首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
NDRG1(N-Myc downstream regulated) is upregulated during cell differentiation, repressed by N-myc and c-myc in embryonic cells, and suppressed in several tumor cells. A nonsense mutation in the NDRG1 gene has been reported to be causative for hereditary motor and sensory neuropathy-Lom (HMSNL), indicating that NDRG1 functions in the peripheral nervous system necessary for axonal survival. Here, we cloned three human cDNAs encoding NDRG2 (371aa), NDRG3 (375aa) and NDRG4 (339aa), which are homologous to NDRG1. These three genes, together with NDRG1, constitute the NDRG gene family. The phylogenetic analysis of the family demonstrated that human NDRG1 and NDRG3 belong to a subfamily, and NDRG2 and NDRG4 to another. At amino acid (aa) level, the four members share 53–65% identity. Each of the four proteins contains an / hydrolase fold as in human lysosomal acid lipase. Expression of the fusion proteins NDRG2/GFP, NDRG3/GFP and NDRG4/GFP in COS-7 cells showed that all of them are cytosolic proteins. Based on UniGene cluster analysis, the genes NDRG2, NDRG3 and NDRG4 are located at chromosome 14q11.1–11.2, 20q12–11.23 and 16q21–22.1, respectively. Northern and dot blot analysis shows that all of the three genes are highly expressed in adult brain and almost not detected in the eight human cancer lines. In addition, in contrast to the relatively ubiquitous expression of NDRG1, NDRG2 is highly expressed in adult skeletal muscle and brain, NDRG3 highly expressed in brain and testis, and NDRG4 specifically expressed in brain and heart, suggesting that they might display different specific functions in distinct tissues.  相似文献   

2.
3.
Tian Y  Xu M  Fu Y  Yuan A  Wang D  Li G  Liu G  Lu L 《Biochemical genetics》2008,46(9-10):677-684
N-myc downstream-regulated genes 1 and 3 (NDRG1 and NDRG3) are members of the alpha/beta hydrolase superfamily. Phylogenetic analysis of the family demonstrated that human NDRG1 and 3 belong to a subfamily. The mapping and gene expression patterns of these genes represent one step toward further investigation into their possible roles in the chicken (Gallus gallus). To map these genes in the chicken chromosome, a 6000 rads chicken-hamster radiation hybrid panel (ChickRH6) was used. Primers were designed according to the published human sequences for amplification of those two genes. We compared the corresponding human mRNA sequences with the predicted coding sequences of the chicken NDRG1 and 3 genes and found that the assembled contigs shared a high percentage of similarity with the human genes. PCR of samples from ChickRH6 revealed that the locations of NDRG1 and 3 are linked to the markers MYC (58 cRs away, LOD score 4.52) and SEQ0265 (10 cRs away, LOD score 17.81), respectively. This result adds two new markers to the chicken RH map, and it reinforces that the RH technique is indeed a powerful tool for mapping genes due to its rapidity, precision, convenience, and reproducibility. In addition, we detected the gene expression and distribution of chicken NDRG1 and 3 in seven tissues, including heart, liver, spleen, lung, muscle, brain, and thymus, by RT-PCR, and found that NDRG1 is relatively ubiquitously expressed in all the tested tissues and highly expressed in heart and liver, whereas NDRG3 is high in heart, muscle, and brain.  相似文献   

4.
Our recent study demonstrated that higher expression of N-myc downregulated gene 1 (NDRG1) is closely correlated with poor prognosis in gastric cancer patients. In this study, we asked whether NDRG1 has pivotal roles in malignant progression including metastasis of gastric cancer cells. By gene expression microarray analysis expression of NDRG1 showed the higher increase among a total of 3691 up-regulated genes in a highly metastatic gastric cancer cell line (58As1) than their parental low metastatic counterpart (HSC-58). The highly metastatic cell lines showed decreased expression of E-cadherin, together with enhanced expression of vimentin and Snail. This decreased expression of E-cadherin was restored by Snail knockdown in highly metastatic cell lines. We next established stable NDRG1 knockdown cell lines (As1/Sic50 and As1/Sic54) from the highly metastatic cell line, and both of these cell lines showed enhanced expression of E-cadherin and decreased expression of vimentin and Snail. And also, E-cadherin promoter-driven luciferase activity was found to be increased by NDRG1 knockdown in the highly metastatic cell line. NDRG1 knockdown in gastric cancer cell showed suppressed invasion of cancer cells into surround tissues, suppressed metastasis to the peritoneum and decreased ascites accumulation in mice with significantly improved survival rates. This is the first study to demonstrate that NDRG1 plays its pivotal role in the malignant progression of gastric cancer through epithelial mesenchymal transition.  相似文献   

