首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Materials retained by river systems are diverse. Woody debris recruited from the riparian vegetation into streams is of variable sizes and varying surface textural complexity. The main aim of this study was to determine experimentally the colonization of wood recruited into a tropical stream by aquatic invertebrates and relate this to the degree of wood surface textural complexity. Wood, being alien to the wholly-aquatic and semi-aquatic invertebrates, provided an attachment substratum and was increasingly colonized by the invertebrates up to the 178th day. There was an initial increase in the taxa diversity up to the 9th day followed by a drastic decrease thereafter. Wood with smaller surface area had the higher invertebrate densities than those with large surface area, thus contrasting the expected trend. Our results show that the colonization by invertebrates of wood was scale-dependent. Invertebrates occupied the cracks, holes, protrusions, crevices and the small depressions found on the wood surface. Chironomidae (Order Diptera) made small tunnels in the more decayed parts of the wood and at the nodal areas. Wood decomposes slowly but it could cumulatively contribute more energy in its lifespan than the short-lived leaf litter which is more abundant in streams. Aquatic invertebrates encountering woody material in nature would make a trade-off between accepting a long-lasting resource and expending energy in continued search for the more palatable short-lived leafy material. The ecological and economic value of wood texture in streams and riparian vegetation management are poorly known and there is need for further research in the tropics.  相似文献   

2.
1. This experiment studied the effects of differing levels of the complexity of substratum architecture at two spatial scales on the distribution and abundance of benthic algae and invertebrates, and the strength of the trophic interaction between invertebrate grazers and algae. Some estimates of the effects on invertebrate colonization rates were also made. 2. Four levels of microhabitat architectural complexity were created using artificial substrata (clay tiles) and placed in Mountain River, Tasmania, in two riffle types (bedrock and boulder-cobble) of differing large-scale substratum complexity. After a colonization period, invertebrate grazers were removed from half the tiles to measure the effects of grazing. Invertebrates on the tiles were also counted and identified. At the end of the experiment, algae were removed from the tiles and analysed for chlorophyll a. 3. Invertebrate grazers did not reduce algal biomass during the experiment, and microhabitat-scale architecture influenced algal biomass more strongly than riffle-scale architecture. Highly complex microhabitat architecture increased algal biomass by providing more surface area, but once standardized for surface area, algal biomass decreased as the complexity of microhabitat architecture increased. 4. Microhabitat-scale architecture was also predominant in determining invertebrate density and the identity of the dominant grazer species. In contrast to algal biomass, invertebrate densities and species density increased with the complexity of microhabitat architecture, suggesting that refuges from flow (and possibly predation) were as important to river invertebrates as the distribution of their food source. 5. Riffle-scale architecture had some effect on the colonization of two slow-moving grazer taxa, but, overall, the colonization processes of slow-moving grazers were determined mostly by the complexity of microhabitat-scale architecture.  相似文献   

3.
To assess the effects of timber harvesting on headwater streams in upland forests, benthic community structure was contrasted among four dominant forest management types (old growth, red alder-dominated young growth, conifer-dominated young growth, clearcut) and instream habitats (woody debris, cobble, gravel) in southeastern Alaska. Benthos in streams of previously harvested areas resulted in increased richness, densities and biomass relative to old growth types, particularly in young growth stands with a red alder-dominated riparian canopy. Woody debris and gravel habitats supported a combination of higher densities and biomass of invertebrates than cobble habitats. In addition, woody debris also supported a richer and more diverse invertebrate fauna than either cobble or gravel substrates. Maintaining both a woody debris source and a red alder component in regenerating riparian forests following timber harvesting should support greater invertebrate densities and diversity following clearcutting.  相似文献   

