首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subcellular distribution of enzymes of the oxidative pentose phosphate pathway was studied in plants. Root and leaf tissues from several species were separated by differential centrifugation into plastidic and cytosolic fractions. In all tissues studied, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in both plastidic and cytosolic compartments. In maize and pea root, and spinach and pea leaf, the non-oxidative enzymes of the pentose phosphate pathway (transaldolase, transketolase, ribose 5-phosphate isomerase, ribulose 5-phosphate 3-epimerase) appear to be restricted to the plastid. In tobacco leaf and root, however, the non-oxidative enzymes were found in the cytosolic as well as the plastidic compartments. In the absence of ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase in the cytosol, the product of the oxidative limb of the pathway (ribulose 5-phosphate) must be transported into a compartment capable of utilizing it. Ribulose 5-phosphate was supplied to isolated intact pea root plastids and was shown to be capable of supporting nitrite reduction. The kinetics of ribulose 5-phosphate-driven nitrite reduction in isolated pea root plastids suggested that the metabolite was translocated across the plastid envelope in a carrier-mediated transport process, indicating the presence of a translocator capable of transporting pentose phosphates.Keywords: Pentose phosphate, subcellular, plastid, ribulose 5-phosphate, compartmentation   相似文献   

2.
A 14.5 kDa protein with antigenic components in common with pea leaf ferredoxin was detected on transblots of the soluble proteins of pea root plastids. The amount of this protein was found to increase during the induction of nitrate assimilation in pea roots, reaching a maximal level at 8–12 h. Concurrent with this, a fourfold increase in NADPH-dependent ferredoxin-NADP+ oxidoreductase (FNR) activity was observed corresponding to an increase in the amount of this protein detected immunologically on transblots using a leaf FNR antibody. These changes were not observed in plastids from roots of plants grown on ammonia or depleted of nitrogen. It is suggested that in addition to the already well reported induction by nitrate of nitrate reductase and nitrite reductase, there is a co-induction of a plastid located ferredoxin and FNR. Both these proteins are necessary for the transfer of reductant generated by the oxidative pentose phosphate pathway to nitrite reductase.  相似文献   

3.
The activities of enzymes of pentose phosphate pathway (PPP) viz. glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and carbon metabolism viz. phosphoenol pyruvate carboxylase, NADP- isocitrate dehydrogenase and NADP-malic enzyme were measured in the plant and bacteroid fractions of mungbean (ureide exporter) and lentil (amide exporter) nodules along with the developing roots for comparison. The enzymes of pentose phosphate pathway in legume cytosol had higher activities at a stage of maximum nitrogenase activity and higher sucrose metabolism. However, bacteroids had only limited capacity for this pathway. The specific activities of these enzymes were greater in ureide than in amide exporter. CO2 fixation via higher activity of phosphoenolpyruvate carboxylase in the plant part of the nodules in lentil might have been due to the greater synthesis of four carbon amino acids for amide export. The peak of NADP-isocitrate dehydrogenase in both legumes coincided with the pentose phosphate pathway enzymes at the time of high rates of sucrose metabolism and nitrogen fixation. Higher activities of NADP-malic enzyme were obtained in mungbean than in the lentil nodules. These findings are consistent with the role of these enzymes in providing reductant (NADPH) and substrates for energy yielding metabolism of bacteroids and carbon skeletons for ammonia assimilation.  相似文献   

4.
The oxidative pentose phosphate pathway: structure and organisation   总被引:1,自引:0,他引:1  
The oxidative pentose phosphate pathway is a major source of reducing power and metabolic intermediates for biosynthetic processes. Some, if not all, of the enzymes of the pathway are found in both the cytosol and plastids, although the precise distribution of their activities varies. The apparent absence of sections of the pathway from the cytosol potentially complicates metabolism. These complications are partly offset, however, by exchange of intermediates between the cytosol and the plastids through the activities of a family of plastid phosphate translocators. Molecular analysis is confirming the widespread presence of multiple genes encoding each of the enzymes of the oxidative pentose phosphate pathway. Differential expression of these isozymes may ensure that the kinetic properties of the activity that catalyses a specific reaction match the metabolic requirements of a particular tissue. This hypothesis can be tested thanks to recent developments in the application of 13C-steady-state labelling strategies. These strategies make it possible to quantify flux through metabolic networks and to discriminate between pathways of carbohydrate oxidation in the cytosol and plastids.  相似文献   