5.
人NDRG1的融合表达、纯化及抗体制备   总被引:3,自引:0,他引:3  
NDRG1是在N myc缺陷的小鼠胚胎组织中发现的一异常高表达的新基因 .在研究高同型半胱氨酸血症引起动脉粥样硬化的机制时 ,在培养的人脐静脉内皮细胞 (HUVEC)中发现了人NDRG1 .为了研究人NDRG1的功能以及结构与功能之间的关系 ,用RT PCR技术 ,从人脑总RNA中克隆NDRG1cDNA ,进行序列测定后 ,将NDRG1插入pPROEXHTb表达载体中 ,转化E .coliDH5α感受态细胞 ,并在LB培养基中获得高效可溶表达 .表达的 6His NDRG1融合蛋白经Ni2 + NTA偶联的琼脂糖珠纯化 ,通过圆二色性分析其二级结构 ,结果为 :α螺旋 :2 3 6 ,β片层 :1 8 6 ,转角 :2 5 7,无规卷曲 :32 0 .用此融合表达的蛋白免疫家兔 ,制备得到高效价的抗体 ,利用固定于硝酸纤维素膜上的NDRG1抗原亲和吸附纯化抗血清提高了抗体的特异性 ,为进一步研究NDRG1的功能打下了良好的基础  相似文献   

6.
N-myc downstream regulated gene 1 (NDRG1) is an important gene regulating tumor invasion. In this study, shRNA technology was used to suppress NDRG1 expression in CaSki (a cervical cancer cell line) and HO-8910PM (an ovarian cancer cell line). In vitro assays showed that NDRG1 knockdown enhanced tumor cell adhesion, migration and invasion activities without affecting cell proliferation. cDNA microarray analysis revealed 96 deregulated genes with more than 2-fold changes in both cell lines after NDRG1 knockdown. Ten common upregulated genes (LPXN, DDR2, COL6A1, IL6, IL8, FYN, PTP4A3, PAPPA, ETV5 and CYGB) and one common downregulated gene (CLCA2) were considered to enhance tumor cell invasive activity. BisoGenet network analysis indicated that NDRG1 regulated these invasion effector genes/proteins in an indirect manner. Moreover, NDRG1 knockdown also reduced pro-invasion genes expression such as MMP7, TMPRSS4 and CTSK. These results suggest that regulation of invasion and metastasis by NDRG1 is a highly complicated process.  相似文献   

7.
Regulation of the epithelial sodium channel (ENaC) is highly complex and may involve several aldosterone-induced regulatory proteins. The N-Myc downstream-regulated gene 2 (NDRG2) has been identified as an early aldosterone-induced gene. Therefore, we hypothesized that NDRG2 may affect ENaC function. To test this hypothesis we measured the amiloride-sensitive (2 microm) whole cell current (DeltaI(ami)) in Xenopus laevis oocytes expressing ENaC alone or co-expressing ENaC and NDRG2. Co-expression of NDRG2 significantly increased DeltaI(ami) in some, but not, all batches of oocytes tested. An inhibitory effect of NDRG2 was never observed. Using a chemiluminescence assay we demonstrated that the NDRG2-induced increase in ENaC currents was accompanied by a similar increase in channel surface expression. The stimulatory effect of NDRG2 was preserved in oocytes maintained in a low sodium bath solution to prevent sodium feedback inhibition. These findings suggest that the stimulatory effect of NDRG2 is independent of sodium feedback regulation. Furthermore, the stimulatory effect of NDRG2 on ENaC was at least in part additive to that of Sgk1. A short isoform of NDRG2 also stimulated DeltaI(ami). Overexpression of NDRG2 and ENaC in Fisher rat thyroid cells confirmed the stimulatory effect of NDRG2 on ENaC-mediated short-circuit current (I(SC-ami)). In addition, small interference RNA against NDRG2 largely reduced I(SC-ami) in Fisher rat thyroid cells. Our results indicate that NDRG2 is a likely candidate to contribute to aldosterone-mediated ENaC regulation.  相似文献   

8.
9.
NDRG是近年来发现的新的基因家族,被认为与细胞分化和肿瘤形成有关。其中NDRG4基因在心脑组织中特异性高表达,并且参与正常心脑功能的维持。此外,NDRG4基因的异常表达与某些肿瘤的发生发展关系密切,因此备受关注。就NDRG4基因的调控机制、生物学效应以及与肿瘤的关系作一综述,为人们对其进一步探索提供帮助。  相似文献   

