共查询到20条相似文献,搜索用时 0 毫秒
1.
Seed and seedling predation may differentially affect competitively superior tree species to increase the relative recruitment success of poor competitors and contribute to the coexistence of tree species. We examined the effect of seed and seedling predation on the seedling recruitment of three tree species, Acer rubrum (red maple), Liriodendron tulipifera (yellow poplar), and Quercus rubra (northern red oak), over three years by manipulating seed and seedling exposure to predators under contrasting microsite conditions of shrub cover, leaf litter, and overstory canopy. Species rankings of seedling emergence were constant across microsites, regardless of exposure to seed predators, but varied across years. A. rubrum had the highest emergence probabilities across microsites in 1997, but Q. rubra had the highest emergence probabilities in 1999. Predators decreased seedling survival uniformly across species, but did not affect relative growth rates (RGRs). Q. rubra had the highest seedling survivorship across microsites, while L. tulipifera had the highest RGRs. Our results suggest that annual variability in recruitment success contributes more to seedling diversity than differential predation across microsites. We synthesized our results from separate seedling emergence and survival experiments to project seedling bank composition. With equal fecundity assumed across species, Q. rubra dominated the seedling bank, capturing 90% of the regeneration sites on average, followed by A. rubrum (8% of sites) and L. tulipifera (2% of sites). When seed abundance was weighted by species-specific fecundity, seedling bank composition was more diverse; L. tulipifera captured 62% of the regeneration sites, followed by A. rubrum (21% of sites) and Q. rubra (17% of sites). Tradeoffs between seedling performance and fecundity may promote the diversity of seedling regeneration by increasing the probability of inferior competitors capturing regeneration sites. 相似文献
2.
Lyytinen A Brakefield PM Lindström L Mappes J 《Proceedings. Biological sciences / The Royal Society》2004,271(1536):279-283
The butterfly Bicyclus anynana exhibits phenotypic plasticity involving the wet-season phenotype, which possesses marginal eyespots on the ventral surface of the wings, and the dry-season form, which lacks these eyespots. We examined the adaptive value of phenotypic plasticity of B. anynana in relation to the defence mechanisms of crypsis and deflection. We assessed the visibility differences between spotless and spotted butterflies against backgrounds of brown (dry season) or green (wet season) leaves. Spotless butterflies were highly cryptic and less predated by adult bird predators than were spotted ones when presented against brown leaf litter. However, the advantage of crypsis disappeared in the wet-season habitat as both forms were equally visible. In later experiments, naive birds presented with resting butterflies in the wet-season habitat tended to learn more rapidly to capture spotless butterflies, suggesting a slight selective advantage of possessing eyespots. Moreover, marginal eyespots increased significantly the escape probability of butterflies that were attacked by naive birds compared to those attacked by adult birds, although there were no differences in prey capture success within naive predators. Our results show that natural selection acts against eyespots in the dry season, favouring crypsis, whereas in the wet season it may favour eyespots as deflective patterns. 相似文献
3.
All living systems have special mechanisms for combatting entropy; however, the brain has dimensions of organized complexity beyong those manifest in the anatomical structure and physiology of the rest of the body. Reasons are given in support of the notion that the brain therefore must have a special, intrinsic "homeostatic" system for its information bearing structures, and, further, that slow electroencephalographic activity has properties which might make it useful for such an order-maintaining function. Recovery from brain damage is hypothesized to be a byproduct of this process, which may involve a cruder sort of information processing than occurs with such functions as perception and learning. Synchronized EEG activity may be adequate to handle this sort of information processing. Speculations are offered about possible mechanics, on the neuronal level, of slow wave participation in plasticity; for example, one such suggestion is based on findings that electrical fields can influence cellular orientation. The methodology of discovering the distribution within the brain of the hypothetical maintenance system is discussed briefly. 相似文献
4.
Gwynne DT 《Trends in ecology & evolution》1989,4(2):54-56
Studies of mating behaviour have assumed that individuals are at greater risk when paired than when engaged in other activities. Recently, four experimental studies of insects and crustaceans have tested this assumption using predators from divergent taxa. Three of these studies indicate that mating carries no additional risk to the participants. Indeed, the findings suggest decreased vulnerability, relative to other activities, due to decreased predation on one or the other of the mating pair. 相似文献
5.