5.
Purified pea root plastids were supplied with glutamine, 2-oxoglutarate and phosphorylated sugars. Formation of glutamate was linear for 75 min and dependent upon the intactness of the organelle. Glucose-6-phosphate and ribose-5-phosphate were the most effective substrates in supporting glutamate synthesis. Flux through the oxidative pentose phosphate pathway during glutamate synthesis in purified plastids was followed by monitoring the release of 14CO2 from [1-14C]glucose-6-phosphate. 14CO2 evolution from C-1 was dependent upon the presence of both glutamine and 2-oxoglutarate and could be inhibited by the application of azaserine. The data are discussed in view of the role of the oxidative pentose phosphate pathway in non-photosynthetic plastids.  相似文献   

6.
The presence of the glycolytic enzymes from hexokinase to pyruvate kinase in plastids of seedling pea (Pisum sativum L.) roots was investigated. The recoveries, latencies and specific activities of each enzyme in different fractions was compared with those of organelle marker enzymes. Tryptic-digestion experiments were performed on each enzyme to determine whether activities were bound within membranes. The results indicate that hexokinase (EC 2.7.1.2) and phosphoglyceromutase (EC 5.4.2.1) are absent from pea root plastids. The possible function of the remaining enzymes is considered.Abbreviations GADPH glyceraldehyde 3-phosphate dehydrogenase - PFK phosphofructokinase - PFP pyrophosphate: fructose 6-phosphate 1-phosphotransferase Bronwen A. Trimming gratefully acknowledges the award of a studentship from the Science and Engineering Research Council  相似文献   

7.
M. J. Emes  M. W. Fowler 《Planta》1979,144(3):249-253
The intracellular distribution of the enzymes of nitrate and ammonia assimilation in apical cells of pea (Pisum sativum L.) roots is described. Nitrate reductase (EC 1.6.6.2) was found to have no organelle association, and is considered to be located in the cytosol or possibly loosely bound to the outside of an organelle. Nitrite reductase and glutamate synthase (EC 2.6.1.53) are plastid located, as is glutamine synthetase (EC 6.3.1.2) although this enzyme also has activity in the cytosol. Glutamate dehydrogenase (EC 1.4.1.3) was found only in the mitochondrion.  相似文献   

8.
Protein phosphorylation has been investigated in non-photosynthetic plastids of pea roots. Intact and lysed preparations of plastids were incubated with [gamma-(32)P]ATP and three stromal proteins of sizes 41, 58 and 62 kDa were phosphorylated on a serine residue. No other proteins were significantly labelled under the conditions used. The 62 kDa protein is probably phosphoglucomutase and represents a phosphoenzyme catalytic intermediate. The protein kinase(s) and phosphatase(s) acting on the other proteins were not sensitive to exogenous calcium but were sensitive to magnesium. The protein phosphatase which acts on the 41 kDa protein is possibly of type 2C, whereas that acting on the 58 kDa phosphoprotein did not fall into any class defined by mammalian systems. Metabolism of exogenous glucose 6-phosphate by the oxidative pentose phosphate pathway in intact plastids abolished the phosphorylation of the 58 kDa protein. Dihydroxyacetone phosphate, phosphoenolpyruvate and 3-phosphoglycerate also inhibited phosphorylation of the 58 kDa protein and had a time-dependent effect on the phosphorylation of the 41 kDa protein. The significance of these results in relation to a possible role for protein phosphorylation in these plastids is considered.  相似文献   

