首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Goldfish preovulatory ovarian follicles (prior to germinal vesicle breakdown) were utilized for studies investigating the actions of activators of different signal transduction pathways on prostaglandin (PG) production. The protein kinase C (PKC) activators phorbol 12-myristate 13-acetate (PMA; 100-400 nM), 1-oleoyl-2-acetylglycerol (5 and 25 micrograms/ml), and 1,2-dioctanoylglycerol (10 and 50 micrograms/ml) stimulated PGE production; the inactive phorbol 4 alpha-phorbol didecanoate, which does not activate PKC, had no effect. Calcium ionophore A23187 (0.25-4.0 microM) stimulated PGE production and acted in a synergistic manner with activators of PKC. Although produced in lower amounts than PGE, PGF was stimulated by PMA and A23187. The direct activator of phospholipase A2, melittin (0.1-1.0 microM), stimulated a dose-related increase in PGE production, whereas chloroquine (100 microM), a putative inhibitor of phospholipase A2, blocked basal and PMA + A23187-stimulated PGE production. Several drugs known to elevate intracellular levels of cAMP including the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.1-1.0 mM), forskolin (10 microM), and dibutyryl cAMP (dbcAMP; 5 mM) attenuate PMA + A23187-stimulated PGE production. Melittin-stimulated production of PGE was inhibited by dbcAMP, suggesting that the action of cAMP was distal to the activation of phospholipase A2. In summary, these studies demonstrate that activation of PKC and elevation of intracellular calcium levels stimulate PG production, in part, through activation of phospholipase A2. The adenylate cyclase/cAMP signalling pathway is inhibitory to PG production by goldfish ovarian follicles.  相似文献   

2.
3.
Control of platelet protein kinase C activation by cyclic AMP   总被引:1,自引:0,他引:1  
Experiments were performed to elucidate the role of adenosine 3': 5'-cyclic monophosphate (cAMP) in the control of platelet protein kinase C (PKC) activation. Platelet aggregation and secretion in response to 4 beta-phorbol 12-myristate 13-acetate (PMA) or 1-oleoyl-2-acetylglycerol (OAG) were inhibited by dibutyryl cAMP in a dose-dependent manner. Inhibition of these functional activities paralleled a decrease in the PMA-induced phosphorylation of the Mr 47,000 substrate (p47) of PKC by pre-incubation of platelets with dibutyryl cAMP. These changes were also observed when platelet cAMP was increased by prostacyclin (PGI2), forskolin, or theophylline. The ADP scavenger creatine phosphate/creatine phosphokinase (CP/CPK) and the cyclooxygenase inhibitor indomethacin also diminished the aggregation and p47 phosphorylation responses to PMA or OAG. Pre-incubation of platelets with dibutyryl cAMP significantly potentiated the inhibition of aggregation and p47 phosphorylation effected by CP/CPK and indomethacin. These results are consistent with the model that PMA- or OAG-induced activation of platelets is amplified by secreted ADP and that the response to secreted ADP is inhibited by cAMP. Furthermore, the findings that increased intracellular cAMP inhibits PMA- or OAG-induced p47 phosphorylation in excess of that due solely to CP/CPK, and that cAMP significantly potentiates the effects of ADP removal and inhibition of cyclooxygenase in blocking p47 phosphorylation suggest that cAMP also exerts non-ADP-mediated inhibitory effects on PKC in intact platelets.  相似文献   

4.
Studies were conducted to investigate cross-talk between protein kinase C (PKC) and cyclic AMP (cAMP) pathways using rat glomeruli (Glm). Phorbol 12-myristate 13-acetate (PMA), a PKC activator, stimulated production of reactive oxygen metabolites (ROM) in Glm. Forskolin and dibutyryl cAMP (Bt2cAMP) inhibited production of ROM dose-dependently. In the presence of both Bt2cAMP and 3-isobutyl-1-methylxanthine (IBMX) an additive effect was observed. Forskolin at 10(-4) inhibited translocation of PKC from the cytosol to the membrane. These results demonstrate that cAMP-mediated inhibition can occur at a step distal to PKC activation.  相似文献   