《Basic and Applied Ecology》2014,15(2):133-141
Seed predation impacts heavily on plant populations and community composition in grasslands. In particular, generalist seed predators may contribute to biotic resistance, i.e. the ability of resident species in a community to reduce the success of non-indigenous plant invaders. However, little is known of predators’ preferences for seeds of indigenous or non-indigenous plant species or how seed predation varies across communities. We hypothesize that seed predation does not differ between indigenous and non-indigenous plant species and that seed predation is positively related to plant species diversity in the resident community. The seed removal of 36 indigenous and non-indigenous grassland species in seven extensively or intensively managed hay meadows across Switzerland covering a species-richness gradient of 18–50 plant species per unit area (c. 2 m2) was studied. In mid-summer 2011, c. 24,000 seeds were exposed to predators in Petri dishes filled with sterilized soil, and the proportions of seeds removed were determined after three days’ exposure. These proportions varied among species (9.2–62.5%) and hay meadows (17.8–48.6%). Seed removal was not related to seed size. Moreover, it did not differ between indigenous and non-indigenous species, suggesting that mainly generalist seed predators were active. However, seed predation was positively related to plant species richness across a gradient in the range of 18–38 species per unit area, representing common hay meadows in Switzerland. Our results suggest that generalist post-dispersal seed predation contributes to biotic resistance and may act as a filter to plant invasion by reducing the propagule pressure of non-local plant species. 相似文献
6.
Iason GR O'Reilly-Wapstra JM Brewer MJ Summers RW Moore BD 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1569):1337-1345
A central issue in our understanding of the evolution of the diversity of plant secondary metabolites (PSMs) is whether or not compounds are functional, conferring an advantage to the plant, or non-functional. We examine the hypothesis that the diversity of monoterpene PSMs within a plant species (Scots pine Pinus sylvestris) may be explained by different compounds acting as defences against high-impact herbivores operating at different life stages. We also hypothesize that pairwise coevolution, with uncorrelated interactions, is more likely to result in greater PSM diversity, than diffuse coevolution. We tested whether up to 13 different monoterpenes in Scots pine were inhibitory to herbivory by slugs (Arion ater), bank voles (Clethrionomys glareolus), red deer (Cervus elaphus) and capercaillie (Tetrao urogallus), each of which attack trees at a different life stage. Plants containing more α-pinene were avoided by both slugs and capercaillie, which may act as reinforcing selective agents for this dominant defensive compound. Herbivory by red deer and capercaillie were, respectively, weakly negatively associated with δ(3)-carene, and strongly negatively correlated with the minor compound β-ocimene. Three of the four herbivores are probably contributory selective agents on some of the terpenes, and thus maintain some, but by no means all, of the phytochemical diversity in the species. The correlated defensive function of α-pinene against slugs and capercaillie is consistent with diffuse coevolutionary processes. 相似文献
7.
Reproductive output and the growth of captive voles were quantified under high and low avian predation risk in a semi-natural
experiment. Voles were exposed to Eurasian kestrels (Falco tinnunculus), the main avian predator of vole species studied (Clethrionomys glareolus, Microtus agrestis and M. rossiaemeridionalis). Vole pairs were housed in cages settled under nest-boxes occupied by breeding kestrels or in control cages settled under
empty nest-boxes for 2 weeks. The experiment was conducted in mid-summer when kestrels had half-grown nestlings, because in
that time hunting adults and begging nestlings produce noise and scats which may indicate significant predation threat to
voles housed underneath the nest-boxes. The risk of kestrel predation did not have any obvious impact on pregnancy rates,
mean litter sizes, or growth rates of kestrel-exposed voles compared with control voles studied. These results indicate that
the risk of avian predation does not depress the reproductive investment of voles.
Received: 3 November 1997 / Accepted: 16 February 1998 相似文献
8.