4.
1. Small permanent streams are coming under increasing pressure for water abstraction. Although these abstractions might only be required on a short‐term basis (e.g. summer time irrigation), the highest demand for water often coincides with seasonal low flows. 2. We constructed weirs and diversions that reduced discharge in three small streams (<4 m width) to test the hypotheses that short‐term water abstractions would decrease habitat availability and suitability for invertebrates, resulting in increased invertebrate drift, reduced taxonomic richness and decreased benthic invertebrate densities. 3. We sampled benthic invertebrates, invertebrate drift and periphyton at control (upstream) and impact (downstream) sites on each stream before and during 1 month of discharge reduction. 4. Discharge decreased by an average of 89–98% at impact sites and wetted width decreased by 24–30%. Water depth decreased by 28–64% while velocity decreased by 50–62%. Water conductivity, temperature and dissolved oxygen showed varying responses to flow reduction among the three streams, whereas algal biomass and pH were unaffected in all streams. 5. The densities of invertebrate taxa tended to increase in the impact reaches of these streams, even though invertebrate drift increased at impact sites in the first few days following discharge reduction. There were a higher proportion of mayflies, stoneflies and caddisflies at the impact site on one stream after flow reduction. There were no changes to the number of taxa or species evenness at impact sites. 6. Our results suggest that for these small streams, the response of invertebrates to short‐term discharge reduction was to accumulate in the decreased available area, increasing local invertebrate density.  相似文献   

5.
1. Few studies have assessed the effects of macroconsumers, such as fishes and shrimps, on detritus and detritivores.
2. We used an underwater electric field to prevent macroconsumers from feeding in and on leaf packs in a lowland stream in Costa Rica and thus to determine their effects on the density of insect detritivores and decay rates of leaves.
3. Exclusion of macroconsumers resulted in significantly higher densities of small invertebrates inhabiting leaf packs. Most of these were collector–gatherers, none were shredders.
4. Despite the increase in invertebrate density, decay rates of leaves were not statistically different. These findings contrast with results from temperate streams showing that increases in the density of invertebrates in leaf packs typically result in an increased rate of decay.
5. Leaf decay rates and invertebrate densities were also compared between leaf packs placed in electric exclusion treatments and those placed in coarse (2 cm) plastic net bags (as used in many previous studies). Our results suggest that using such netting in tropical streams may deter macroconsumers, which can affect insect density and, potentially, decay rates of organic matter.  相似文献   

6.
7.
The patchy distribution of benthic invertebrates in streams and rivers is an important and widely researched phenomenon. Previous studies on reasons for this patchiness have neglected the potential role of local disturbance history, probably because most lotic invertebrates are mobile and any effect of disturbance history was thought to be short-lived. Here we demonstrate for a New Zealand gravel-bed stream that local disturbance history can have long-term effects on the distribution of highly mobile stream invertebrates. Buried scour chains (100 at each of three 20-m sites within a 350-m reach) indicated that a spate with a return period of 5 months caused a mosaic of bed patches with different stabilities. More than 2 months after the spate, we took random, quantitative samples at each site from five patches that had experienced 4 cm or more of scour during the spate, from five patches with 4 cm or more of fill, and from five stable patches. Density of the dominant invertebrate taxon, the highly mobile mayfly Deleatidium spp., and densities of another three of the seven most common taxa differed significantly between patch stability categories. Larvae of Deleatidium, the black fly Austrosimulium spp. and the dipteran Eriopterini were most abundant in fill patches, whereas Isopoda were most abundant in scour patches. Total invertebrate densities and densities of six common taxa also differed between sites, although these were only 95–120 m apart. These results show that local disturbance history can have long-term effects on lotic invertebrates and be an important cause of invertebrate patchiness. The observed effects might have been even stronger had we sampled sooner after the spate or after a large flood. Disturbance history may influence invertebrates both directly (through dislodgement or mortality) and indirectly, through effects on the spatial distribution of their resources. Our results suggest that the role of disturbance in structuring animal communities dominated by mobile species may be more important than previously thought. Received: 25 January 2000 / Accepted: 14 April 2000  相似文献   

8.
Species with complex life cycles pose challenges for understanding what processes regulate population densities, especially if some life stages disperse. Most studies of such animals that are thought to be recruitment limited focus on the idea that juvenile mortality limits the density of recruits (and hence population density), fewer consider the possibility that egg supply may be important. For species that oviposit on specific substrata, environmental constraints on oviposition sites may limit egg supply. Female mayflies in the genus Baetis lay egg masses on the underside of stream rocks that emerge above the water’s surface. We tested the hypothesis that egg mass densities are constrained by emergent rock densities within and between streams, by counting egg masses on emergent rocks. All emergent rocks were counted along 1-km lengths of four streams, revealing significant variation in emergent rock density within streams and a more than three-fold difference between streams. In each stream, egg mass density increased with the density of emergent rocks in 30-m stretches. We used regression equations describing these small-scale relationships, coupled with the large-scale spatial variation of emergent rocks, to estimate egg mass densities for each 1-km stream length, a scale relevant to population processes. Scaled estimates were positively associated with emergent rock density and provided better estimates than methods that ignored environmental variation. Egg mass crowding was inversely related to emergent rock density at the stream scale, a pattern consistent with the idea that oviposition substrata were in short supply in streams with few emergent rocks, but crowding did not compensate entirely for differences in emergent rock densities. The notion that egg supply, not larval mortality, may limit population density is an unusual perspective for stream insects. Environmental constraints on egg supply may be widespread among other species with specialised oviposition behaviours.  相似文献   