9.
Plastids are the site of the reductive and the oxidative pentose phosphate pathways, which both generate pentose phosphates as intermediates. A plastidic transporter from Arabidopsis has been identified that is able to transport, in exchange with inorganic phosphate or triose phosphates, xylulose 5-phosphate (Xul-5-P) and, to a lesser extent, also ribulose 5-phosphate, but does not accept ribose 5-phosphate or hexose phosphates as substrates. Under physiological conditions, Xul-5-P would be the preferred substrate. Therefore, the translocator was named Xul-5-P/phosphate translocator (XPT). The XPT shares only approximately 35% to 40% sequence identity with members of both the triose phosphate translocator and the phosphoenolpyruvate/phosphate translocator classes, but a higher identity of approximately 50% to glucose 6-phosphate/phosphate translocators. Therefore, it represents a fourth group of plastidic phosphate translocators. Database analysis revealed that plant cells contain, in addition to enzymes of the oxidative branch of the oxidative pentose phosphate pathway, ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase in both the cytosol and the plastids, whereas the transketolase and transaldolase converting the produced pentose phosphates to triose phosphates and hexose phosphates are probably solely confined to plastids. It is assumed that the XPT function is to provide the plastidic pentose phosphate pathways with cytosolic carbon skeletons in the form of Xul-5-P, especially under conditions of a high demand for intermediates of the cycles.  相似文献   

10.
Three pea (Pisum sativum) leaf chloroplast enzymes—triose phosphate isomerase, glyceric acid 3-phosphate kinase, and fructose 1,6-diphosphate aldolase—have been separated from the corresponding cytoplasmic enzymes by isoelectric focusing. These three enzymes of the reductive pentose phosphate cycle are therefore distinct proteins, not identical with the analogous enzymes of the Embden-Meyerhof-Parnas pathway.  相似文献   

11.
Plastids have been isolated from pea (Pisum sativum L.) roots with a high degree of purity and intactness. In these plastids, the activity of enzymes involved in carbohydrate metabolism have been analyzed and corrected for cytosolic contamination. The results show that fructose-1,6-bisphosphatase, NAD-glyceraldehyde phosphate dehydrogenase, and phosphoglyceromutase are not present in pea root plastids. Transport measurements revealed that inorganic phosphate, dihydroxyacetone phosphate (DHAP), 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, and glucose-6-phosphate (Glc6p) are transported across the envelope in a counterexchange mode. Transport of glucose-1-phosphate was definitely excluded. The oxidation of Glc6P by intact plastids resulted almost exclusively in the formation of DHAP. The parallel measurement of DHAP formation and NO2- consumption during Glc6P-supported nitrite reduction yielded a ratio of NO2-reduced/DHAP formed of 1.6, which is relatively close to the theoretical value of 2.0. These results show that the oxidation of Glc6P, involving the uptake of Glc6P and the release of DHAP, and the reduction of NO2- are very tightly coupled to each other.  相似文献   

12.
Gluconobacter oxydans oxidizes glucose via alternative pathways: one involves the non-phosphorylative, direct oxidation route to gluconic acid and ketogluconic acids, and the second requires an initial phosphorylation and then oxidation via the pentose phosphate pathway enzymes. During growth of G. oxydans in glucose-containing media, the activity of this pathway is strongly influenced by (1) the pH value of the environment and (2) the actual concentration of glucose present in the culture. At pH values below 3.5 the activity of the pentose phosphate pathway was completely inhibited resulting in an increased requirement of the organism for nutrient substances, and a poor cell yield. At pH 5.5 a triphasic growth response was observed when G. oxydans was grown in a defined medium. Above a threshold value of 5–15 mM glucose, oxidation of both glucose and gluconate by the pentose phosphate pathway enzymes was repressed, causing a rapid accumulation of gluconic acid in the culture medium. When growing under these conditions, a low affinity for the oxidation of glucose was found (K s=13 mM). Below this threshold glucose concentration, pentose phosphate pathway enzymes were synthesized and glucose was actively assimilated via this pathway. It was shown that de novo enzyme synthesis was necessary for increased pentose phosphate pathway activity and that assimilation of gluconate by washed cell suspensions was inhibited by glucose.  相似文献   

13.
The effect of phenols on respiratory enzymes in seed germination   总被引:1,自引:0,他引:1  
Low molecular weight phenolic compounds were identified in two soilswith different vegetative cover, Fagus sylvatica, L. andPinus laricio, Poiret, spp. calabrica, and were tested atdifferent concentrations on seed germination of Pinuslaricio, and on respiratory and oxidative pentose phosphate pathwayenzymes involved in the first steps of seed germination. The data obtained showthat there are marked differences in the phenolic acid composition of the twoinvestigated soils. All the phenolic compounds bioassayed inhibited seedgermination and those extracted from Pinus laricio soilwere particularly inhibitory. We also found that the non-germination of seedsisstrongly correlated to the inhibition of the activities of enzymes ofglycolysisand the oxidative pentose phosphate pathway.  相似文献   

