首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
John Imsande 《Genetics》1973,75(1):1-17
5-methyltryptophan (5MT) induces penicillinase synthesis in Staphylococcus aureus. The analog is incorporated into protein by both wild-type and tryptophan-starved cells. Since normal penicillinase repressor appears to contain tryptophan even though penicillinase itself does not, it is concluded that 5MT induces penicillinase synthesis by becoming incorporated into the penicillinase repressor and thereby inactivating the repressor. Thus biochemical data support the existence of a penicillinase repressor and indicate that penicillinase synthesis is regulated by negative control and not by positive control.-In the absence of exogenous tryptophan, staphylococcal penicillinase induction can be inhibited by 7-azatryptophan (7azaT). Because 7azaT is incorporated into protein by tryptophan-starved cells, it is concluded that 7azaT blocks penicillinase induction by inactivating a penicillinase regulatory protein into which the analog has been incorporated. Incorporation of 7azaT does not appear to inactivate the operator binding site or the effector binding site on the penicillinase repressor. Therefore, it appears that 7azaT blocks penicillinase induction by inactivating the penicillinase antirepressor, a protein required for inactivation of the penicillinase repressor and, hence, required for penicillinase induction.  相似文献   

2.
Summary Mutant penicillinase plasmids, in which penicillinase synthesis is not inducible by penicillin or a penicillin analogue, were examined by biochemical and genetic analyses. In five of the six mutants tested, penicillinase synthesis could be induced by growth in the presence of 5-methyltryptophan. It is known that the tryptophan analogue 5-methyltryptophan is readily incorporated into protein by S. aureus and that staphylococcal penicillinase lacks tryptophan. 5-methyltryptophan seems to induce penicillinase synthesis in wild-type plasmids by becoming incorporated into the repressor and thereby inactivating the operator binding function of the penicillinase repressor. Therefore, induction of penicillinase synthesis in the mutant plasmids by 5-methyltryptophan strongly suggests that the noninducible phenotype of these five plasmids is due to a mutation that inactivates the effector binding site of the penicillinase repressor (i.e., the five mutant plasmids carry an is genotype for the penicillinase repressor). This conclusion was supported by heterodiploid analysis. The mutant plasmid that did not respond to 5-methyltryptophan either produces an exceedingly low basal level of penicillinase or does not produce active enzyme. This plasmid seems to carry a mutation in the penicillinase structural gene or in the promoter for the structural gene. Thus, a genetic characterization of many mutations in the penicillinase operon can be accomplished easily and rapidly by biochemical analysis.Journal Paper No. J-7994 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 2029  相似文献   

3.
Regulation of Penicillinase Synthesis: Evidence for a Unified Model   总被引:7,自引:3,他引:4       下载免费PDF全文
The kinetics of penicillinase induction in Bacillus cereus 569 was investigated. An increase in the rate of penicillinase synthesis was demonstrated within 30 sec of the addition of inducer (benzylpenicillin); however, the maximum induced rate of penicillinase synthesis was not attained until at least 30 min after the addition of inducer. In contrast to earlier claims, a quantitative estimate showed that the penicillinase messenger ribonucleic acid (mRNA) half-life is approximately 2 min. These findings strongly suggest that the rate of synthesis of penicillinase mRNA increases continuously during most of the 30-min latent period. A model for the regulation of penicillinase synthesis in three gram-positive organisms is presented which is consistent with a nondiffusible inducer, a short-lived mRNA, a relatively long latent period (i.e., an apparently slow inactivation of penicillinase repressor), and the existence of at least two regulatory genes.  相似文献   

