoluene (2,4,6-TNT), is often accompanied by 2,4-dinitrotoluene (2,4-DNT) and 1,3-dinitrobenzene (1,3-DNB) impurities. The latter two compounds, being more volatile, have been reported to slowly leak through land mine covers and permeate the soil under which they are located, thus serving as potential indicators for buried land mines. We report on the construction of genetically engineered Escherichia coli bioreporter strains for the detection of these compounds, based on a genetic fusion between two gene promoters, yqjF and ybiJ, to either the green fluorescent protein gene GFPmut2 or to Photorhabdus luminescens bioluminescence luxCDABE genes. These two gene promoters were identified by exposing to 2,4-DNT a comprehensive library of about 2,000 E. coli reporter strains, each harboring a different E. coli gene promoter controlling a fluorescent protein reporter gene. Both reporter strains detected 2,4-DNT in an aqueous solution as well as in vapor form or when buried in soil. Performance of the yqjF-based sensor was significantly improved in terms of detection threshold, response time, and signal intensity, following two rounds of random mutagenesis in the promoter region. Both yqjF-based and ybiJ-based reporters were also induced by 2,4,6-TNT and 1,3-DNB. It was further demonstrated that both 2,4,6-TNT and 2,4-DNT are metabolized by E. coli and that the actual induction of both yqjF and ybiJ is caused by yet unidentified degradation products. This is the first demonstration of an E. coli whole-cell sensor strain for 2,4-DNT and 2,4,6-TNT, constructed using its own endogenous sensing elements.  相似文献   

11.
It is shown that one of the major resolution limiting factors in the rapid measurement of fluorescence from individual cells with “fast flow cytofluorometers” is the small number of photons which are counted in each light pulse. A method is described for evaluating this factor for individual systems and for specific cells and stains. Once evaluated, this contribution to the broadening of the distribution can be stripped from the observed distribution to give a closer estimate of the actual distribution of dye in the cell poulation.  相似文献   

12.
Screening of a wide range of microorganisms (32 strains) isolated from various anthropogenic and natural environments and of a number of collection strains showed that the early stages of 2,4,6-trinitrotoluene (TNT) transformation by the majority of the strains studied resulted in the formation of hydroxylaminodinitrotoluenes (HADNTs). The levels of HADNTs were in a number of cases comparable to the initial TNT level. The alternative reductive attack at TNT through the reduction of the aromatic ring was not characteristic of most of the prokaryotes studied. The susceptibility to the toxic effect of TNT was different for gram-positive and gram-negative bacteria.  相似文献   

13.
This study investigated the impact of ferrihydrite on the pathway and rate of 2,4,6-trinitrotoluene (TNT) transformation by Yarrowia lipolytica AN-L15. The presence of ferrihydrite in the culture medium decreased the rate of TNT biotransformation but resulted in the accumulation of the same TNT metabolites as in the absence of ferrihydrite, albeit at slightly different concentrations. Transformation products observed included aromatic ring reduction products, such as hydride-Meisenheimer complexes, and nitro group reduction products, such as hydroxylamino- and amino-dinitrotoluenes. Independently of the presence of ferrihydrite the subsequent degradation of the hydride complex(es) resulted in the release of nitrite followed by its conversion to nitrate and nitric oxide at the low pH values observed during yeast cultivation. Nitric oxide generation was ascertained by electron spin resonance spectroscopy. In addition, increased Fe3+-reduction was observed in the presence of TNT and Y. lipolytica. This study demonstrates that in the presence of yeast cells, TNT-hydride complexes were formed at approximately the same level as in the presence of ferrihydrite, opening up the possibility of aromatic ring cleavage, instead of promoting the production of potentially toxic nitro group reduction products in the presence of iron minerals.  相似文献   

14.
To gain insight into the impact of 2,4,6-trinitrotoluene (TNT) on soil microbial communities, we characterized the bacterial community of several TNT-contaminated soils from two sites with different histories of contamination and concentrations of TNT. The amount of extracted DNA, the total cell counts and the number of CFU were lower in the TNT-contaminated soils. Analysis of soil bacterial diversity by DGGE showed a predominance of Pseudomonadaceae and Xanthomonadaceae in the TNT-contaminated soils, as well as the presence of Caulobacteraceae. CFU from TNT-contaminated soils were identified as Pseudomonadaceae, and, to a lesser extent, Caulobacteraceae. Finally, a pristine soil was spiked with different concentrations of TNT and the soil microcosms were incubated for 4 months. The amount of extracted DNA decreased in the microcosms with a high TNT concentration [1.4 and 28.5 g TNT/kg (dry wt) of soil] over the incubation period. After 7 days of incubation of these soil microcosms, there was already a clear shift of their original flora towards a community dominated by Pseudomonadaceae, Xanthomonadaceae, Comamonadaceae and Caulobacteraceae. These results indicate that TNT affects soil bacterial diversity by selecting a narrow range of bacterial species that belong mostly to Pseudomonadaceae and Xanthomonadaceae.  相似文献   

