首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zygosaccharomyces rouxii is an important yeast in the formation of flavor in soy sauce. In this study, we investigated the separate effects of exogenous threonine, cystathionine, and the branched-chain amino acids on the metabolism of Z. rouxii. The addition of these amino acids had significant effects on both Z. rouxii growth and glycerol and higher alcohol production. It also seemed that Z. rouxii displayed the Crabtree effect, which was independent of the added amino acids. Furthermore, we investigated the regulation of the metabolism of alpha-ketobutyrate, which is a key-intermediate in Z. rouxii amino acid metabolism. Threonine and cystathionine were introduced separately to stimulate the formation rate of alpha-ketobutyrate and the branched-chain amino acids to inhibit its conversion rate. Enzyme activities showed that these amino acids had a significant effect on the formation and conversion rate of alpha-ketobutyrate but that the alpha-ketobutyrate pool size in Z. rouxii was in balance all the time. The latter was confirmed by the absence of alpha-ketobutyrate accumulation.  相似文献   

2.
3.
Zygosaccharomyces rouxii, a salt-tolerant yeast isolated from the soy sauce process, produces fusel alcohols (isoamyl alcohol, active amyl alcohol and isobutyl alcohol) from branched-chain amino acids (leucine, isoleucine and valine, respectively) via the Ehrlich pathway. Using a high-throughput screening approach in microtiter plates, we have studied the effects of pH, temperature and salt concentration on growth of Z. rouxii and formation of fusel alcohols from branched-chain amino acids. Application of minor variations in pH (range 3-7) and NaCl concentrations (range 0-20%) per microtiter plate well allowed a rapid and detailed evaluation of fermentation conditions for optimal growth and metabolite production. Conditions yielding the highest cell densities were not optimal for fusel alcohol production. Maximal fusel alcohol production occurred at low pH (3.0-4.0) and low NaCl concentrations (0-4%) at 25 degrees C. At pH 4.0-6.0 and 0-18% NaCl, considerable amounts of alpha-keto acids, the deaminated products from the branched-chain amino acids, accumulated extracellularly. The highest cell densities were obtained in plates incubated at 30 degrees C. The results obtained under various incubation conditions with (deep-well) microtiter plates were validated in Erlenmeyer shake-flask cultures.  相似文献   

4.
Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180?mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270?mg/L isobutanol and 40?mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14?g/L branched-chain alcohols over the duration of 50?days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis.  相似文献   

5.
The effect of various amino acid metabolites on glycine oxidation by rat liver homogenate was investigated. Three compounds, α-ketoisovaleric acid, α-ketoisocaproic acid, and α-keto-β-methylvaleric acid, were found to inhibit glycine oxidation by 40–60%. In addition, these compounds also inhibited the glycine-CO2 exchange reaction, a partial reaction of glycine synthase. The reverse reaction, glycine synthesis, was stimulated 4-fold by these α-keto acids. Pyruvate and α-ketoglutarate had no effect on any of these reactions. The parent amino acids, valine, isoleucine, and leucine, also had no effect on the reactions nor did any of their other metabolites with the exception of the branched-chain α-keto acids. The concentration dependence of the inhibition of glycine oxidation and stimulation of glycine synthesis by these branched-chain α-keto acids suggested that the inhibition of glycine oxidation by these compounds was the result of their further oxidation by branched-chain α-keto acid dehydrogenase. However, the products of the branched-chain α-keto acid dehydrogenase, isobutyryl CoA, isovaleryl CoA, or α-methylbutyryl CoA had no effect on glycine oxidation. Thus, it appeared that either the branched-chain α-keto acids altered glycine oxidation by direct binding to glycine synthase or that electrons derived from the oxidation of branched-chain α-keto acids were transferred to the glycine synthase system. It is proposed that glycine synthase and branched-chain α-keto acid dehydrogenase either share a common subunit, possibly lipoamide dehydrogenase, or are so arranged on the mitochondrial membrane that electron transfer between these two enzymes occurs.  相似文献   