4.
5.
6.
The enhancement of ergot alkaloid production by tryptophan and its analogues in both normal and high-phosphate cultures is more directly related to increased dimethylallyltryptophan (DMAT) synthetase activity rather than to a lack of regulation of the tryptophan biosynthetic enzymes. Thiotryptophan [beta-(1-benzo-thien-3-yl)-alanine] is rather ineffective in the end product regulation of tryptophan biosynthesis, whereas tryptophan and 5-methyltryptophan are potent effectors. The presence of increased levels of DMAT synthetase in ergot cultures supplemented with tryptophan or thiotryptophan, and to a lesser extent with 5-methyltryptophan, suggests that the induction effect involves de novo synthesis of the enzyme. Thiotryptophan and tryptophan but not 5-methyltryptophan can overcome the block of alkaloid synthesis by inorganic phosphate. The results with thiotryptophan indicate that the phosphate effect cannot be explained merely on the basis of a block of tryptophan synthesis.  相似文献   

7.
Jana M  Luong TT  Komatsuzawa H  Shigeta M  Lee CY 《Plasmid》2000,44(1):100-104
A method for demonstrating whether a gene of Staphylococcus aureus is essential for growth in a rich medium is described. We have used this method to determine whether the murE gene, which encodes the UDP-N-acetylmuramyl tripeptide synthetase required for peptidoglycan synthesis, is essential for growth in S. aureus. In this study, strain CYL368 was constructed from S. aureus RN4220 by placing the murE gene in the chromosome under the control of the spac promoter (a hybrid promoter of the Escherichia coli lac operator and the Bacillus subtilis SPO1 phage promoter). To regulate the murE gene in CYL368, the E. coli lacI gene was expressed from the B. licheniformis penicillinase gene (pcn) promoter in plasmid pMJ8426. Strain CYL368(pMJ8426) grew normally in the presence of isopropyl-beta-d-thiogalactopyranoside but could not grow in the absence of the inducer. These results indicate that the murE gene expressed from the spac promoter in CYL368(pMJ8426) is needed for bacterial growth. We concluded that murE is an essential gene of S. aureus.  相似文献   

8.
The antirepressor indole 3-propanoate has been shown by X-ray crystallography to bind in a different orientation compared with the natural corepressor for the tryp repressor, L-tryptophan (Lawson, C.L. & Sigler, P. B. (1988) Nature 333, 869-871). This suggests a simple difference between what constitutes a corepressor versus an antirepressor. We have used visible absorption and 1H-NMR spectroscopy to characterise the nature of several ligand-repressor complexes and DNA-binding assays to assess the relative operator binding affinities. 5-Fluorotryptophan binds with similar affinity and in the same orientation as L-tryptophan, and is an equally effective corepressor. In contrast, the tight-binding antirepressor indole 3-acrylate binds in the same orientation as indole 3-propanoate. Indole, also an antirepressor, also binds in the indole-3-propanoate orientation. 5-Methyltryptamine, a corepressor, shows spectroscopic characteristics of both tryptophan and indoleacrylate, though NOEs indicate that the tryptophan orientation is preferred. These results indicate that the ammonium group in the side chain is essential both for activation and binding in the L-tryptophan orientation. Antirepressors, lacking the ammonium group, bind in the more favourable indole-3-propanoate orientation. Differences in the NMR signatures of the different repressor-ligand complexes indicate that the details of the conformations depend on the nature of the ligands and their orientation within the binding site. Despite any conformational rearrangement of the protein on binding, dissociation of ligands is facile: 5-fluorotryptophan dissociates rapidly at 313 K. These findings complement and extend the X-ray and thermodynamic analyses of ligand binding.  相似文献   

9.
Induction of penicillinase (beta-lactamase) in Bacillus licheniformis 749 by 2-(2'-carboxyphenyl)-benzoyl-6-aminopenicillanic acid (CBAP) was examined, since this compound was reported to be a gratuitous inducer of penicillinase in Staphylococcus aureus. The specific activity of enzyme optimally induced by CBAP is slightly more than that formed in response to cephalosporin C and threefold the level induced by benzylpenicillin. The optimal inducer concentration of CBAP was not inhibitory toward the growth of penicillinase-deficient mutants, unlike benzylpenicillin or cephalosporin C which showed marked toxicities. CBAP is hydrolyzed by the Bacillus penicillinase, but as indicated by its "physiological efficiency" (V(max)/K(m)), CBAP is a poor substrate at low concentrations. At very high concentrations, CBAP inhibited benzylpenicillin hydrolysis. The overall effectiveness of CBAP as an inducer can be attributed to its low "physiological efficiency" which enables the use of nontoxic levels of CBAP for induction without its rapid hydrolysis. Although CBAP is not a true gratuitous inducer, operationally it approaches gratuity for induction of B. licheniformis penicillinase better than other known inducers.  相似文献   