How do earthworms affect microfloral and faunal community diversity? 总被引:16,自引:1,他引:16
George G. Brown 《Plant and Soil》1995,170(1):209-231
Much of the work regarding earthworm effects on other organisms has focused on the functional significance of microbial-earthworm interactions, and little is known on the effects of earthworms on microfloral and faunal diversity. Earthworms can affect soil microflora and fauna populations directly and indirectly by three main mechanisms: (1) comminution, burrowing and casting; (2) grazing; (3) dispersal. These activities change the soil's physico-chemical and biological status and may cause drastic shifts in the density, diversity, structure and activity of microbial and faunal communities within the drilosphere. Certain organisms and species may be enhanced, reduced or not be affected at all depending on their ability to adapt to the particular conditions of different earthworm drilospheres. A large host of factors (including CaCO3, enzymes, mucus and antimicrobial substances) influence the ability of preferentially or randomly ingested organisms to survive (or not) passage through the earthworm gut, and their resultant capacity to recover and proliferate (or not) in earthworm casts. Small organisms, particularly microflora and microfauna, with limited ability to move within the soil, may benefit from the (comparatively) long ranging movements of earthworms. Microflora and smaller fauna appear to be particularly sensitive to earthworm activities, and priming effects enhancing nutrient release, particularly in casts, are common. Larger fauna such as microarthropods, enchytraeids and Isopods may be enhanced under some conditions (e.g., in earthworm middens), but in other cases earthworm activity may lead to a decrease in their populations due to competition for food (microbes and organic materials), and spatial and temporal changes in food abundance. Nevertheless, considering the presently available data, the beneficial interactions of earthworms and microflora and fauna appear to far outweigh the potential negative effects. However, much is still unknown regarding the interactions of earthworms of different ecological categories on the diversity and function of microfloral and faunal communities, and much more interdisciplinary research is needed to assess the potential role of earthworms in regulating the diversity of microflora and fauna in soil systems and the potentially beneficial or harmful effects this regulation may have on ecosystem function and plant growth in different ecosystems. 相似文献
9.
Abstract. The ecological literature is ambiguous as to whether the initial diversity of a plant community facilitates or deters the diversity of colonizing species. We experimentally planted annual crop species in monoculture and polyculture, and examined the resulting weed communities. The species composition of weeds was similar among treatments, but the species richness of weeds was significantly higher in the polycultures than in the monocultures. This supports the ‘diversity begets diversity’ hypothesis. Environmental microheterogeneity, diversity promoters, and ecological equivalency do not seem able to explain the observed patterns. 相似文献
10.
M. Ruiz-Rodríguez J. M. Avilés J. J. Cuervo D. Parejo F. Ruano C. Zamora-Muñoz F. Sergio L. López-Jiménez A. Tanferna M. Martín-Vivaldi 《Oecologia》2013,173(1):83-93
Animals often announce their unprofitability to predators through conspicuous coloured signals. Here we tested whether the apparently conspicuous colour designs of the four European Coraciiformes and Upupiformes species may have evolved as aposematic signals, or whether instead they imply a cost in terms of predation risk. Because previous studies suggested that these species are unpalatable, we hypothesized that predators could avoid targeting them based on their colours. An experiment was performed where two artificial models of each bird species were exposed simultaneously to raptor predators, one painted so as to resemble the real colour design of these birds, and the other one painted using cryptic colours. Additionally, we used field data on the black kite’s diet to compare the selection of these four species to that of other avian prey. Conspicuous models were attacked in equal or higher proportions than their cryptic counterparts, and the attack rate on the four species increased with their respective degree of contrast against natural backgrounds. The analysis of the predator’s diet revealed that the two least attacked species were negatively selected in nature despite their abundance. Both conspicuous and cryptic models of one of the studied species (the hoopoe) received fewer attacks than cryptic models of the other three species, suggesting that predators may avoid this species for characteristics other than colour. Globally, our results suggest that the colour of coraciiforms and upupiforms does not function as an aposematic signal that advises predators of their unprofitability, but also that conspicuous colours may increase predation risk in some species, supporting thus the handicap hypothesis. 相似文献
11.
Worldwide, many areas of agricultural land which were once covered with native vegetation have been converted to tree plantations. Such landscape transformation can influence the dynamics of wildlife populations through, for example, altering rates of predation (e.g. predation of nests of birds). Nest predation can influence reproductive success and, in turn, may alter populations by affecting juvenile recruitment. We quantified predation of bird nests in woodland remnants surrounded by two types of land use, grazing farmland and exotic Radiata pine (Pinus radiata) plantation. We also examined differences in predation rates between artificial and natural nests. We found both artificial and natural nests were more susceptible to nest predation in woodland remnants surrounded by a pine plantation than in woodland remnants located within farmland. Our study suggests that higher levels of nest predation may reduce occupancy of woodland remnants by small‐bodied birds over time, including species of conservation concern. This may have been occurred as a result of the conversion of semi‐cleared grazing land to exotic pine plantation. 相似文献
12.