14.
Mark Stitt  Tom Ap Rees 《Phytochemistry》1979,18(12):1905-1911
The aim of this work was to measure the capacities of pea (Pisum sativum) shoot chloroplasts to catalyse the oxidative pentose phosphate pathway and glycolysis. Of the total activities in the unfractionated homogenates, appreciable proportions of those of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and phosphofructokinase, and smaller but significant proportions of those of phosphopyruvate hydratase and pyruvate kinase were recovered in crude preparations of chloroplasts, and co-purified with intact chloroplasts on sucrose gradients. The activities in the chloroplasts showed considerable latency that was closely correlated with chloroplast integrity. Phosphoglyceromutase activity in the above preparations of chloroplasts did not exceed that expected from cytoplasmic contamination. The mass-action ratio for phosphoglyceromutase in illuminated isolated chloroplasts differed markedly from the enzyme's equilibrium constant. Isolated chloroplasts converted 2-phosphoglycerate to pyruvate. The enzyme activities of the chloroplasts were compared with the rates of respiration and starch breakdown in pea leaves in the dark. It is concluded that in the dark chloroplasts could metabolize all the products of starch breakdown and catalyse much of the respiration of pea shoots via the oxidative pentose phosphate pathway and/or glycolysis as far as 3-phosphoglycerate. It is suggested that pea shoot chloroplasts lack phosphoglyceromutase but contain some phosphopyruvate hydratase and pyruvate kinase.  相似文献   

15.
When intact Kalanchoë plants are illuminated NADP-linked malic dehydrogenase and three enzymes of the reductive pentose phosphate pathway, ribulose-5-phosphate kinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and sedoheptulose-1,7-diphosphate phosphatase, are activated. In crude extracts these enzymes are activated by dithiothreitol treatment. Light or dithiothreitol treatment does not inactivate the oxidative pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase. Likewise, neither light, in vivo, nor dithiothreitol, in vitro, affects fructose-1,6-diphosphate phosphatase. Apparently the potential for modulation of enzyme activity by the reductively activated light effect mediator system exists in Crassulacean acid metabolism plants, but some enzymes which are light-dark-modulated in the pea plant are not in Kalanchoë.  相似文献   

16.
Kay Denyer  Alison M. Smith 《Planta》1988,173(2):172-182
In order to determine whether the enzymes required to convert triose phosphate to acetyl CoA were present in pea (Pisum sativum L.) seed plastids, a rapid, mechanical technique was used to isolate plastids from developing cotyledons. The plastids were intact and the extraplastidial contamination was low. The following glycolytic enzymes, though predominantly cytosolic, were found to be present in plastids: glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12), phosphoglycerate kinase (EC 2.7.2.3), and pyruvate kinase(EC 2.7.1.40). Evidence is presented which indicates that plastids also contained low activities of enolase (EC 4.2.1.11) and phosphoglycerate mutase (EC 2.7.5.3). Pyruvate dehydrogenase, although predominantly mitochondrial, was also present in plastids. The plastidial activities of the above enzymes were high enough to account for the rate of lipid synthesis observed in vivo.Abbreviations FPLC fast protein liquid chromatography - PPi pyrophosphate  相似文献   