6.
The fusel alcohols 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-propanol are important flavor compounds in yeast-derived food products and beverages. The formation of these compounds from branched-chain amino acids is generally assumed to occur via the Ehrlich pathway, which involves the concerted action of a branched-chain transaminase, a decarboxylase, and an alcohol dehydrogenase. Partially purified preparations of pyruvate decarboxylase (EC 4.1.1.1) have been reported to catalyze the decarboxylation of the branched-chain 2-oxo acids formed upon transamination of leucine, isoleucine, and valine. Indeed, in a coupled enzymatic assay with horse liver alcohol dehydrogenase, cell extracts of a wild-type Saccharomyces cerevisiae strain exhibited significant decarboxylation rates with these branched-chain 2-oxo acids. Decarboxylation of branched-chain 2-oxo acids was not detectable in cell extracts of an isogenic strain in which all three PDC genes had been disrupted. Experiments with cell extracts from S. cerevisiae mutants expressing a single PDC gene demonstrated that both PDC1- and PDC5-encoded isoenzymes can decarboxylate branched-chain 2-oxo acids. To investigate whether pyruvate decarboxylase is essential for fusel alcohol production by whole cells, wild-type S. cerevisiae and an isogenic pyruvate decarboxylase-negative strain were grown on ethanol with a mixture of leucine, isoleucine, and valine as the nitrogen source. Surprisingly, the three corresponding fusel alcohols were produced in both strains. This result proves that decarboxylation of branched-chain 2-oxo acids via pyruvate decarboxylase is not an essential step in fusel alcohol production.Saccharomyces cerevisiae has been used for centuries in the production of bread and alcoholic beverages. Along with ethanol and carbon dioxide, fermenting cultures of this yeast produce a variety of low-molecular-weight flavor compounds (including alcohols, diacetyl, esters, organic acids, organic sulfides, and carbonyl compounds). The compounds 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-1-propanol, commonly known as fusel alcohols, and their esters make an important contribution to the flavor of alcoholic beverages and bread (1, 14).A metabolic pathway for production of fusel alcohols by yeast was first proposed by Ehrlich (6). The Ehrlich pathway starts with the enzyme-catalyzed decarboxylation of branched-chain 2-oxo acids to the corresponding aldehydes. Subsequently, the aldehyde is reduced to the corresponding fusel alcohol by an alcohol dehydrogenase (11, 16, 24). The branched-chain 2-oxo acid substrates for the Ehrlich pathway can be produced by the deamination of l-leucine, l-isoleucine, or l-valine. Growth of S. cerevisiae with any of these three amino acids as the nitrogen source results in the accumulation of the corresponding fusel alcohol (2, 3, 21). Alternatively, branched-chain 2-oxo acids may be synthesized de novo from carbohydrates as intermediates of branched-chain amino acid synthesis (13).The conversion of branched-chain oxo acids into their respective aldehydes and alcohols via the Ehrlich pathway resembles the fermentative metabolism of pyruvate, which yields ethanol and carbon dioxide. In both cases, the decarboxylation of a 2-oxo acid is followed by the reduction of the resulting aldehyde. Partially purified preparations of yeast pyruvate decarboxylase have been shown to catalyze the decarboxylation of various 2-oxo acids, including the putative intermediates of the Ehrlich pathway (8, 12, 16, 21). However, it has not been conclusively proven that pyruvate decarboxylase is essential for or even involved in fusel alcohol production by S. cerevisiae.Dickinson and Dawes (4) have reported that, at least under some conditions, oxidative decarboxylation by a mitochondrial branched-chain oxo acid dehydrogenase complex (17) is involved in the catabolism of branched-chain 2-oxo acids. Mutants that did not express the lipoamide dehydrogenase subunit of this enzyme complex accumulated branched-chain oxo acids in batch cultures grown on media containing leucine, isoleucine, or valine (4), thus casting some doubt on the exclusive role of pyruvate decarboxylase in the decarboxylation of branched-chain oxo acids.The aim of this study was to reinvestigate the role of pyruvate decarboxylase in the production of fusel alcohols by S. cerevisiae. The S. cerevisiae genome harbors three structural genes (PDC1, PDC5, and PDC6) that can each encode an active pyruvate decarboxylase (9). In wild-type yeast strains, PDC6 expression is either very low or absent (7, 9). However, revertants of pdc1-pdc5 double mutants, in which a recombination event has caused a fusion of the PDC1 promoter and the PDC6 open reading frame, express a functional enzyme (10). Therefore, studies on the physiological effects of pyruvate decarboxylase deficiency are most easily interpreted when they are performed with strains in which all three PDC genes are disrupted.In the present study, the decarboxylation of branched-chain 2-oxo acids was studied in cell extracts of wild-type S. cerevisiae and in extracts of an isogenic pyruvate decarboxylase-negative mutant. Furthermore, conversion of branched-chain amino acids to the corresponding fusel alcohols by intact cells was analyzed in ethanol-grown cultures of a wild-type S. cerevisiae strain and in those of the Pdc mutant.  相似文献   