9.
Benthic macroinvertebrates were sampled at six stations in the Athabasca River near Ft. Mackay, Alberta, during the 1977 open water season. Fluctuating discharge of the river effected changes in the nature of the sediments as well as the abundance and composition of invertebrate communities. During most of the summer, coarse sand was dominated by chironomids of the Harnischia complex and an undescribed Orthocladiinae. Stoneflies and mayflies invaded the coarse sand in autumn when decreasing discharge led to greater stability of the substrate. The invertebrate fauna of silt and mud resembled that of similar substrates in lakes. Bedrock supported communities similar to those of stony streams. The average abundances of invertebrates on sand and mud were similar but estimates from mud were somewhat more variable. These results are discussed with respect to substrate stability and compared with published records from other large rivers.  相似文献   

10.
We investigated the influence of red alder (Alnus rubra) stand density in upland, riparian forests on invertebrate and detritus transport from fishless headwater streams to downstream, salmonid habitats in southeastern Alaska. Red alder commonly regenerates after soil disturbance (such as from natural landsliding or timber harvesting), and is common along streams in varying densities, but its effect on food delivery from headwater channels to downstream salmonid habitats is not clear. Fluvial transport of invertebrates and detritus was measured at 13 sites in spring, summer and fall during two years (2000–2001). The 13 streams encompassed a riparian red alder density gradient (1–82% canopy cover or 0–53% basal area) growing amongst young-growth conifer (45-yr-old stands that regenerated after forest clearcutting). Sites with more riparian red alder exported significantly more invertebrates than did sites with little alder (mean range across 1–82% alder gradient was about 1–4 invertebrates m?3 water, and 0.1–1 mg invertebrates m?3 water, respectively). Three-quarters of the invertebrates were of aquatic origin; the remainder was of terrestrial origin. Aquatic taxa were positively related to the alder density gradient, while terrestrially-derived taxa were not. Streams with more riparian alder also exported significantly more detritus than streams with less alder (mean range across 1–82% alder gradient was 0.01–0.06 g detritus m?3 water). Based on these data, we predict that headwater streams with more riparian alder will provide more invertebrates and support more downstream fish biomass than those basins with little or no riparian alder, provided these downstream food webs fully utilize this resource subsidy.  相似文献   

11.
1. Non‐native trout have been stocked in streams and lakes worldwide largely without knowledge of the consequences for native ecosystems. Although trout have been introduced widely throughout the Sierra Nevada of California, U.S.A., fishless streams and their communities of native invertebrates persist in some high elevation areas, providing an opportunity to study the effects of trout introductions on natural fishless stream communities. 2. We compared algal biomass and cover, organic matter levels and invertebrate assemblages in 21 natural fishless headwater streams with 21 paired nearby streams containing stocked trout in Yosemite National Park. 3. Although environmental conditions and particulate organic matter levels did not differ between the fishless and trout streams, algal biomass (as chlorophyll a concentration) and macroalgal cover were, on average, approximately two times and five times higher, respectively, in streams containing trout. 4. There were no differences in the overall densities of invertebrates in fishless versus paired trout streams; however, invertebrate richness (after rarefaction), evenness, and Simpson and Shannon diversities were 10–20% higher in fishless than in trout streams. 5. The densities of invertebrates belonging to the scraper‐algivore and predator functional feeding guilds were higher, and those for the collector‐gatherer guild lower, in fishless than trout streams, but there was considerable variation in the effects of trout on specific taxa within functional feeding groups. 6. We found that the densities of 10 of 50 common native invertebrate taxa (found in more than half of the stream pairs) were reduced in trout compared to fishless streams. A similar number of rarer taxa also were absent or less abundant in the presence of trout. Many of the taxa that declined with trout were conspicuous forms (by size and behaviour) whose native habitats are primarily high elevation montane streams above the original range of trout. 7. Only a few taxa increased in the presence of trout, possibly benefiting from reductions in their competitors and predators by trout predation. 8. These field studies provide catchment‐scale evidence showing the selective influence of introduced trout on stream invertebrate and algal communities. Removal of trout from targeted headwater streams may promote the recovery of native taxa, community structure and trophic organisation.  相似文献   

