首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cytokine gene therapy approach was conducted against metastatic lesions of cytotoxic T lymphocyte (CTL)-unsusceptible tumor in mice. The EBV-based and conventional plasmid vectors that encode murine interleukin-12 (IL-12) gene (pGEG.mIL-12 and pG.mIL-12, respectively) were intravenously transfected into the mice that had received a subcutaneous inoculation of M5076 sarcoma cells. The pGEG.mIL-12 transfection drastically suppressed the subcutaneous as well as hepatic metastatic tumors, resulting in significant prolongation of survival period of the animals. Although single administration with pG.mIL-12 was not effective, repetitive transfection with the plasmid significantly prolonged the longevity of the mice-bearing the metastatic liver tumors. Multiple transfection with either pGEG.mIL-12 or pG.mIL-12 also suppressed peritoneal carcinomatosis in mice that had been injected with M5076 cells into the peritoneal cavity. It was suggested that a high level IL-12 production elicited by the intravenous delivery of the cytokine gene may be quite effective in inhibiting metastatic and CTL-unsusceptible neoplasms.  相似文献   

2.
Cell migration is of paramount importance in physiological processes such as immune surveillance, but also in the pathological processes of tumor cell migration and metastasis development. The factors that regulate this tumor cell migration, most prominently neurotransmitters, have thus been the focus of intense investigation. While the majority of neurotransmitters have a stimulatory effect on cell migration, we herein report the inhibitory effect of the endogenous substance anandamide on both tumor cell and lymphocyte migration. Using a collagen-based three-dimensional migration assay and time-lapse videomicroscopy, we have observed that the anandamide-mediated signals for CD8+ T lymphocytes and SW 480 colon carcinoma cells are each mediated by distinct cannabinoid receptors (CB-Rs). Using the specific agonist docosatetraenoylethanolamide (DEA), we have observed that the norepinephrine-induced migration of colon carcinoma cells is inhibited by the CB1-R. The SDF-1–induced migration of CD8+ T lymphocytes was, however, inhibited via the CB2-R, as shown by using the specific agonist JWH 133. Therefore, specific inhibition of tumor cell migration via CB1-R engagement might be a selective tool to prevent metastasis formation without depreciatory effects on the immune system of cancer patients.  相似文献   

3.
Dendritic cell (DC)-based immunotherapy has not been as effective as expected in most solid tumors even in the murine model, particularly in renal cell carcinoma (RCC). Our investigation was initiated to identify what causes the limitations of DC-based immunotherapy in solid RCC. We have investigated immunosuppressive factors from tumors and their effects on DC migration, as well as cytotoxic T lymphocyte (CTL) response and lymphocyte infiltration into the tumor mass upon vaccination with mouse renal adenocarcinoma (Renca) cell lysate-pulsed bone marrow (Bm)-derived DC in tumor-bearing mice. We also investigated pulmonary metastasis- and tumor recurrence-inhibitory effects of DC-vaccination in the solid tumor-bearing mice. In these experiments, we found that the limitations of DC-based immunotherapy to solid RCC likely result from tumor-mediated TGF-β hindrance of immune attack rather than insufficient immune induction by DC therapy. In fact, the CTL response induced by DC therapy was quite sufficient and functional for the inhibition of tumor recurrence after surgery or of tumor metastasis induced by additional tumor-challenge to the tumor-bearing mice. Taken together, our present results obtained in mouse model suggest the potential of DC immunotherapy in tumor patients for hindering or blocking disease progression by inhibition of tumor metastasis and/or tumor recurrence after surgery.  相似文献   