The evolution of striking phenotypes on islands is a well‐known phenomenon, and there has been a long‐standing debate on the patterns of body size evolution on islands. The ecological causes driving divergence in insular populations are, however, poorly understood. Reduced predator fauna is expected to lower escape propensity, increase body size and relax selection for crypsis in small‐bodied, insular prey species. Here, we investigated whether escape behaviour, body size and dorsal coloration have diverged as predicted under predation release in spatially replicated islet and mainland populations of the lizard species Podarcis gaigeae. We show that islet lizards escape approaching observers at shorter distances and are larger than mainland lizards. Additionally, we found evidence for larger between‐population variation in body size among the islet populations than mainland populations. Moreover, islet populations are significantly more divergent in dorsal coloration and match their respective habitats poorer than mainland lizards. These results strongly suggest that predation release on islets has driven population divergence in phenotypic and behavioural traits and that selective release has affected both trait means and variances. Relaxed predation pressure is therefore likely to be one of the major ecological factors driving body size divergence on these islands. 相似文献
13.
Microbial homeostasis—constant microbial element ratios along resource gradients—is a core ecological tenet, yet not all systems display homeostasis. We suggest investigations of homeostasis mechanisms must also consider plant–microbial interactions. Specifically, we hypothesized that ecosystems with strong plant community plasticity to changing resources will have homeostatic microbial communities, with less microbial resource cost, because plants reduce variance in resource stoichiometry. Using long‐term nutrient additions in two ecosystems with differing plant response, we fail to support our hypothesis because although homeostasis appears stronger in the system with stronger plant response, microbial mechanisms were also stronger. However, our conclusions were undermined by high heterogeneity in resources, which may be common in ecosystem‐level studies, and methodological assumptions may be exacerbated by shifting plant communities. We propose our study as a starting point for further ecosystem‐scale investigations, with higher replication to address microbial and soil variability, and improved insight into microbial assimilable resources. 相似文献
14.
It is widely believed that the diversity of plants influences the diversity of animals, and this should be particularly true of herbivores. We examine this supposition at a moderate spatial extent by comparing the richness patterns of the 217 butterfly species resident in California to those of plants, including all 5,902 vascular plant species and the 552 species known to be fed on by caterpillars. We also examine the relationships between plant/butterfly richness and 20 environmental variables. We found that although plant and butterfly diversities are positively correlated, multiple regression, path models, and spatial analysis indicate that once primary productivity (estimated by a water-energy variable, actual evapotranspiration) and topographical variability are incorporated into models, neither measure of plant richness has any relationship with butterfly richness. To examine whether butterflies with the most specialized diets follow the pattern found across all butterflies, we repeated the analyses for 37 species of strict monophages and their food plants and found that plant and butterfly richness were similarly weakly associated after incorporating the environmental variables. We condude that plant diversity does not directly influence butterfly diversity but that both are probably responding to similar environmental factors. 相似文献
15.
16.
Harvest can affect vital rates such as reproduction and survival, but also genetic measures of individual and population health. Grey wolves (Canis lupus) live and breed in groups, and effective population size is a small fraction of total abundance. As a result, genetic diversity of wolves may be particularly sensitive to harvest. We evaluated how harvest affected genetic diversity and relatedness in wolves. We hypothesized that harvest would (a) reduce relatedness of individuals within groups in a subpopulation but increase relatedness of individuals between groups due to increased local immigration, (b) increase individual heterozygosity and average allelic richness across groups in subpopulations and (c) add new alleles to a subpopulation and decrease the number of private alleles in subpopulations due to an increase in breeding opportunities for unrelated individuals. We found harvest had no effect on observed heterozygosity of individuals or allelic richness at loci within subpopulations but was associated with a small, biologically insignificant effect on within‐group relatedness values in grey wolves. Harvest was, however, positively associated with increased relatedness of individuals between groups and a net gain (+16) of alleles into groups in subpopulations monitored since harvest began, although the number of private alleles in subpopulations overall declined. Harvest likely created opportunities for wolves to immigrate into nearby groups and breed, thereby making groups in subpopulations more related over time. Harvest appears to affect genetic diversity in wolves at the group and population levels, but its effects are less apparent at the individual level given the population sizes we studied. 相似文献
17.