12.
Since terrestrial invertebrates are often consumed by stream fishes, land-use practices that influence the input of terrestrial invertebrates to streams are predicted to have consequences for fish production. We studied the effect of riparian land-use regime on terrestrial invertebrate inputs by estimating the biomass, abundance and taxonomic richness of terrestrial invertebrate drift from 15 streams draining catchments with three different riparian land-use regimes and vegetation types: intensive grazing — exotic pasture grasses (4 streams), extensive grazing — native tussock grasses (6 streams), reserve — native forest (5 streams). Terrestrial invertebrate drift was sampled from replicated stream reaches enclosed by two 1 mm mesh drift nets that spanned the entire channel. The mean biomass of terrestrial invertebrates that entered tussock grassland (12 mg ash-free dry mass m–2 d–1) and forest streams (6 mg AFDM m–2 d–1) was not significantly different (p > 0.05). However, biomass estimated for tussock grassland and forest streams was significantly higher than biomass that entered pasture streams (1 mg AFDM m–2 d–1). Mean abundance and richness of drifting terrestrial invertebrates was not significantly different among land-use types. Winged insects contributed more biomass than wingless invertebrates to both pasture and tussock grassland streams. Winged and wingless invertebrates contributed equally to biomass entering forest streams. Land use was a useful variable explaining landscape-level patterns of terrestrial invertebrate input for New Zealand streams. Evidence from this study suggests that riparian land-use regime will have important influences on the availability of terrestrial invertebrates to stream fishes.  相似文献   

13.
Detecting the magnitude of human-induced disturbance events, such as forest harvest, on biological communities is often confounded by other environmental gradients and scales at which these effects are examined. In this study, benthic invertebrates were collected from 43 streams across four basins and two geographic regions to (1) determine whether invertebrate abundance and community structure are best explained by historic forest harvest, landscape variables or a combination of both, and (2) evaluate associations among harvest, landscape variables, in-stream physical habitat, and invertebrates. Nonmetric multidimensional scaling showed that invertebrate community structure was primarily explained by watershed area and elevation, and basin and region but not by measures of forest harvest. Model selection using an information-theoretic approach and Akaike’s information criterion indicated that watershed area was the most important variable explaining clinger and long-lived taxa richness, while basin was the most important variable explaining total abundance, and total, Ephemeroptera, Plecoptera, and Trichoptera taxa richness. Forest harvest ranked lower than landscape variables in relative importance in all models. These results suggest that landscape characteristics were relatively more important in predicting invertebrate community structure than forest harvest, and should therefore be considered when assessing the impacts of both reach and watershed scale forest harvest on benthic communities. Perhaps, the levels of forest harvest examined in this study had only marginal effects on benthic invertebrates because these ecosystems are naturally resilient as a result of frequent disturbance from forest fires.  相似文献   