7.
Undesirable butter-tasting vicinal diketones are produced as by-products of valine and isoleucine biosynthesis during wort fermentation. One promising method of decreasing diacetyl production is through control of wort valine content since valine is involved in feedback inhibition of enzymes controlling the formation of diacetyl precursors. Here, the influence of valine supplementation, wort amino acid profile and free amino nitrogen content on diacetyl formation during wort fermentation with the lager yeast Saccharomyces pastorianus was investigated. Valine supplementation (100 to 300 mg L?1) resulted in decreased maximum diacetyl concentrations (up to 37 % lower) and diacetyl concentrations at the end of fermentation (up to 33 % lower) in all trials. Composition of the amino acid spectrum of the wort also had an impact on diacetyl and 2,3-pentanedione production during fermentation. No direct correlation between the wort amino acid concentrations and diacetyl production was found, but rather a negative correlation between the uptake rate of valine (and also other branched-chain amino acids) and diacetyl production. Fermentation performance and yeast growth were unaffected by supplementations. Amino acid addition had a minor effect on higher alcohol and ester composition, suggesting that high levels of supplementation could affect the flavour profile of the beer. Modifying amino acid profile of wort, especially with respect to valine and the other branched-chain amino acids, may be an effective way of decreasing the amount of diacetyl formed during fermentation.  相似文献   

8.
We have found that in the alcoholic fermentation of amino acids by yeast isobutyl alcohol is produced from alanine and n-propyl and active amyl alcohols are formed from α-amino-n-butyric acid or threonine contrary to the F. Ehrlich’s scheme. These results suggest the close relationship among the formation of these higher alcohols and biosynthesis of valine from alanine and biosynthesis of isoleucine from α-amino-n-butyric acid or threonine.

In this report, we studied the formation of n-propyl alcohol and active amyl alcohol from α-amino-n-butyric acid using washed yeast cells.  相似文献   

9.
Isobutanol and other branched-chain higher alcohols (BCHAs) are promising advanced biofuels derived from the degradation of branched-chain amino acids (BCAAs). The yeast Saccharomyces cerevisiae is a particularly attractive host for the production of BCHAs due to its high tolerance to alcohols and prevalent use in the bioethanol industry. Degradation of BCAAs begins with transamination reactions, catalyzed by branched-chain amino acid transaminases (BCATs) located in the mitochondria (Bat1p) and cytosol (Bat2p). However, the roles that these transaminases play in isobutanol production remain poorly understood and obscured by conflicting reports in the literature. In this work, we elucidate the influence of BCATs on isobutanol production in two genetic backgrounds (CEN.PK2-1C and BY4741). In the process, we uncover and characterize two competing isobutanol pathways, which can be manipulated by overexpressing or deleting BAT1 or BAT2, and adding or removing valine from the fermentation media. We show that deletion of BAT1 alone increases isobutanol production by 14.2-fold over wild type strains in media lacking valine, and examine how interactions between valine and the regulatory protein Ilv6p affect isobutanol production. Compartmentalizing the five-gene isobutanol biosynthetic pathway in mitochondria of BAT1 deletion strains results in an additional 2.1-fold increase in isobutanol production in the absence of valine. While valine inhibits isobutanol production, it boosts 2-methyl-1-butanol production. This work clarifies the role of transamination activity in BCHA biosynthesis, and develops valuable strategies and strains for future optimization of isobutanol production.  相似文献   