17.
Recycling of carbon in the oxidative pentose phosphate pathway (OPPP) of intact pea root plastids has been studied. The synthesis of dihydroxyacetone phosphate (DHAP) and evolution of CO2 was followed in relation to nitrite reduction. A close coupling was observed between all three measured fluxes which were linear for up to 60 min and dependent upon the integrity of the plastids. However, the quantitative relationship between 1-14CO2 evolution from glucose 6-phosphate and nitrite reduction varied with available hexose phosphate concentration. When 10 mM glucose 6-phosphate was supplied to intact plastids a stoichiometry of 1.35 was observed between 14CO2 evolution and nitrite reduction. As exogenous glucose 6-phosphate was decreased this value fell, becoming 0.47 in the presence of 0.2 mM glucose 6-phosphate, indicative of considerable recycling of carbon. This conclusion was reinforced when using [2-14C]glucose-6-phosphate. The measured release of 2-14CO2 was consistent with the data for 1-14CO2, suggesting complete recycling of carbon in the OPPP. Ribose 5-phosphate was also able to support nitrite reduction and DHAP production. A stoichiometry of 2 NO 2 ? reduced: 1 DHAP synthesised was observed at concentrations of 1 mM ribose 5-phosphate or less. At concentrations of ribose 5-phosphate greater than 1 mM this stoichiometry was lost as a result of enhanced DHAP synthesis without further increase in nitrite reduction. It is suggested that this decoupling from nitrite reduction is a function of excess substrate entering directly into the non-oxidative reactions of the OPPP, and may be useful when the demand for OPPP products is not linked to the demand for reductant. The significance of recycling in the OPPP is discussed in relation to the coordination of nitrate assimilation with carbohydrate oxidation in roots and with the utilisation of carbohydrate by other pathways within plastids.  相似文献   

18.
Mutants of the pentose phosphate pathway have been isolated in Aspergillus nidulans. These fail to grow on a variety of carbohydrates that are catabolized through the pentose phosphate pathway. They also grow poorly on nitrate and nitrite as sole nitrogen sources. The pentose phosphate pathway mutations have been assigned to two unlinked genes. Mutants with lesions in the pppB locus have reduced activities of four enzymes of the pentose phosphate pathway, of glucose-phosphate isomerase, and of mannitol-1-phosphate dehydrogenase. pppA(-) mutants have elevated activities of these same enzymes except for transaldolase, for which they have much reduced activity. Both classes of mutants accumulate sedoheptulose-7-phosphate to an extent that is increased considerably when nitrate is present in the medium. Nitrate does not cause an increase in accumulation of sedoheptulose-7-phosphate in double mutants which, in addition to the pppA1 mutation, carry a mutation that leads to the lack of nitrate reductase activity. These last results suggest that nitrate stimulates the flux through the oxidative pentose phosphate pathway, but that this stimulation depends upon the metabolism of nitrate.  相似文献   

19.
The intracellular distribution of enzymes capable of catalyzing the reactions from oxaloacetate to sucrose in germinating castor bean endosperm has been studied by sucrose density gradient centrifugation. One set of glycolytic enzyme activities was detected in the plastids and another in the cytosol. The percentages of their activities in the plastids were less than 10% of total activities except for aldolase and fructose diphosphatase. The activities of several of the enzymes present in the plastids seem to be too low to account for the in vivo rate of gluconeogenesis whereas those in the cytosol are quite adequate. Furthermore, phosphoenolypyruvate carboxykinase, sucrose phosphate synthetase, and sucrose synthetase, which catalyze the first and final steps in the conversion of oxaloacetate to sucrose, were found only in the cytosol. It is deduced that in germinating castor bean endosperm the complete conversion of oxaloacetate to sucrose and CO2 occurs in the cytosol. The plastids contain some enzymes of the pentose phosphate pathway, pyruvate dehydrogenase and fatty acid synthetase in addition to the set of glycolytic enzymes. This suggests that the role of the plastid in the endosperm of germinating castor bean is the production of fatty acids from sugar phosphates, as it is known to be in the endosperm during seed development.  相似文献   

20.
Enzymatic and radiorespirometric analysis of several strains of cowpea rhizobia revealed the presence of key enzymes of the Entner-Doudoroff (ED) pathway with the operation of the hexose cycle for the dissimilation of gluconate. These bacteria lack the oxidative pentose phosphate (PP) pathway when grown on gluconate. Gluconate-grown cells possessed an operational tricarboxylic acid (TAC) cycle. Enzymes of an ancillary pathway, the ketogluconate (KG) pathway for gluconate catabolism were detected. The presence of this pathway was confirmed by techniques of thin-layer chromatography and radiorespirometry.Abbreviations ED Entner Doudoroff - PP pentose phosphate - EMP Embden-Meyerhof-Parnas - KG ketogluconate - TCA tricarboxylic acid - DKG diketogluconate - PFK phosphofructokinase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号