10.
人分化相关基因Ndr2的克隆与组织表达谱研究   总被引:11,自引:0,他引:11  
人Ndr1基因参与细胞终末分化 ,并且对肿瘤细胞增殖和肿瘤转移具有抑制作用 .从人 2 2周孕龄胎肝cDNA文库中获得与人Ndr1基因同源的一段表达性序列标签 ,继而从成人脑cDNA文库分离出其全长cDNA(2 12 1bp) ,并将该基因命名为Ndr2 .其染色体定位为 14q11 1- 11 2 ,开放阅读框编码 371个氨基酸 ,且与NDR1蛋白一样 ,含有一个典型的α β水解酶折叠类结构域 (α βhydrolasefold) .Northern杂交和点杂交分析显示 ,该基因与Ndr1一样 ,在脑中高表达 ,在胚胎组织的表达较低 ,在 8种人肿瘤细胞中的表达极低 .然而 ,Ndr2基因的组织表达谱与Ndr1又有鲜明的差异 :其在成人骨骼肌和脑等神经组织中表达最高 ,在唾液腺、肝、肾、心肌和气管中的表达次之 .结果提示 ,NDR2具有与NDR1相似或相关的重要功能 .  相似文献   

11.
N-Myc downstream regulated gene 2 (NDRG2), a Myc-repressed gene, is highly expressed in heart tissue. NDRG2 increases in response to hypoxia-induced stress and is involved in hypoxia-induced radioresistance. However, little is known about the expression changes and possible roles of NDRG2 in the heart under hypoxia condition. Here, the authors show that NDRG2, mainly localized in cardiomyocyte cytoplasm, was significantly reduced in myocardial tissue after acute ischemia/reperfusion (I/R) injury. Meanwhile, c-Myc was up-regulated following acute I/R injury, and the expression of c-Myc was significantly inversely correlated with that of NDRG2. In addition, overexpression of c-Myc in primary cultured cardiomyocyte repressed NDRG2 expression. Furthermore, the increase of cardiomyocyte apoptosis was correlated with the decrease of NDRG2 protein during the acute phase of reperfusion. These data suggested for the first time that I/R injury-induced up-regulation of pro-apoptotic c-Myc expression may contribute to the down-regulation of anti-apoptotic NDRG2. This stress response might be involved in the novel mechanism of myocardial apoptosis induced by I/R injury in rat.  相似文献   

12.
目的该实验通过对16-28周人胚胎呼吸系统NDRG2表达的研究,旨在阐明NDRG2在16-28周人胚胎呼吸系统中的表达规律,为进一步明确新的发育相关基因ndrg2的功能提供依据。方法搜集16-28周胎儿呼吸系统的肺和气管组织,制成石蜡切片,用抗NDRG2单克隆抗体,行免疫组化染色(ABC法),从蛋白质水平观察NDRG2表达情况。统计阳性细胞数,利用统计学方法,判断不同胎龄的肺和气管间NDRG2表达有无差别。结果免疫组化染色表明,NDRG2在16-28周胚胎呼吸系统中有广泛的表达,阳性产物主要位于上皮细胞的胞浆中,但是不同胎龄之间NDRG2的表达未见显著差别。结论NDRG2在16-28周胚胎呼吸系统中有广泛的表达,提示NDRG2在早期胚胎的呼吸系统上皮细胞的生长与发育过程中起一定作用。而阳性产物主要表达在上皮细胞的胞浆中,说明NDRG2可能是一种胞浆蛋白。  相似文献   

13.
Pancreatic cancer is a highly lethal disease with a poor prognosis; the molecular mechanisms of the development of this disease have not yet been fully elucidated. N-myc downstream regulated gene 2 (NDRG2), one of the candidate tumor suppressor genes, is frequently downregulated in pancreatic cancer, but there has been little information regarding its expression in surgically resected pancreatic cancer specimens. We investigated an association between NDRG2 expression and prognosis in 69 primary resected pancreatic cancer specimens by immunohistochemistry and observed a significant association between poor prognosis and NDRG2-negative staining (= 0.038). Treatment with trichostatin A, a histone deacetylase inhibitor, predominantly up-regulated NDRG2 expression in the NDRG2 low-expressing cell lines (PANC-1, PCI-35, PK-45P, and AsPC-1). In contrast, no increased NDRG2 expression was observed after treatment with 5-aza-2′ deoxycytidine, a DNA demethylating agent, and no hypermethylation was detected in either pancreatic cancer cell lines or surgically resected specimens by methylation specific PCR. Our present results suggest that (1) NDRG2 is functioning as one of the candidate tumor-suppressor genes in pancreatic carcinogenesis, (2) epigenetic mechanisms such as histone modifications play an essential role in NDRG2 silencing, and (3) the expression of NDRG2 is an independent prognostic factor in pancreatic cancer.  相似文献   