15.
A new model for the initial transformation of 2,4,6-trinitrotoluene (TNT) by facultatively anaerobic and aerobic yeasts is presented. The model is based on the data that Saccharomyces sp. ZS-A1 was able to reduce the nitrogroups of TNT with the formation of 2- and 4-hydroxyaminodinitrotoluenes (2-HADNT and 4-HADNT) as the major early TNT metabolites (the molar HADNT/TNT ratio reached 0.81), whereas aminodinitrotoluenes (ADNTs) and the hydride-Meisenheimer complex of TNT (H-TNT) were the minor products. Candida sp. AN-L13 almost completely transformed TNT into H-TNT through the reduction of the aromatic ring. Candida sp. AN-L14 transformed TNT through a combination of the two mechanisms described. Aeration stimulated the production of HADNT from TNT, whereas yeast incubation under stationary conditions promoted the formation of HADNT. The transformation of TNT into HADNT led to a tenfold increase in the acute toxicity of the TNT preparation with respect to Paramecium caudatum, whereas the increase in the toxicity was about twofold in the case of the alternative attack at the aromatic ring.  相似文献   

16.
2,4,6-trinitrotoluene (TNT) is known to be one of the most common military explosives. In spite of its established toxicity and mutagenicity for many organisms, soils and groundwater are still being frequently contaminated at manufacturing, disposal and TNT destruction sites. The inability of natural aquatic and soil biota to use TNT as growth substrate has been recognized as the primary limitation in the application of bioremediation processes to contaminated environments. However, promising degradation pathways have been recently discovered which may lead to the mineralisation of TNT. Significant advances have been made in studying the mechanism of TNT denitration, which can be considered as the major reaction and the driving force towards beneficial biodegradation. The possibilities to favour TNT denitration are discussed based on current knowledge of the enzymology and genetics of denitration in nitroaromatic degrading organisms. The literature survey demonstrates that the only enzymes characterized so far for their denitrase activity towards TNT belong to the class I flavin-dependent β/α barrel oxidoreductases, also known as the “Old Yellow Enzyme” family. In addition, this review provides an overview of strategies and future directions towards a rational search for new catabolic activities, including metagenomic library screening, plus new possibilities to improve the activity of known catabolic enzymes acting on TNT, such as DNA shuffling.  相似文献   

17.
18.
Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT.  相似文献   

19.
An aerobic bacterial consortium was shown to degrade 2,4,6-trinitrotoluene (TNT). At an initial concentration of 100 ppm, 100% of the TNT was transformed to intermediates in 108 h. Radiolabeling studies indicated that 8% of [14C]TNT was used as biomass and 3.1% of [14C]TNT was mineralized. The first intermediates observed were 4-amino-2,6-dinitrotoluene and its isomer 2-amino-4,6-dinitrotoluene. Prolonged incubation revealed signs of ring cleavage. Succinate or another substrate—e.g., malic acid, acetate, citrate, molasses, sucrose, or glucose—must be added to the culture medium for the degradation of TNT. The bacterial consortium was composed of variousPseudomonas spp. The results suggest that the degradation of TNT is accomplished by co-metabolism and that succinate serves as the carbon and energy source for the growth of the consortium. The results also suggest that this soil bacterial consortium may be useful for the decontamination of environmental sites contaminated with TNT.  相似文献   

20.
Quantitative microscopic cytology of cells previously sorted by flow cytofluorometry has been hindered by the loss of cells from the microscope slide during staining procedures. The simple application of a semi-permeable membrane of collodion over fixed or unfixed cells sorted directly onto a microscope slide secured virtually 100% of the cells onto the slide. Cells covered with the collodion membrane studied with Papanicolaou's stain as well as routine clinical cervical cytologic preparations. In contrast, fewer than one half of the cells sorted onto uncoated or albumin coated slides were retained after staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号