10.
At neutral pH, the rate of penicillinase synthesis by staphylococci declines gradually after removal of free inducer, while at pH 5.4 enzyme formation is generally linear for an extended period. Linear synthesis of penicillinase was observed at neutral pH in nonsaturating concentrations (1 μg/ml) of actinomycin D. The rate of enzyme synthesis, corrected for inhibition of growth caused by the antibiotic, was relatively independent of the time of actinomycin addition. The lag preceding linear enzyme formation increased with the interval between induction and the addition of actinomycin. The findings are consistent with the concept that, at neutral pH, “operons” activated by induction are rapidly repressed, while at pH 5.4, this process is delayed.

At a concentration of 4 μg/ml, actinomycin D blocked penicillinase messenger synthesis and also elicited a short-lived acceleration of the increase of penicillinase activity in uninduced and, late after induction, in induced cultures. This effect did not require a functional genomic repressor mechanism since it occurred also in a penicillinase-constitutive strain. It required protein synthesis and could not be attributed to a greater enzyme stability in the presence of actinomycin. The results suggest enhanced penicillinase translation after addition of actinomycin D.

  相似文献   

11.
C Yanofsky  V Horn    P Gollnick 《Journal of bacteriology》1991,173(19):6009-6017
Escherichia coli forms three permeases that can transport the amino acid tryptophan: Mtr, AroP, and TnaB. The structural genes for these permeases reside in separate operons that are subject to different mechanisms of regulation. We have exploited the fact that the tryptophanase (tna) operon is induced by tryptophan to infer how tryptophan transport is influenced by the growth medium and by mutations that inactivate each of the permease proteins. In an acid-hydrolyzed casein medium, high levels of tryptophan are ordinarily required to obtain maximum tna operon induction. High levels are necessary because much of the added tryptophan is degraded by tryptophanase. An alternate inducer that is poorly cleaved by tryptophanase, 1-methyltryptophan, induces efficiently at low concentrations in both tna+ strains and tna mutants. In an acid-hydrolyzed casein medium, the TnaB permease is most critical for tryptophan uptake; i.e., only mutations in tnaB reduce tryptophanase induction. However, when 1-methyltryptophan replaces tryptophan as the inducer in this medium, mutations in both mtr and tnaB are required to prevent maximum induction. In this medium, AroP does not contribute to tryptophan uptake. However, in a medium lacking phenylalanine and tyrosine the AroP permease is active in tryptophan transport; under these conditions it is necessary to inactivate the three permeases to eliminate tna operon induction. The Mtr permease is principally responsible for transporting indole, the degradation product of tryptophan produced by tryptophanase action. The TnaB permease is essential for growth on tryptophan as the sole carbon source. When cells with high levels of tryptophanase are transferred to tryptophan-free growth medium, the expression of the tryptophan (trp) operon is elevated. This observation suggests that the tryptophanase present in these cells degrades some of the synthesized tryptophan, thereby creating a mild tryptophan deficiency. Our studies assign roles to the three permeases in tryptophan transport under different physiological conditions.  相似文献   