14.
The N-myc downstream-regulated gene (NDRG) family consists of four proteins: NDRG1, NDRG2, NDRG3, and NDRG4 in mammals. NDRG1 has been thoroughly studied as an intracellular protein associated with stress response, cell growth, and differentiation. A nonsense mutation in the NDRG1 gene causes hereditary motor and sensory neuropathy, Charcot-Marie-Tooth disease type 4D. We previously generated Ndrg1-deficient mice and found that they exhibited peripheral nerve degeneration caused by severe demyelination, but that the complicated motor abilities were retained. These results implied that other NDRG family proteins may compensate for the NDRG1 deficiency in the central nervous system. In this study we raised specific antibodies against each member of the NDRG protein family and examined their cellular expression patterns in the mouse brain. In the cerebrum, NDRG1 and NDRG2 were localized in oligodendrocytes and astrocytes, respectively, whereas NDRG3 and NDRG4 were ubiquitous. In the cerebellum, NDRG1 and NDRG4 were localized in Purkinje cells and NDRG2 in Bergmann glial cells. NDRG3 was detected in the nuclei in most cells. These expression patterns demonstrated the cell type-specific and ubiquitous localization of the NDRG family proteins. Each NDRG may play a partially redundant role in specific cells in the brain.  相似文献   

15.
RTP/Drg1/Cap43/rit42/TDD5/Ndr1/NDRG1 (referred to as NDRG1 hereafter) is a cytoplasmic protein involved in stress responses, hormone responses, cell growth, and differentiation. Recently, the mutation of this gene was reported to be causative for hereditary motor and sensory neuropathy-Lom. Here, we cloned two human cDNAs encoding NDRG3 and NDRG4, which are homologous to NDRG1. These two genes, together with NDRG1 and a previously deposited cDNA (designated NDRG2), constitute the NDRG gene family. The four members share 57-65% amino acid identity. NDRG4 was further characterized because its mRNA expression was quite specific in brain and heart, in contrast to the relatively ubiquitous expression of the other three members. NDRG4 mRNA consists of three isoforms, NDRG4-B, NDRG4-B(var), and NDRG4-H. Northern and Western blot analyses showed that NDRG4-B was expressed only in the brain, whereas NDRG4-H was expressed in both brain and heart. NDRG4-B(var) was a minor product. NDRG4 expression was more abundant in adult than fetal brain and heart and was markedly decreased in the Alzheimer's diseased brain. In situ hybridization showed that NDRG4 was localized in neurons of the brain and spinal cord. The NDRG4 gene contains 17 exons. mRNA expression of the three NDRG4 isoforms is regulated by alternative splicing and possibly by alternative promoter usage. The finely tuned expression of the NDRG gene family members suggests that they have different specific functions.  相似文献   

16.
N-myc downstream-regulated gene 2 (NDRG2) as a tumor suppressor is frequently downregulated in human T-lymphotropic retrovirus (HTLV-1)-infected adult T-cell leukemia (ATL) and variety of cancers, and negatively regulates PI3K signaling pathways through dephosphorylation of PTEN with protein phosphatase 2A (PP2A). We recently identified that protein arginine methyltransferase 5 (PRMT5) is one of novel NDRG2 binding proteins and the knockdown of PRMT5 induces cell apoptosis with degradation of several signaling molecules. To investigate how the apoptosis is induced by the knockdown PRMT5 expression, heat shock protein 90 alpha (HSP90A) was identified as a binding protein for NDRG2 or PRMT5 by immunoprecipitation-mass analysis. NDRG2/PP2A complex inhibited arginine methyltransferase activity of PRMT5 through dephosphorylation at Serine 335 (S335); however, in NDRG2low ATL-related cells, highly phosphorylated PRMT5 at S335 was mainly localized in cytoplasm with binding to HSP90A, resulting in enhancing arginine-methylation at the middle domain (R345 and R386). Since knockdown of PRMT5 expression or forced expression of HSP90A with alanine replacement of R345 or R386 induced apoptosis with the degradation of client proteins in NDRG2low ATL-related and other cancer cells, we here identified that the novel arginine methylations of HSP90A are essential for maintenance of its function in NDRG2low ATL and other cancer cells.  相似文献   