14.
1. Two sampling techniques were used to characterize invertebrate communities in eight, low-order streams along an altitudinal gradient in Costa Rica that represents the last continuous tract of primary forest spanning such extremes in elevation (i.e. near sea level to 2900 m a.s.l.) along the Caribbean Slope of Central America. A standard Surber sampler was used to sample invertebrates on the stream bottom, and drift sampling nets were used to sample invertebrates drifting in the stream flow. 2. Sites were established at 30, 50, 700 1800 and 2700 m a.s.l. In one to two streams per site, six Surber samples were collected, and drift was sampled every 3 h over one 24-h period between April and August 1994. All sites were in primary forest, with the exception of the lowest elevation site (30 m) which was located in banana plantations. 3. Both sampling techniques indicated that Diptera (Chironomidae) and Ephemeroptera were the dominant insect groups at all sites. Disturbed streams draining banana plantations were dominated by Chironomidae and had lower taxon richness and diversity than other sites. 4. While data from benthic samples indicated that insects were the major faunal component (> 90%) at all sites, drift samples were dominated by larval shrimps (> 50%) at the 30 m and 50 m sites. 5. Drift periodicity of invertebrates was observed at those sites characterized by predaceous fishes: nocturnal drift densities were higher than diurnal densities at 30, 50 and 700 m a.s.l., however, no periodicity was observed at 1800 and 2700 m a.s.l. where fish were absent. 6. This study shows the importance of measuring invertebrate drift, in addition to directly sampling the benthos. Drift sampling provided data on a major community component (shrimps) of lowland tropical streams, that would have been overlooked using traditional benthic sampling techniques, and in some cases provided additional information on taxon richness. 7. Based on results of the present study, it is recommended that drift sampling be included as a standard complementary tool to benthic sampling in biological assessments (e.g. bioassessment protocols) of tropical streams, which are often characterized by migratory invertebrate species such as shrimps. Drift samples provide critical information on the presence or absence of shrimps and also on the timing and magnitude of their migration which is an important link between many tropical rivers and their estuaries.  相似文献   

15.
Spatial distribution and seasonal variation in densities of the invertebrates were investigated for a year in three stream pools of a South Indian river. The effects of season, substrate type and water depth on the distribution were analyzed. Substrate type and season influenced the invertebrate distribution the most. Leaf packs harboured most of the organisms followed by macro-algal substrate and sand. The lowest densities were observed on rocky substrates and in the water column. Rocky substrates in shallow water supported higher densities of total invertebrates than deeper areas. Chironomid larvae dominated all benthic substrates throughout the year. Of the 19 invertebrate taxa studied, 6 showed no seasonality in densities, and most of the rest showed their highest densities in the pre-monsoon period and lowest in the SW monsoon or post-monsoon periods. However, in two of the three pools, the densities of total invertebrates were highest during the post-monsoon period with secondary peaks in the pre-monsoon period.  相似文献   

16.
Predation and drift of lotic macroinvertebrates during colonization   总被引:1,自引:0,他引:1  
J. Lancaster 《Oecologia》1990,85(1):48-56
Summary A field experiment was carried out to determine the effect of an invertebrate predator on the colonization and drift of benthic macroinvertebrates in experimental stream channels. Lotic invertebrates colonized four replicate channels: two controls with no predators, and two channels with low densities (2.8 m–2) of predatory stonefly nymphs, Doroneuria baumanni (Perlidae). Immigration rates were measured at the inflow of two other channels. Drift rates of invertebrates immigrating to and emigrating from channels were measured daily, and benthic samples were collected every five days. Over a 25-day colonization period, benthic densities of Baetis nymphs and larval Chironomidae were reduced by D. baumanni. Colonization curves were fit with a power function and significantly different colonization rates were indicated for both Baetis and chironomids in predation and control channels. A predator-induced drift response was exhibited by Baetis only and this response was size-dependent. In the presence of D. baumanni, large Baetis drifted more frequently than small nymphs and, correspondingly, small nymphs were more frequent in the benthos. Net predator impacts on invertebrate densities in channel substrates were partitioned into predator-induced drift and prey consumption. These estimates suggest that predator avoidance by Baetis is a prominent mechanism causing density reductions in the presence of predators. Reductions in the density of Chironomidae, however, were attributed to prey consumption only. A rainstorm during the experiment demonstrated that stream flow disruptions can override the influence of predators on benthic invertebrates, at least temporarily, and re-set benthic densities.  相似文献   

17.
1. We characterised aquatic and terrestrial invertebrate drift in six south‐western North Carolina streams and their implications for trout production. Streams of this region typically have low standing stock and production of trout because of low benthic productivity. However, little is known about the contribution of terrestrial invertebrates entering drift, the factors that affect these inputs (including season, diel period and riparian cover type), or the energetic contribution of drift to trout. 2. Eight sites were sampled in streams with four riparian cover types. Drift samples were collected at sunrise, midday and sunset; and in spring, early summer, late summer and autumn. The importance of drift for trout production was assessed using literature estimates of annual benthic production in the southern Appalachians, ecotrophic coefficients and food conversion efficiencies. 3. Abundance and biomass of terrestrial invertebrate inputs and drifting aquatic larvae were typically highest in spring and early summer. Aquatic larval abundances were greater than terrestrial invertebrates during these seasons and terrestrial invertebrate biomass was greater than aquatic larval biomass in the autumn. Drift rates of aquatic larval abundance and biomass were greatest at sunset. Inputs of terrestrial invertebrate biomass were greater than aquatic larvae at midday. Terrestrial invertebrate abundances were highest in streams with open canopies and streams adjacent to pasture with limited forest canopy. 4. We estimate the combination of benthic invertebrate production and terrestrial invertebrate inputs can support 3.3–18.2 g (wet weight) m−2 year−1 of trout, which is generally lower than values considered productive [10.0–30.0 g (wet weight) m−2 year−1]. 5. Our results indicate terrestrial invertebrates can be an important energy source for trout in these streams, but trout production is still low. Any management activities that attempt to increase trout production should assess trout food resources and ensure their availability.  相似文献   