12.
13.
Studies indicated that prior growth of Staphylococcus aureus 196E on glycerol or maltose led to cells with repressed ability to produce staphylococcal enterotoxin A (SEA). A PTS- mutant (196E-MA) lacking the phosphoenolpyruvate phosphotransferase system (PTS), derived from strain 196E, showed considerably less repression of SEA synthesis when cells were grown in glycerol or maltose. Since SEA synthesis is not repressed in the PTS- mutant, repression of toxin synthesis by glycerol, maltose or glucose in S. aureus 196E appears to be related to the presence of a functional PTS irrespective of whether the carbohydrate requires the PTS for cell entry. With lactose as an inducer, glucose, glycerol, maltose or 2-deoxyglucose repressed the synthesis of beta-galactosidase in S. aureus 196E. It is postulated that these compounds repress enzyme synthesis by an inducer exclusion mechanism involving phosphorylated sugar intermediates. However, inducer exclusion probably does not explain the mechanism of repression of SEA synthesis by carbohydrates.  相似文献   

14.
Safavi A  Zeinali S  Yazdani M 《Amino acids》2012,43(3):1323-1330
A novel double-step reduction procedure for the synthesis of gold nanoparticles (AuNPs) using amino acid ionic liquids has been employed. 1-Dodecyl-3-methyl imidazolium tryptophan ([C(12)mim]Trp) and 1-ethyl-3-methyl imidazolium tryptophan ([C(2)mim]Trp) were used for this synthesis. The synthesized AuNPs were characterized by UV-vis spectroscopy, transmission electron microscopy and dynamic light scattering. The behavior of these AuNPs were also probed in a biological media. It was proven that AuNPs synthesized at [C(12)mim]Trp have more stability than AuNPs synthesized at [C(2)mim]Trp due to the longer alkyl chain of the imidazolium moiety. The solubility test shows that the resultant AuNPs have a hydrophilic nature. Finally, it was seen that due to the presence of a biomolecule, namely Trp, in the structure of AuNPs protecting shell, higher stability and biocompatibility was achieved in the biological media.  相似文献   

15.
Exopenicillinase Synthesis in Staphylococcus aureus   总被引:4,自引:2,他引:2       下载免费PDF全文
In Staphylococcus aureus, penicillinase remaining cell-bound (60 to 75% of original total) after treatment with citrate does not become exopenicillinase. Exopenicillinase in these cells appears only under conditions permitting de novo penicillinase synthesis. By use of (14)C-labeled cells, it was shown that exopenicillinase consists of newly synthesized molecules which have not equilibrated with preformed membrane-bound enzyme.  相似文献   

16.
T Imanaka  T Himeno    S Aiba 《Journal of bacteriology》1987,169(9):3867-3872
The penicillinase antirepressor gene, penJ, of Bacillus licheniformis ATCC 9945a was cloned in Escherichia coli by using pMB9 as a vector plasmid. The penicillinase gene, penP, its repressor gene, penI, and penJ were encoded on the cloned 5.2-kilobase HindIII fragment of the recombinant plasmid pTTE71. The penJ open reading frame was composed of 1,803 bases and 601 amino acid residues (molecular weight, 68,388). A Shine-Dalgarno sequence was found 7 bases upstream from the translation start site. Since this sequence was located in the 3'-terminal region of the penI gene, penJ might be transcribed together with penI as a polycistronic mRNA from the penI promoter. Frameshift mutations of penJ were constructed in vitro from pTTE71, and the penJ mutant gene was introduced into B. licheniformis by chromosomal recombination. The transformant B. licheniformis U173 (penP+ penI+ penJ) turned out to be uninducible for penicillinase production, whereas the wild-type strain (penP+ penI+ penJ+) was inducible. Only when these three genes (penP, penI, and PenJ) were simultaneously subcloned in Bacillus subtilis did the plasmid carrier exhibit inducible penicillinase production, as did wild-type B. licheniformis. It was concluded that penJ is involved in the penicillinase induction. The regulation of penP expression by penI and penJ is discussed.  相似文献   