4.
Aim: The aim of this study was to develop an immunotherapy specific to a malignant glioma by examining the efficacy of glioma tumor-specific cytotoxic T lymphocytes (CTL) as well as the anti-tumor immunity by vaccination with dendritic cells (DC) engineered to express murine IL-12 using adenovirus-mediated gene transfer and pulsed with a GL26 glioma cell lysate (AdVIL-12/DC+GL26) was investigated. Experimentl: For measuring CTL activity, splenocytes were harvested from the mice immunized with AdVIL-12/DC+GL26 and restimulated with syngeneic GL26 for 7 days. The frequencies of antigen-specific cytokine-secreting T cell were determined with mIFN-γ ELISPOT. The cytotoxicity of CTL was assessed in a standard 51Cr-release assay. For the protective study in the subcutaneous tumor model, the mice were vaccinated subcutaneously (s.c) with 1×106 AdVIL-12/DC+GL26 in the right flanks on day −21, −14 and −7. On day 7, the mice were challenged with 1×106 GL26 tumor cells in the shaved left flank. For a protective study in the intracranial tumor model, the mice were vaccinated with 1×106 AdVIL-12/DC+GL26 s.c in the right flanks on days −21, −14 and −7. Fresh 1×104 GL26 cells were inoculated into the brain on day 0. To prove a therapeutic benefit in established tumors, subcutaneous or intracranial GL26 tumor-bearing mice were vaccinated s.c with 1×106 AdVIL-12/DC+GL26 on day 5, 12 and 19 after tumor cell inoculation. Results: Splenocytes from the mice vaccinated with the AdVIL-12/DC+GL26 showed enhanced induction of tumor-specific CTL and increased numbers of IFN-γ: secreting T cells by ELISPOT. Moreover, vaccination of AdVIL-12/DC+GL26 enhanced the induction of anti-tumor immunity in both the subcutaneous and intracranial tumor models. Conclusions: These preclinical model results suggest that DC engineered to express IL-12 and pulsed with a tumor lysate could be used in a possible immunotherapeutic strategy for malignant glioma.Korea Research Foundation Grant (KRF-2004-005-E00001).  相似文献   

5.
The engineered expression of the immune co-stimulatory molecules CD80 and CD137L on the surface of a neuroblastoma cell line converts this tumor into a cell-based cancer vaccine. The mechanism by which this vaccine activates the immune system was investigated by capturing and analyzing immune cells responding to the vaccine cell line embedded in a collagen matrix and injected subcutaneously. The vaccine induced a significant increase in the number of activated CD62L(-) CCR7(-) CD49b(+) CD8 effector memory T cells captured in the matrix. Importantly, vaccine responsive cells could be detected in the vaccine matrix within a matter of days as demonstrated by IFN-gamma production. The substitution of unmodified tumor cells for the vaccine during serial vaccination resulted in a significant decrease in activated T cells present in the matrix, indicating that immune responses at the vaccine site are a dynamic process that must be propagated by continued co-stimulation.  相似文献   

6.
In recent years chimeric proteins carrying bacterial toxins as their killing moiety, have been developed to selectively recognize and kill cell populations expressing speciific receptors. The involvement of Gonadotropin releasing hormone (GnRH) has been demonstrated in several adenocarcinomas and a GnRH-bacterial toxin chimeric protein (GnRH-PE66) was thus developed and found to specifically target and kill adenocarcinoma cells both in vitro and in vivo. Because of the immunogenicity and the non-specific toxicity of the bacterial toxins, we have developed new chimeric proteins, introducing apoptosis inducing proteins of the Bcl-2 family as novel killing components. Sequences encoding the human Bik, Bak or Bax proteins were fused to the GnRH coding sequence at the DNA level and were expressed in E. coli. GnRH-Bik, GnRH-Bak and GnRH-Bax new chimeric proteins efficiently and specifically inhibited the cell growth of adenocarcinoma cell lines and eventually led to cell death. All three Bcl2-proteins-based chimeric proteins seem to induce apoptosis within the target cells, without any additional cell death stimulus. Apoptosis-inducing-proteins of the Bcl-2 family targeted by the GnRH are novel potential therapeutic reagents for adenocarcinoma treatment in humans. This novel approach could be widely applied, using any molecule that binds a specific cell type, fused to an apoptosis-inducing protein.  相似文献   