5.
The possible influence of an activator of protein kinase C, the tumor-promoting phorbol ester, PMA (phorbol-12-myristate-13-acetate), upon small bovine luteal cell steroidogenesis was investigated in vitro, PMA had no significant effect on basal and dibutyryl cyclic AMP (dbcAMP)-stimulated progesterone production but markedly modulated the LH-stimulated progesterone and cAMP productions. PMA potentiated the LH-stimulated cAMP accumulation whatever the dose of LH used. It also potentiated the LH-induced progesterone production in the presence of low doses of LH. Paradoxically, in the presence of maximal or submaximal effective doses of LH, PMA exerted a time- and dose-dependent inhibition of progesterone synthesis. Diacylglycerol was able to mimic the effects of PMA on LH-induced steroidogenesis. These observations suggest that the Ca2+- and phospholipid-dependent protein kinase C can modulate the regulation by LH of small bovine luteal cell steroidogenesis at a step before the synthesis of cAMP. They also suggest that the interaction between LH and its receptor is able to trigger a negative regulatory signal which would be only expressed for high doses of LH and in the presence of an activator of PKC.  相似文献   

6.
Lymphokines including IL-2, IL-4, and IL-6 are involved in the induction of Ig production by activated B cells. We have investigated the role of protein kinases in IL-6-induced IgM secretion by SKW6.4 cells, an IL-6 responsive B cell line. IL-6-stimulated IgM production was inhibited by elevated intracellular cAMP induced either by the addition of dibutyryl cAMP or cholera toxin. The inhibitory effect of elevated intracellular cAMP was blocked by n-(2-(Methylamino)ethyl)-5-isoquinolinesulfonic dihydrochloride (H8), an inhibitor of protein kinase A. H8 did not affect IgM secretion induced by IL-6. In contrast, the addition of 1-(5-isoquinolinesulfonyl)-2-methylpiperizine dihydrochloride (H7), an inhibitor of protein kinase C activity, markedly inhibited IL-6-stimulated IgM production by SKW6.4 cells. H7 and elevated intracellular cAMP inhibited IgM mRNA expression and subsequent IgM synthesis by SKW6.4 cells. SKW6.4 proliferation, as determined by [3H]thymidine incorporation, was not markedly affected by IL-6, dibutyryl cAMP, cholera toxin, H7 or H8. PMA, an activator of protein kinase C, directly stimulated significant IgM secretion by SKW6.4 cells. When added to PMA-stimulated SKW6.4 cells, IL-6 stimulated additional IgM production. This observation suggested that IL-6 could stimulate differentiation without activating protein kinase C. This was confirmed by demonstrating that IL-6 did not stimulate production of diacylglycerol, did not induce the translocation of protein kinase C from the cytosolic compartment to the plasma membrane and could induce SKW6.4 cells to produce IgM after depletion of their cellular protein kinase C by PMA. Taken together these results suggests that IL-6-stimulated IgM production requires utilization of an H7-inhibitable protein kinase that can be inhibited by a protein kinase A-dependent pathway. Despite the fact that PMA can stimulate IgM production in SKW6.4 cells, IL-6 appears to use a protein kinase pathway other than protein kinase C to induce IgM production.  相似文献   

7.
This study aimed to identify the intracellular signaling pathway in angiotensin II (Ang II)-induced upregulation of plasminogen activator inhibitor type 1 (PAI-1) mRNA expression in cultured rat glomerular mesangial cells, and to examine the interaction between Ang II and TGF-beta signaling. Ang II-induced upregulation of PAI-1 mRNA expression was prevented by a protein kinase C (PKC) inhibitor, bisindorylmaleimide I. While phorbol 12-myristate 13-acetate (PMA) upregulated the PAI-1 mRNA expression, a calcium ionophore, ionomycin, had little effect. Mesangial cells pretreated with PMA for 24 h to downregulate PKC demonstrated attenuated response to Ang II. A protein tyrosine kinase inhibitor, genistein, completely blocked both Ang II- and PMA-induced PAI-1 mRNA expression. Transforming growth factor-beta1 (TGF-beta1) alone induced the expression, and in the presence of Ang II, TGF-beta1 superinduced PAI-1 mRNA expression to a higher extent. Both bisindorylmaleimide I and genistein suppressed the Ang II plus TGF-beta1-induced PAI-1 mRNA upregulation to the basal level, while downregulation of PKC attenuated the synergistic upregulation of PAI-1 mRNA expression to the level comparable to TGF-beta1 alone. These data suggest that, in rat mesangial cells, (1) PKC and protein tyrosine kinase(s) are involved in the Ang II signaling cascade, (2) protein tyrosine kinase(s) works downstream from PKC in the cascade, and (3) there is an interaction between the Ang II and TGF-beta signal pathways downstream from PKC. In in vivo settings, local activation of renin-angiotensin and TGF-beta systems in the glomeruli may synergistically augment PAI-1 expression, promote mesangial matrix accumulation and progression of glomerular injury.  相似文献   