17.
Near the time of pupation, autofluorescent kynurenine globules appear in the cells in the anterior region of the fatbody of Drosophila melanogaster. It has been reported previously that kynurenine synthesis may be induced in an additional group of fat cells by feeding the precursor tryptophan to Drosophila larvae, and that this induction of kynurenine production viewed within the fat cells is correlated with an increase in tryptophan pyrrolase activity. In the present report, conditions are outlined which result in the appearance of kynurenine in all of the fat cells. The number of cells in the fatbody which contain kynurenine is influenced by the quantity of tryptophan included in the diet, as well as by the developmental stage at the time of treatment and the duration of the feeding period on the inducer. Physical barriers modifying permeability, such as the membranous layer noted surrounding the fatbody, may be a factor in the regulation of the time and nature of the cellular induction of kynurenine synthesis. Another factor to be considered is the possibility of interference with the availability of tryptophan as a substrate or inducer for this synthesis within the cell. It is suggested that the occurrence of pteridines in some of the fat cells may modify the response of these cells to produce kynurenine, since pteridines as electron acceptors can complex with tryptophan as an electron donor. Kynurenine may be produced in the fat cells under in vitro conditions when they are incubated with L-tryptophan, but kynurenine is not formed when fat cells are incubated with D-tryptophan. The in vitro studies further demonstrate that induction of kynurenine synthesis may occur in fat cells isolated from young larvae in contrast, to in vivo conditions in which inducer does not effect an earlier appearance of kynurenine in the larval fatbody.  相似文献   

18.
Tryptophan oxygenase (tryptophan 2,3-dioxygenase) activity increases immediately before the initiation of actinomycin D production by Streptomyces parvullus. We have attempted to discern whether this increase is due to a release from catabolite repression or to the synthesis of an inducer substance. The standard culture medium (glutamic acid-histidine-fructose medium) used in antibiotic production studies with S. parvullus contains l-glutamate as a major constituent. l-Glutamate is almost totally consumed before the onset of actinomycin D synthesis. The addition of 10 mM l-glutamate at this stage completely abolished actinomycin D production as well as tryptophan oxygenase synthesis. Fourteen amino acids were tested for a similar effect. Of these, l-glutamate and l-aspartate had the most dramatic effect on tryptophan oxygenase and beta-galactosidase (beta-d-galactosidase), another inducible enzyme. Standard glutamic acid-histidine-fructose medium, preincubated for 23 h to remove l-glutamate, allowed the synthesis of actinomycin D and tryptophan oxygenase by cells at a stage of growth normally considered too early for antibiotic production. A chemically defined medium lacking l-glutamate and adjusted to pH 8.0 was designed to simulate the preincubation medium. The transfer of cells to this artificial preincubation medium resulted in the appearance of tryptophan oxygenase as early as 19 h before normal synthesis occurred, eliminating the possibility that an inducer molecule is synthesized and excreted during the preincubation period. The results of these studies suggest that the increase in tryptophan oxygenase activity before the onset of actinomycin D synthesis, as well as the synthesis of actinomycin D itself, is due to a release from l-glutamate catabolite repression.  相似文献   

19.
20.
Protoplasis of Bacillus licheniformis 749/C (a mutant constitutive for penicillinase production) continued to synthesize and release penicillinase in hypertonic growth medium in the presence of trypsin and chymotrypsin at 25 mug each per ml. When the protoplasts were stripped of about half of their membrane-bound penicillinase by pretreatment at pH 9.5 or with a higher level of trypsin, penicillinase activity no longer increased in the presence of the proteases. This effect was immediately eliminated after addition of soybean trypsin inhibitor. These proteases do not significantly inhibit general protein synthesis. Stripped protoplasts of strain 749/C and of uninduced strain 749 (unable to synthesize penicillinase) were incubated with 50 mug of chymotrypsin per ml, and the supernatent fluids were examined immunochemically for peptides derived from the penicillinase chain. Such fargments were found only with the protoplasts capable of synthesizing penicillinase (strain 749/C). The direct detection of the products of protease degradation of a susceptible form of penicillinase provides strong evidence that, in stripped protoplasts of B. licheniformis 749/C, penicillinase synthesis continues in the presence of trypsin or chymotrypsin and that, in these modified membranes, the protease is able to act on an early form of the enzyme that has not yet attained the protease-resistant conformation characteristic of the membrane-bound and exopenicillinases. This finding is discussed in terms of the current models of penicillinase secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号