10.
Regulation of valine catabolism in Pseudomonas putida   总被引:2,自引:10,他引:2       下载免费PDF全文
The activities of six enzymes which take part in the oxidation of valine by Pseudomonas putida were measured under various conditions of growth. The formation of four of the six enzymes was induced by growth on d- or l-valine: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-hydroxyisobutyrate dehydrogenase, and methylmalonate semialdehyde dehydrogenase. Branched-chain amino acid transaminase and isobutyryl-CoA dehydrogenase were synthesized constitutively. d-Amino acid dehydrogenase and branched-chain keto acid dehydrogenase were induced during growth on valine, leucine, and isoleucine, and these enzymes were assumed to be common to the metabolism of all three branched-chain amino acids. The segment of the pathway required for oxidation of isobutyrate was induced by growth on isobutyrate or 3-hydroxyisobutyrate without formation of the preceding enzymes. d-Amino acid dehydrogenase was induced by growth on l-alanine without formation of other enzymes required for the catabolism of valine. d-Valine was a more effective inducer of d-amino acid dehydrogenase than was l-valine. Therefore, the valine catabolic pathway was induced in three separate segments: (i) d-amino acid dehydrogenase, (ii) branched-chain keto acid dehydrogenase, and (iii) 3-hydroxyisobutyrate dehydrogenase plus methylmalonate semialdehyde dehydrogenase. In a study of the kinetics of formation of the inducible enzymes, it was found that 3-hydroxyisobutyrate and methylmalonate semialdehyde dehydrogenases were coordinately induced. Induction of enzymes of the valine catabolic pathway was studied in a mutant that had lost the ability to grow on all three branched-chain amino acids. Strain PpM2106 had lowered levels of branched-chain amino acid transaminase and completely lacked branched-chain keto acid dehydrogenase when grown in medium which contained valine. Addition of 2-ketoisovalerate, 2-ketoisocaproate, or 2-keto-3-methylvalerate to the growth medium of strain PpM2106 resulted in induction of normal levels of branched-chain keto acid dehydrogenase; therefore, the branched-chain keto acids were the actual inducers of branched-chain keto acid dehydrogenase.  相似文献   

11.
12.
Rates of transamination and decarboxylation of [1-14C]leucine at a physiological concentration (0.1 mM) were measured in the perfused rat heart. In hearts from fasted rats, metabolic flux through the branched-chain 2-oxo acid dehydrogenase reaction was low initially, but increased gradually during the perfusion period. The increase in 14CO2 production was accompanied by an increase in the amount of active branched-chain 2-oxo acid dehydrogenase complex present in the tissue. In hearts from rats fed ad libitum, extractable branched-chain dehydrogenase activity was low initially, but increased rapidly during perfusion, and high rates of decarboxylation were attained within the first 10 min. Infusion of glucagon, adrenaline, isoprenaline, or adrenaline in the presence of phentolamine all produced rapid, transient, inhibition (40-50%) of the formation of 4-methyl-2-oxo[1-14C]pentanoate and 14CO2 within 1-2 min, but the specific radioactivity of 4-methyl-2-oxo[14C]pentanoate released into the perfusate remained constant. Glucagon and adrenaline infusion also resulted in transient decreases (16-24%) in the amount of active branched-chain 2-oxo acid dehydrogenase. In hearts from fasted animals, infusion for 10 min of adrenaline, phenylephrine, or adrenaline in the presence of propranolol, but not infusion of glucagon or isoprenaline, stimulated the rate of 14CO2 production 3-fold, and increased 2-fold the extractable branched-chain 2-oxo acid dehydrogenase activity. These results demonstrate that stimulation of glucagon or beta-adrenergic receptors in the perfused rat heart causes a transient inhibition of branched-chain amino acid metabolism, whereas alpha-adrenergic stimulation causes a slower, more sustained, enhancement of branched-chain amino acid metabolism. Both effects reflect interconversion of the branched-chain 2-oxo acid dehydrogenase complex between active and inactive forms. Also, these studies suggest that the concentration of branched-chain 2-oxo acid available for decarboxylation can be regulated by adrenaline and glucagon.  相似文献   

13.
Four spin-labeled probes (5-doxylstearic acid (5-NS), its methyl ester (5-NMS), 16-doxylmethylstearate (16-NMS) and 4-(N,N-dimethyl-N-pentadecyl)ammonium-2,2,6,6-tetramethylpiperidine-1-ox yl (CAT-15)) were used to monitor membrane fluidity change in bovine platelets induced by three alkyl alcohols, benzyl alcohol and two phenolic compounds. The relationship between the increase in membrane fluidity induced by these compounds and their inhibitory effects on platelet aggregation was observed. Experiments with the four probes showed that n-hexyl alcohol induced decreases in the order parameter of 5-NS and apparent rotational correlation times of the other probes at the same minimal alcohol concentration. The decreases were observed in the concentration range that inhibited aggregation. n-Amyl alcohol and n-butyl alcohol decreased the values of the parameters of the above mentioned only at higher concentrations that were dependent on their hydrophobicities. Like alkyl alcohols, benzyl alcohol and phenolic compounds decreased the values of the parameters in the concentration ranges in which these compounds inhibited platelet aggregation. The concentration of these compounds causing 50% inhibition of platelet aggregation, the IC50 values, and data on 5-NS-labeled platelets indicated that they inhibited aggregation and decreased the value of the order parameter at lower concentrations relative to their Poct values in comparison to the effective concentrations of alcohols. Phenolic compounds also decreased the values of the apparent rotational correlation times of 5-NMS and 16-NMS. These results indicate that the inhibition of platelet aggregation by alcohols and phenolic compounds is due to membrane perturbation in wide range in depths within the lipid bilayer.  相似文献   