7.
CTL with optimal effector function play critical roles in mediating protection against various intracellular infections and cancer. However, individuals may exhibit suppressive immune microenvironment and, in contrast to activating CTL, their autologous antigen presenting cells may tend to tolerize or anergize antigen specific CTL. As a result, although still in the experimental phase, CTL-based adoptive immunotherapy has evolved to become a promising treatment for various diseases such as cancer and virus infections. In initial experiments ex vivo expanded CMV (cytomegalovirus) specific CTL have been used for treatment of CMV infection in immunocompromised allogeneic bone marrow transplant patients. While it is common to have life-threatening CMV viremia in these patients, none of the patients receiving expanded CTL develop CMV related illness, implying the anti-CMV immunity is established by the adoptively transferred CTL1. Promising results have also been observed for melanoma and may be extended to other types of cancer2. While there are many ways to ex vivo stimulate and expand human CTL, current approaches are restricted by the cost and technical limitations. For example, the current gold standard is based on the use of autologous DC. This requires each patient to donate a significant number of leukocytes and is also very expensive and laborious. Moreover, detailed in vitro characterization of DC expanded CTL has revealed that these have only suboptimal effector function 3. Here we present a highly efficient aAPC based system for ex vivo expansion of human CMV specific CTL for adoptive immunotherapy (Figure 1). The aAPC were made by coupling cell sized magnetic beads with human HLA-A2-Ig dimer and anti-CD28mAb4. Once aAPC are made, they can be loaded with various peptides of interest, and remain functional for months. In this report, aAPC were loaded with a dominant peptide from CMV, pp65 (NLVPMVATV). After culturing purified human CD8+ CTL from a healthy donor with aAPC for one week, CMV specific CTL can be increased dramatically in specificity up to 98% (Figure 2) and amplified more than 10,000 fold. If more CMV-specific CTL are required, further expansion can be easily achieved by repetitive stimulation with aAPC. Phenotypic and functional characterization shows these expanded cells have an effector-memory phenotype and make significant amounts of both TNFα and IFNγ (Figure 3).  相似文献   

8.
Mathematical models accounting for well-known evidences relating to the dynamics of interleukin 2, helper and regulatory T cells are presented. These models extend an existent model (the so-called cross-regulation model of immunity), by assuming IL-2 as the growth factor produced by helper cells, but used by both helper and regulatory cells to proliferate and survive. Two model variants, motivated by current literature, are explored. The first variant assumes that regulatory cells suppress helper cells by limiting IL-2 production and consuming the available IL-2; i.e. they just trigger competition for IL-2. The second model variant adds to the latter competitive mechanism the direct inhibition of helper cells activation by regulatory cells. The extended models retain key dynamical features of the cross-regulation model. But such reasonable behavior depends on parameter constraints, which happen to be realistic and lead to interesting biological discussions. Furthermore, the introduction of IL-2 in these models breaks the local/specific character of interactions, providing new properties to them. In the extended models, but not in the cross-regulation model, the response triggered by an antigen affects the response to other antigens in the same lymph node. The first model variant predicts an unrealistic coupling of the immune reactions to all the antigens in the lymph node. In contrast, the second model variant allows the coexistent of concomitant tolerant and immune responses to different antigens. The IL-2 derived from an ongoing immune reaction reinforces tolerance to other antigens in the same lymph node. Overall the models introduced here are useful extensions of the cross-regulation formalism. In particular, they might allow future studies of the effect of different IL-2 modulation therapies on CD4+ T cell dynamics.  相似文献   

9.
Gene analysis of tumor associated antigens revealed that tumor antigens are all normal gene product. Inducing tumor reactive cytotoxic T lymphocytes (CT) in the patients is same as inducing autoimmunity in the patients. Immunosuppressive cytokine interleukin-10 (IL-10) plays an important role in maintaining homeostasis or tolerance. To break the tumor tolerance, blocking and IL-10 secretion or intervention in the pathways of IL-10 gene activation is indeed important.  相似文献   