8.
A series of studies was conducted to evaluate the effects of phorbol esters and a diacylglycerol analog on basal and hormone-stimulated steroidogenesis in granulosa cells from the largest preovulatory follicle of the domestic hen. Agents that previously have been shown to activate protein kinase C, such as the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate (PMA), and the synthetic diacylglycerol analog, 1-oleoyl-2-acetylglycerol (OAG), suppressed luteinizing hormone (LH)-induced progesterone (PMA at levels of 10 and 100 ng/tube; OAG at levels of 10 and 25 micrograms/tube), and androgen (10 and 100 ng PMA; 25 micrograms OAG) production, but had no effect on basal levels of either steroid. Furthermore, PMA decreased the ability of vasoactive intestinal peptide to induce steroidogenesis, suggesting that protein kinase C activation may generally modulate the activity of hormones that act via the adenylyl cyclase/cyclic 3',5'-adenosine monophosphate (cAMP) second messenger system. In further support of this proposal was the finding that PMA and OAG decreased the production of cAMP in response to LH, and attenuated the steroidogenic response in granulosa cells exposed to 10 mM 8-bromo-cAMP. By contrast, the induction of calcium mobilization using a calcium ionophore (A23187; 0.5-2.0 microM) stimulated progesterone and androgen production without increasing intracellular levels of cAMP, and this stimulatory effect on steroidogenesis was not inhibited by the presence of 100 ng PMA/tube. From these data, we suggest that the activation of protein kinase C in granulosa cells of the hen may provide a physiological mechanism by which receptor-mediated steroidogenesis, involving the adenylyl cyclase second messenger system, is modulated.  相似文献   

9.
The mechanisms of muscarinic receptor-linked increase in cAMP accumulation in SH-SY5Y human neuroblastoma cells has been investigated. The dose-response relations of carbachol-induced cAMP synthesis and carbachol-induced rise in intracellular free Ca2+ were similar. The stimulated cAMP synthesis was inhibited by about 50% when cells were entrapped with the Ca2+ chelator BAPTA or in the presence of the protein kinase C (PKC) inhibitor staurosporine. Production of cAMP could be induced also by the Ca2+ ionophore, ionomycin and by TPA, an activator of PKC. When added together TPA and ionomycin had a synergistic effect. When cAMP synthesis was activated with cholera toxin, PGE1 or PGE1 + pertussis toxin carbachol stimulated cAMP production to the same extent as in control cells. Ca2+ and protein kinase C thus seem to be the mediators of muscarinic-receptor linked cAMP synthesis by a direct action on adenylate cyclase.  相似文献   

10.
11.
Phorbol myristate acetate (PMA) added to human synovial fibroblast cultures caused a dose-dependent increase in the production of plasminogen activator inhibitor-type 1 (PAI-1). In addition, PMA inhibited endogenous and interleukin-1 (IL-1) induced plasminogen activator (PA) activity, while increasing mRNA PAI-1 levels. Other protein kinase C (PKC) activators, mezerein and teleocidin B4, caused similar effects. The simultaneous addition of the PKC antagonists, H-7 or staurosporine, prevented the inhibition of PA activity by PMA. This study shows that activation of PKC inhibits PA and stimulates PAI production in human synovial fibroblasts. These results suggest that activation of PKC may play an important role in regulating increased PA production associated with joint destruction in rheumatoid arthritis (RA).  相似文献   