14.
Cells of Zymomonas mobilis ATCC 10988 were immobilized in 1.5% calcium alginate and packed in a column bioreactor for a series of fermentations utilizing 10.0% glucose media with the addition of one of the following amino acids or keto acids: L-leucine, L-isoleucine, L-valine, α-ketoisocaproic acid, α-ketobutyric acid, or α-ketoisovaleric acid. This was done in order to study the rates of production of higher alcohols during ethanolic fermentations at varying dilution rates while under the influence of amino acids or keto acids. Results indicate that the EHRLICH mechanism is operative in Zymomonas sp. α-Ketobutyrate enhanced the production of n-propanol and act-amyl alcohol. α-Ketoisocaproic acid stimulated the production of isoamyl alcohol. α-Ketoisovaleric acid increased the levels of isobutanol. The amino acids also gave rise to their corresponding alcohols but to a far lesser degree than did the keto acids. During high glucose utilization, ethanol yields ranged from 87% to 94% of theoretical with productivity ranging from 60.08 g/l/h in one fermentation (at a dilution rate of 1.35 h?1) to 70.42 g/l/h in another (at a dilution rate of 1.58 h?1). At dilution rates of 1.58 h?1, higher alcohol productivity rose to as high as 4,313 mg/l/h in the presence of α-ketoisocaproic acid, 1,734.49 mg/l/h using α-ketoisovaleric acid, and 1,618.05 mg/l/h in α-ketobutyric acid. The concomitant production of ethanol and higher alcohols in all of the fermentations indicates that glucose is required for the production of the higher alcohols from their corresponding amino acids or keto acids.  相似文献   

15.
Surveys conducted worldwide have shown that a significant proportion of grape musts are suboptimal for yeast nutrients, especially assimilable nitrogen. Nitrogen deficiencies are linked to slow and stuck fermentations and sulphidic off-flavour formation. Nitrogen supplementation of grape musts has become common practice; however, almost no information is available on the effects of nitrogen supplementation on wine flavour. In this study, the effect of ammonium supplementation of a synthetic medium over a wide range of nitrogen values on the production of volatile and non-volatile compounds by two high-nitrogen-demand wine fermentation strains of Saccharomyces cerevisiae was determined. To facilitate this investigation, a simplified chemically defined medium that resembles the nutrient composition of grape juice was used. Analysis of variance revealed that ammonium supplementation had significant effects on the concentration of residual sugar, L-malic acid, acetic acid and glycerol but not the ethanol concentration. While choice of yeast strain significantly affected half of the aroma compounds measured, nitrogen concentrations affected 23 compounds, including medium-chain alcohols and fatty acids and their esters. Principal component analysis showed that branched-chain fatty acids and their esters were associated with low nitrogen concentrations, whereas medium-chain fatty esters and acetic acid were associated with high nitrogen concentrations.  相似文献   

16.
14CO2 production and incorporation of label into proteins from the labeled branched-chain amino acids, leucine, valine, and isoleucine, were determined in primary cultures of neurons and of undifferentiated and differentiated astrocytes from mouse cerebral cortex in the absence and presence of 3 mM ammonium chloride. Production of 14CO2 from [1-14C]leucine and [1-14C]valine was larger than 14CO2 production from [U-14C]leucine and [U-14C]valine in both astrocytes and neurons. In most cases more 14CO2 was produced in astrocytes than in neurons. Incorporation of labeled branched-chain amino acids into proteins varied with the cell type and with the amino acid. Addition of 3 mM ammonium chloride greatly suppressed 14CO2 production from [1-14C]-labeled branched chain amino acids but had little effect on 14CO2 production from [U-14C]-labeled branched-chain amino acids in astrocytes. Ammonium ion, at this concentration, suppressed the incorporation of label from all three branched-chain amino acids into proteins of astrocytes. In contrast, ammonium ion had very little effect on the metabolism (oxidation and incorporation into proteins) of these amino acids in neurons. The possible implications of these findings are discussed, especially regarding whether they signify variations in metabolic fluxes and/or in magnitudes of precursor pools.  相似文献   