17.
Hypoxia is associated with many pathological conditions as well as the normal physiology of metazoans. We identified a lactate-dependent signaling pathway in hypoxia, mediated by the oxygen- and lactate-regulated protein NDRG family member 3 (NDRG3). Oxygen negatively regulates NDRG3 expression at the protein level via the PHD2/VHL system, whereas lactate, produced in excess under prolonged hypoxia, blocks its proteasomal degradation by binding to NDRG3. We also found that the stabilized NDRG3 protein promotes angiogenesis and cell growth under hypoxia by activating the Raf-ERK pathway. Inhibiting cellular lactate production abolishes NDRG3-mediated hypoxia responses. The NDRG3-Raf-ERK axis therefore provides the genetic basis for lactate-induced hypoxia signaling, which can be exploited for the development of therapies targeting hypoxia-induced diseases in addition to advancing our understanding of the normal physiology of hypoxia responses. [BMB Reports 2015; 48(6): 301-302]  相似文献   

18.
19.
20.
NDRG4 is a largely unstudied member of the predominantly tumor suppressive N-Myc downstream-regulated gene (NDRG) family. Unlike its family members NDRG1–3, which are ubiquitously expressed, NDRG4 is expressed almost exclusively in the heart and brain. Given this tissue-specific expression pattern and the established tumor suppressive roles of the NDRG family in regulating cellular proliferation, we investigated the cellular and biochemical functions of NDRG4 in the context of astrocytes and glioblastoma multiforme (GBM) cells. We show that, in contrast to NDRG2, NDRG4 expression is elevated in GBM and NDRG4 is required for the viability of primary astrocytes, established GBM cell lines, and both CD133+ (cancer stem cell (CSC)-enriched) and CD133 primary GBM xenograft cells. While NDRG4 overexpression has no effect on cell viability, NDRG4 knockdown causes G1 cell cycle arrest followed by apoptosis. The initial G1 arrest is associated with a decrease in cyclin D1 expression and an increase in p27Kip1 expression, and the subsequent apoptosis is associated with a decrease in the expression of XIAP and survivin. As a result of these effects on cell cycle progression and survival, NDRG4 knockdown decreases the tumorigenic capacity of established GBM cell lines and GBM CSC-enriched cells that have been implanted intracranially into immunocompromised mice. Collectively, these data indicate that NDRG4 is required for cell cycle progression and survival, thereby diverging in function from its tumor suppressive family member NDRG2 in astrocytes and GBM cells.The N-Myc downstream-regulated gene (NDRG)5 family consists of four genes (NDRG1–4) that can be divided into two subfamilies based on sequence homology: NDRG1 and NDRG3 are in the first subfamily, and NDRG2 and NDRG4 make up the second subfamily. Although the four NDRG family members show distinct spatiotemporal expression patterns during embryonic development and in adult tissues (110), all four are highly expressed in the brain (4). To date, however, NDRG2 is the only NDRG family member that has been studied in the context of GBM cells and astrocytes. NDRG2 mRNA and protein levels are lower in GBM than in normal brain tissue, normal glial cells, and low grade astrocytomas (1114), suggesting a tumor suppressive function. Data from experimental and clinical studies support this hypothesis: NDRG2 overexpression inhibits GBM cell proliferation (15), and decreased NDRG2 expression correlates with decreased GBM patient survival (13).In contrast to its subfamily member NDRG2, NDRG4 has not been studied in GBM cells or astrocytes. Nevertheless, available evidence supports the hypothesis that NDRG4 has an important role in this context that is similar to the role of NDRG2. First, unlike the relatively ubiquitous expression patterns of NDRG1–3, NDRG4 expression is restricted to a small number of tissues including the brain, where it is expressed at particularly high levels (7, 10). This restricted expression pattern suggests that NDRG4 plays an important role within the central nervous system. Second, NDRG4 is more than 60% identical in amino acid sequence to NDRG2. This sequence similarity is likely behind the overlapping functions of these two proteins in certain cell types within the brain. For example, in PC12 neuronal cells, both NDRG4 and NDRG2 promote neurite extension (1618). In combination with the brain-specific expression pattern of NDRG4, these functional and sequence similarities suggest that NDRG4 may recapitulate the tumor suppressive function of NDRG2 in primary brain neoplasms.To determine if the similarities between NDRG2 and NDRG4 extend to the context of GBM, we investigated the role of NDRG4 in GBM cell lines and primary human astrocytes. In contrast to the established roles of NDRG2 and other NDRG family members, we found that the role of NDRG4 in GBM is not tumor suppressive. On the contrary, both astrocytes and GBM cells require the presence of NDRG4 for cell cycle progression and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号