12.
Single IK(Ca) channels of human erythrocytes were studied with the patch-clamp technique to define their modulation by endogenous protein kinase C (PKC). The perfusion of the cytoplasmic side of freshly excised patches with the PKC activator, phorbol 12-myristate 13-acetate (PMA), inhibited channel activity. This effect was blocked by PKC(19-31), a peptide inhibitor specific for PKC. Similar results were obtained by perfusing the membrane patches with the structurally unrelated PKC activator 1-oleoyl-2-acetylglycerol (OAG). Blocking of this effect was induced by perfusion with PKC(19-31) or chelerythrine. Channel activity was not inhibited by the PMA analog 4alpha-phorbol 12,13-didecanoate (4alphaPDD), which has no effect on PKC. Activation of endogenous cAMP-dependent protein kinase (PKA), which is known to up-modulate IK(Ca) channels, restored channel activity previously inhibited by OAG. The application of OAG induced a reversible reduction of channel activity previously up-modulated by the activation of PKA, indicating that the effects of the two kinases are commutative, and antagonistic. Kinetic analysis showed that down-regulation by PKC mainly changes the opening frequency without significantly affecting mean channel open time and conductance. These results provide evidence that an endogenous PKC down-modulates the activity of native IK(Ca) channels of human erythrocytes. Our results show that PKA and PKC signal transduction pathways integrate their effects, determining the open probability of the IK(Ca) channels.  相似文献   

13.
Human T cell activation by phorbol esters and diacylglycerol analogues   总被引:5,自引:0,他引:5  
Activation of protein kinase C (PKC), by the phorbol ester PMA, or the membrane-permeable diacylglycerol 1-oleoyl 2-acetylglycerol (OAG), had different effects on the proliferation-associated responses of a more than 99% pure population of human T cells. Treatment with PMA or OAG caused down-regulation of the TCR-CD3 complex, but only PMA, in combination with ionomycin, was capable of stimulating IL-2R expression and proliferation. Immunocytochemical staining with antisera specific for the PKC subspecies alpha, beta I, beta II, and gamma showed that untreated resting T cells normally coexpress alpha, beta I, and beta II PKC subspecies, which are distributed diffusely throughout the cell, with some localization around the periphery of the nucleus. There was no difference between the responses of these PKC subspecies to OAG and PMA, redistributing, after 10 min of treatment, to a discrete focal area within the cell. Treatment with OAG resulted in transient redistribution of PKC, maximal at 10 min, while in PMA-stimulated cells, the PKC redistribution was prolonged, persisting for at least 24 h. The results suggest that the difference in cellular response to treatment with PMA and OAG is not a consequence of differential activation of various PKC subspecies.  相似文献   

14.
We have analysed the effect of mitogenic lectins on c-Fos and c-Jun protein levels as well as on activator protein-1 (AP-1) binding and enhancer activity in Jurkat T-cells. Both c-Fos and c-Jun protein levels were increased after Con A and PHA stimulation. Since T-cell stimulation increases both intracellular Ca2+ and cAMP levels and activates protein kinase C (PKC), the possible involvement of these intracellular messengers in c-Fos and c-Jun induction was tested. PMA, which directly activates PKC, mimicked the effect of the lectins on c-Fos and c-Jun, but elevation of either intracellular Ca2+ or cAMP levels had little or no effect. The mitogen-induced increase of c-Fos and c-Jun immunoreactivity was inhibited by H-7, a kinase inhibitor with relatively high specificity for PKC, and less efficiently by H-8, a structurally related kinase inhibitor less active on PKC, but more active on cyclic nucleotide-dependent kinases. Con A stimulation was found to increase both binding of AP-1 to the AP-1 consensus sequence, TRE, and AP-1 enhancer activity, in Jurkat cells. PMA was also found to increase the AP-1 enhancer activity, whereas elevation of Ca2+ or cAMP had only minor effects. We conclude that stimulation with mitogenic lectins is sufficient to increase both c-Fos and c-Jun protein levels, AP-1 binding and AP-1 enhancer activity in Jurkat cells and that they act via mechanisms that could involve the activation of PKC.  相似文献   