17.
Branched-chain keto acid dehydrogenase, an enzyme in the common pathway of branched-chain amino acid catabolism of Pseudomonas putida, is a multienzyme complex which catalyzes the oxidative decarboxylation of branched-chain keto acids. The objective of the present study was to isolate strains with mutations of this and other keto acid dehydrogenases and to map the location of the mutations on the chromosome of P. putida. Several strains with mutations of branched-chain keto acid dehydrogenase, two pyruvate and two 2-ketoglutarate dehydrogenase, were isolated, and the defective subunits were identified by biochemical analysis. By using a recombinant XYL-K plasmid to mediate conjugation, these mutations were mapped in relation to a series of auxotrophic and other catabolic mutations. The last time of entry recorded was at approximately 35 min, and the data were consistent with a single point of entry. Branched-chain keto acid dehydrogenase mutations affecting E1, E1 plus E2, and E3 subunits mapped at approximately 35 min. One other strain affected in the common pathway was deficient in branched-chain amino acid transaminase, and the mutation was mapped at 16 min. The mutations in the two pyruvate dehydrogenase mutants, one deficient in E1 and the other deficient in E1 plus E2, mapped at 22 minutes. The 2-ketoglutarate dehydrogenase mutation affecting the E1 subunit mapped at 12 minutes. A 2-ketoglutarate dehydrogenase mutant deficient in E3 was isolated, but the mutation proved too leaky to map.  相似文献   

18.
Volatile compounds produced by yeast during fermentation greatly influence the organoleptic qualities of wine. We developed a model to predict the combined effects of initial nitrogen and phytosterol content and fermentation temperature on the production of volatile compounds. We used a Box–Behnken design and response surface modeling to study the response of Lalvin EC1118® to these environmental conditions. Initial nitrogen content had the greatest influence on most compounds; however, there were differences in the value of fermentation parameters required for the maximal production of the various compounds. Fermentation parameters affected differently the production of isobutanol and isoamyl alcohol, although their synthesis involve the same enzymes and intermediate. We found differences in regulation of the synthesis of acetates of higher alcohols and ethyl esters, suggesting that fatty acid availability is the main factor influencing the synthesis of ethyl esters whereas the production of acetates depends on the activity of alcohol acetyltransferases. We also evaluated the effect of temperature on the total production of three esters by determining gas–liquid balances. Evaporation largely accounted for the effect of temperature on the accumulation of esters in liquid. Nonetheless, the metabolism of isoamyl acetate and ethyl octanoate was significantly affected by this parameter. We extended this study to other strains. Environmental parameters had a similar effect on aroma production in most strains. Nevertheless, the regulation of the synthesis of fermentative aromas was atypical in two strains: Lalvin K1M® and Affinity? ECA5, which produces a high amount of aromatic compounds and was obtained by experimental evolution.  相似文献   

19.
20.
The production of higher alcohols by engineered bacteria has received significant attention. The budding yeast, Saccharomyces cerevisiae, has considerable potential as a producer of higher alcohols because of its capacity to naturally fabricate fusel alcohols, in addition to its robustness and tolerance to low pH. However, because its natural productivity is not significant, we considered a strategy of genetic engineering to increase production of the branched-chain higher alcohol isobutanol, which is involved in valine biosynthesis. Initially, we overexpressed 2-keto acid decarboxylase (KDC) and alcohol dehydrogenase (ADH) in S. cerevisiae to enhance the endogenous activity of the Ehrlich pathway. We then overexpressed Ilv2, which catalyzes the first step in the valine synthetic pathway, and deleted the PDC1 gene encoding a major pyruvate decarboxylase with the intent of altering the abundant ethanol flux via pyruvate. Through these engineering steps, along with modification of culture conditions, the isobutanol titer of S. cerevisiae was elevated 13-fold, from 11 mg/l to 143 mg/l, and the yield was 6.6 mg/g glucose, which is higher than any previously reported value for S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号