18.
1. In four separate field experiments near Mount St Helens (Washington, U.S.A.) during 1986, the grazing effects of two large benthic herbivores, tadpoles of the tailed frog Ascaphus truei and larvae of the caddisfly Dicosmoecus gilvipes, were investigated using streamside channels and in-stream manipulations. In the experimental channels, abundances of periphyton and small benthic invertebrates declined significantly with increasing density of these larger herbivores. 2. In eleven small, high-gradient streams affected to varying degrees by the May 1980 eruption, in-stream platforms were used to reduce grazing by A, truei tadpoles on tile substrates. Single platforms erected in each tributary and compared to grazed controls revealed only minor grazing effects, and no significant differences among streams varying in disturbance intensity (and, consequently, tadpole density). However, results probably were confounded by high variability among streams in factors other than tadpole abundance. 3. Grazing effects were further examined in two unshaded streams with different tadpole densities, using five platforms per stream. In the stream with five tadpoles m?2, grazing reduced periphyton biomass by 98% and chlorophyll a by 82%. In the stream lacking tadpoles, no significant grazing effects were revealed. Low algal abundance on both platforms and controls, and high invertebrate density in that stream (c. 30000m?2) suggests that grazing by small, vagile invertebrates was approximately equivalent to that of tadpoles. 4. The influence of large benthic herbivores on algal and invertebrate communities in streams of Mount St Helens can be important, but reponses vary spatially in relation to stream disturbance history, local environmental factors, and herbivore distributional patterns and abundance.  相似文献   

19.
Small woody debris in streams is abundant, and may be a food source or may provide a substrate on which other food sources such as biofilm may develop, both of which may be significant to invertebrates in times of food scarcity. We examined patterns of invertebrate colonisation of small woody debris (veneers of red alder, Douglas‐fir, and western red cedar), red alder leaves, and plastic (as an inert substrate to mimic leaves). Invertebrate colonisation was high on alder leaves, but low on wood substrates and plastic, controlling for the available surface area. Detritivorous invertebrates had significantly higher colonisation rates of alder leaves versus the other four substrates, whereas predators and collectors did not (consistent with their use of these as substrates and not food). All wood decreased in mass by <15% and leaves by ∼50% over the 75 days of the experiment. For all taxa tested, there was no significant difference in their colonisation of the wood veneers versus the plastic sheets. These results suggest that wood was not directly used by these invertebrates as a food source, or that there could be similar biofilm development on the surfaces of these substrates. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
On the influence of substrate morphology and surface area on phytofauna   总被引:2,自引:0,他引:2  
The independent effects and interactions between substrate morphology and substrate surface area on invertebrate density or biomass colonizing artificial plant beds were assessed in a clear-water and a turbid playa lake in Castro County, Texas, USA. Total invertebrate density and biomass were consistently greater on filiform substrates than on laminar substrates with equivalent substrate surface areas. The relationship among treatments (substrates with different morphologies and surface areas) and response (invertebrate density or biomass) was assessed with equally spaced surface areas. Few statistically significant interactions between substrate morphology and surface area were detected, indicating that these factors were mostly independent from each other in their effect on colonizing invertebrates. Although infrequently, when substrate morphology and surface area were not independent, the effects of equally spaced changes in substrate surface area on the rate of change of phytofauna density or biomass per unit of substrate surface area were dependent upon substrate morphology. The absence of three-way interactions indicated that effects of substrate morphology and substrate area on phytofauna density or biomass were independent of environmental conditions outside and inside exclosures. Handling editor: D. Harper  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号