15.
We study in HMC-1 the activation process, measured as histamine release. We know that ammonium chloride (NH(4)Cl) and ionomycin release histamine, and the modulatory role of drugs targeting protein kinase C (PKC), adenosine 3',5'-cyclic monophosphate (cAMP), tyrosine kinase (TyrK) and phosphatidylinositol 3-kinase (PI3K) on this effect. We used G?6976 (100 nM) and low concentration of GF 109203X (GF) (50 nM) to inhibit Ca(2+)-dependent PKC isozymes. For Ca(2+)-independent isozymes, we used 500 nM GF and 10 microM rottlerin (specifically inhibits PKCdelta). Phorbol 12-myristate 13-acetate (PMA) (100 ng/ml) was used to stimulate PKC, and genistein (10 microM) and lavendustin A (1 microM) as unspecific TyrK inhibitors. STI571 10 microM was used to specifically inhibit the activity of Kit, the receptor for stem cell factor, and 10 nM wortmannin as a PI3K inhibitor. Activation of PKC with PMA enhances histamine release in response to NH(4)Cl and ionomycin. PMA increases NH(4)Cl-induced alkalinization and ionomycin-induced Ca(2+) entry. Inhibition of PKCdelta strongly inhibits Ca(2+) entry elicited by ionomycin, but failed to modify histamine release. The effect of cAMP-active drugs was explored with the adenylate cyclase activator forskolin (30 microM), the inhibitor SQ22,536 (1 microM), the cAMP analog dibutyryl cAMP (200 microM), and the PKA blocker H89 (1 microM). Forskolin and dibutyryl cAMP do increase NH(4)Cl-induced alkalinization, and potentiate histamine release elicited by this compound. Our data indicates that alkaline-induced exocytosis is modulated by PKC and cAMP, suggesting that pH could be a modulatory signal itself.  相似文献   

16.
N-Formyl-Met-Leu-Phe (FMLP) and phorbol 12-myristate 13-acetate (PMA) caused a synergistic augmentation of superoxide anion (O2-) production in neutrophil-like HL-60 cells differentiated with dibutyryl cAMP. The present study was undertaken to investigate the mechanism of the synergistic augmentation of O2- production. FMLP increased intracellular free Ca2+ concentration ([Ca2+]i), which was slightly suppressed by PMA and completely inhibited by an intracellular Ca2+ chelating agent, O,O'-bis(2-aminophenyl)ethyleneglycol-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (BAPTA-AM). Although FMLP-induced O2- production was inhibited by BAPTA-AM, a major part of the synergistic augmentation of O2- production by FMLP and PMA remained after BAPTA-AM treatment, suggesting that a Ca2+-independent mechanism might be involved in the augmentation. FMLP and PMA caused an activation of phospholipase D (PLD) almost additively in a Ca2+-sensitive manner. The synergistic activation of mitogen-activated protein kinase (MAPK) was evoked by combined addition of PMA and FMLP in a BAPTA-AM resistant manner. However, PD98059, a MAPK kinase inhibitor, did not affect the synergistic augmentation of O2- production, although it potently inhibited the synergistic augmentation of tyrosine phosphorylation of MAPK. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, inhibited FMLP-induced O2- production, but it did not inhibit the synergistic augmentation of O2- production by PMA and FMLP. In contrast, staurosporine and GF109203X, protein kinase C inhibitors, reduced the synergistic augmentation induced by PMA and FMLP. In addition, pertussis toxin (PT) abolished the synergistic augmentation of O2- production. It is concluded that the synergistic augmentation of O2- production induced by PMA and FMLP is mediated through a PT-sensitive G protein and a protein kinase C in a Ca2+-independent manner.  相似文献   

17.
Modulation of neutrophil activation by catecholamines reflects a fine-tuning by coupling inhibitory and stimulatory receptor pathways. The catecholamine isoproterenol (ISO) binds to beta-adrenergic cell surface receptors and thereby inhibits cell responses such as O2- production stimulated by formyl peptides. However, ISO did not inhibit O2- generation activated by 1 microM ionophore A23187, the protein kinase C activators phorbol ester (PMA, 100 ng/ml) and oleoylacetylglycerol (OAG, 50 microM), and the G-protein activator NaF (40 mM). Furthermore, the overall kinetics of oxidant production in the presence of ISO were unchanged when cells were stimulated with PMA, OAG, A23187, and NaF. These results would imply that neither intracellular calcium, the activation of protein kinase C, nor the activation of G-protein are the primary target of the inhibitory pathway. Accordingly, pertussis toxin did not block PMA or NaF-stimulated superoxide generation. In contrast, formyl peptide-dependent GTPase activity is inhibited by ISO in sonicated cell preparations. Since ISO increases the cAMP concentration in the cell, the possibility is raised that a cAMP-dependent kinase inhibits signal transduction in part by blocking the interaction of this receptor with its G-protein.  相似文献   