Male predation risk due to ornaments seldom reduces female mating opportunities because males escape costs through alternative mating strategies and/or females cease to select for highly ornamented males. Males of the Amarillo fish Girardinichthys multiradiatus (Goodeidae) have large sexually selected fins that impair attack-avoidance manoeuvres. This fish was used to seek evidence that intersexual selection for handicapping traits can result in a deficit of acceptable mating partners. Also it was examined whether, under male scarcity, females remain choosy to the point of missing mating opportunities, and that they can exert effective control over matings, which is a pre-condition of effective female choice. It was found that snakes prey disproportionately on males, that it leads to female-biased sex ratios, and that highly ornamented males are more scarce after predation than males with small ornaments. Females can avoid being fertilized by unattractive males, and that missing one reproductive period can lead to infertility. Thus it appears that females have promoted the exaggeration of a male trait that increases predation risk, remain choosy even when acceptable males are scarce, and pay a large cost when missing mating opportunities. A prediction from these results is that females enjoy substantial fitness benefits from mating with highly ornamented males, which override the occasional fatal costs of refusing to mate with sub–optimal males. One potential consequence of female selectivity and control over matings when males are scarce may be a reduced capability to colonize new habitats. 相似文献
18.
S. Tharanga Aluthwattha Rhett D. Harrison Kithsiri B. Ranawana Cheng Xu Ren Lai Jin Chen 《Ecology and evolution》2017,7(18):7560-7572
It is widely believed that aposematic signals should be conspicuous, but in nature, they vary from highly conspicuous to near cryptic. Current theory, including the honest signal or trade‐off hypotheses of the toxicity–conspicuousness relationship, cannot explain why adequately toxic species vary substantially in their conspicuousness. Through a study of similarly toxic Danainae (Nymphalidae) butterflies and their mimics that vary remarkably in their conspicuousness, we show that the benefits of conspicuousness vary along a gradient of predation pressure. Highly conspicuous butterflies experienced lower avian attack rates when background predation pressure was low, but attack rates increased rapidly as background predation pressure increased. Conversely, the least conspicuous butterflies experienced higher attack rates at low predation pressures, but at high predation pressures, they appeared to benefit from crypsis. Attack rates of intermediately conspicuous butterflies remained moderate and constant along the predation pressure gradient. Mimics had a similar pattern but higher attack rates than their models and mimics tended to imitate the signal of less attacked model species along the predation pressure gradient. Predation pressure modulated signal fitness provides a possible mechanism for the maintenance of variation in conspicuousness of aposematic signals, as well as the initial survival of conspicuous signals in cryptic populations in the process of aposematic signal evolution, and an alternative explanation for the evolutionary gain and loss of mimicry. 相似文献
19.
Brood parasitism and nest predation are major causes of reproductive failure for many bird species nesting in fragmented landscapes. While brood parasites and predators may act independently, they could also interact if brood parasites increase the likelihood that predators detect nests. In this study, we examined the interaction between cowbird parasitism and nest predation in a 10 year study on 466 American redstart Setophaga ruticilla nests in central Alberta, Canada. We used advanced nest survival models to examine the support for three mechanisms that might lead to a positive correlation between brood parasitism and nest predation: 1) the presence of a cowbird nestling might increase the detection of the nest by predators, 2) nests with lower cover are more likely to be detected by both cowbirds and predators, and 3) cowbirds and predators may co-occur in landscapes of similar structure. Twelve percent of nests were parasitized and those nests had a 16–19% higher rate of failure due to predators compared to unparasitized nests. Daily nest predation rates increased during the nestling stage for both groups, but more strongly for parasitized nests. Loud begging by the cowbird nestling and/or higher parental feeding rates for the cowbird may have increased nest detectability to predators. Brood parasitism and nest predation were also positively related to forest cover, indicating landscape level effects were influential. Most nest predators were forest species and we suspect cowbirds responded positively to forest cover because of the increased abundance of songbird hosts. Nest-site features had less of an impact on nest predation or brood parasitism, although nests with higher overhead cover were less susceptible to predators. Our study shows how multiple mechanisms, particularly the behavioral effects of the brood parasite nestling and landscape structure, can lead to a positive relationship between nest predation and brood parasitism. 相似文献
20.
Corporate decision-makers have increasingly adopted an approach to firm governance that places share value above other concerns, including meeting the needs of employees. Decision-makers' concerns about shareholder interests may potentially impede internal commitments to implementing diversity-friendly practices and policies. This study analyses how recognition for a company's diversity efforts impacts corporate share price. We rely on data of share price fluctuation following the receipt of Fortune Magazine's ‘Best Companies for Minorities’ Award. We find that companies recognized for their diversity efforts are penalized with a significant decline in share price, though this negative effect is mediated by the ethnic composition of the company's workforce. 相似文献