18.
Colony stimulating factor-1 (CSF-1) stimulates DNA synthesis in quiescent murine bone marrow-derived macrophages (BMM). CSF-1 action has been shown to involve activation of the CSF-1 receptor kinase. The protein kinase C activator, 12-O-tetradecanoylphorbol 13-acetate (PMA), is itself weakly mitogenic and synergises with CSF-1 for stimulation of BMM DNA synthesis suggesting a possible role for protein kinase C in the stimulation of BMM DNA synthesis. In this report we show that several agents which raise intracellular cAMP (8-bromoadenosine 3':5'-cyclic monophosphate, 3-isobutyl-1-methylxanthine, cholera toxin, and prostaglandin E2) reversibly inhibit DNA synthesis in BMM induced by CSF-1, granulocyte macrophage-colony stimulating factor, interleukin-3, and PMA. The suppressive action of cAMP elevation on the proliferative response to CSF-1 can be manifested even late in the G1 phase of the cell cycle. Several CSF-1-stimulated earlier responses, viz. protein synthesis, Na+/H+ exchange, Na+,K(+)-ATPase and c-myc-mRNA expression, were not inhibited thus showing a striking difference from some other cellular systems involving growth factor-mediated responses. c-fos-mRNA levels were raised and stabilized by the cAMP-elevating agents, and this modulation was not altered by CSF-1. Thus, the signaling pathways in the macrophages involving tyrosine kinase and protein kinase C activation are associated with increased proliferation while those involving elevation of cAMP (and presumably activation of cAMP-dependent protein kinases) appear to have an inhibitory effect.  相似文献   

19.
Steroidogenesis in teleost fish, as in other vertebrate groups, is mediated by the activation of adenylate cyclase. For the present studies, calcium ionophore A23187 and either phorbol 12-myristate 13-acetate (PMA) or 1-oleoyl-2-acetylglycerol (OAG) were used to investigate the possible roles that changes in intracellular calcium content and protein kinase C activation play in steroid production by goldfish preovulatory ovarian follicles incubated in vitro. While ineffective alone, PMA (1.6-400 nM) and OAG (25-100 micrograms/ml) exhibited classical synergism with A23187 (1.0-10 microM), leading to increased testosterone production. The magnitude of these responses was at least tenfold lower than that obtained with human chorionic gonadotropin (hCG), forskolin, or dibutyryl cyclic adenosine 3',5'-monophosphate. Testosterone production stimulated by hCG and forskolin was blocked by addition of PMA but not OAG. Unlike PMA, the inactive phorbol ester 4 alpha-phorbol 12,13-dideconate did not influence basal or stimulated testosterone production. A23187 had a biphasic effect on stimulated testosterone production: a dosage of 0.25 or 1.0 microM potentiated the action of submaximally effective dosages of hCG or forskolin on testosterone production; a higher dosage of 4 microM inhibited stimulated testosterone production by up to 50%. In conclusion, these studies suggest that, in addition to the adenylate cyclase second messenger system, changes in intracellular calcium and activation of protein kinase C may modulate steroidogenesis in goldfish ovarian follicles.  相似文献   

20.
Murine T cell differentiation antigen CD8 alpha (Lyt-2) is phosphorylated in vivo after phorbol 12-myristate 13-acetate (PMA) treatment of cells. Concanavalin A,dibutyryl cAMP and calcium ionophore are unable to stimulate phosphate incorporation into CD8 alpha. Depletion of cellular protein kinase C (PKC) by prolonged PMA treatment abolished this phosphorylation, suggesting that PKC is required for this effect. Using the amino acid sequence derived from cloning CD8 alpha, peptides encompassing both possible intracellular phosphorylation sites were made and used to test the ability of various kinases to phosphorylate CD8 alpha sequences. Only the proximal serine peptide was a kinase substrate, and of PKC, cAMP-dependent kinase and the multifunctional calcium/calmodulin-dependent kinase, only PKC was able to phosphorylate this peptide. These studies provide the first definitive evidence that CD8 alpha is a direct substrate of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号