10.
CAR-T细胞疗法通过靶向识别肿瘤细胞表面抗原,特异性杀伤肿瘤细胞,近年来已经成为肿瘤免疫疗法的研究热点。通过基因工程方法构建靶向人类表皮生长因子受体2(HER2)的CAR慢病毒表达质粒,以磷酸钙沉淀辅助多质粒共转染HEK293T细胞包装,制备CAR慢病毒颗粒lenti-car,感染人外周血单核细胞获得HER2靶向的CAR-T细胞,并分析其对HER2阳性和阴性肿瘤细胞的特异性抑制效果。研究结果表明,构建的CAR-T细胞可被HER-2阳性的肿瘤细胞特异性激活,分泌大量炎症性细胞因子IFN-γ和IL-2。在同样效靶比等处理条件下,构建的HER2靶向CAR-T细胞对HER2阳性的人卵巢癌细胞株SK-OV-3的生长抑制率为(58.47±1.72)%,显著高于对照组(P0.05);而对HER2阴性的人慢性髓原白血病细胞株K562的生长抑制率为(11.74±2.37)%,与对照组无显著差异(P0.05)。进一步,在K562细胞中转染人HER2表达载体使其成为HER2阳性,则HER2靶向CAR-T细胞对其的生长抑制率上升为(30.41±7.59)%,较HER2阴性K562具有明显差异(P0.05)。研究结果表明,构建的HER2靶向的第二代CAR-T细胞可选择性地抑制高表达HER2蛋白的肿瘤细胞的生长,暗示了其对HER2阳性肿瘤进行细胞免疫治疗的临床应用前景。  相似文献   

11.

Background aim

Translation of therapeutic cell therapies to clinical-scale products is critical to realizing widespread success. Currently, however, there are limited tools that are accessible at the research level and readily scalable to clinical-scale needs.

Methods

We herein developed and assessed a closed loop bioreactor system in which (i) a highly gas-permeable silicone material was used to fabricate cell culture bags and (ii) dynamic flow was introduced to allow for dissociation of activated T-cell aggregates.

Results

Using this system, we find superior T-cell proliferation compared with conventional bag materials and flasks, especially at later time points. Furthermore, intermittent dynamic flow could easily break apart T-cell clusters.

Conclusions

Our novel closed loop bioreactor system is amenable to enhanced T-cell proliferation and has broader implications for being easily scaled for use in larger need settings.  相似文献   

12.
There has been a recent interest in using IL-15 to enhance antitumor activity in several models because of its ability to stimulate CD8+ T cell expansion, inhibit apoptosis and promote memory T cell survival and maintenance. Previously, we reported that C6VL tumor lysate-pulsed dendritic cell vaccines significantly enhanced the survival of tumor-bearing mice by stimulating a potent tumor-specific CD8+ T cell response. In this study, we determined whether IL-15 used as immunologic adjuvant would augment vaccine-primed CD8+ T cell immunity against C6VL and further improve the survival of tumor-bearing mice. We report that IL-15 given after C6VL lysate-pulsed dendritic cell vaccines stimulated local and systemic expansion of NK, NKT and CD8+ CD44hi T cells. IL-15 did not, however, augment innate or cellular responses against the tumor. T cells from mice infused with IL-15 following vaccination did not secrete increased levels of tumor-specific TNF-α or IFN-γ or have enhanced C6VL-specific CTL activity compared to T cells from recipients of the vaccine alone. Lastly, IL-15 did not enhance the survival of tumor-bearing vaccinated mice. Thus, while activated- and memory-phenotype CD8+ T cells were dramatically expanded by IL-15 infusion, vaccine-primed CD8+ T cell specific for C6VL were not significantly expanded. This is the first account of using IL-15 as an adjuvant in a therapeutic model of active immunotherapy where there was not a preexisting pool of tumor-specific CD8+ T cells. Our results contrast the recent studies where IL-15 was successfully used to augment tumor-reactivity of adoptively transferred transgenic CD8+ T cells. This suggests that the adjuvant potential of IL-15 may be greatest in settings where it can augment the number and activity of preexisting tumor-specific CD8+ T cells.  相似文献   

13.
The aim of this study was to investigate the effect of heat shock protein-70 (HSP-70) on splenocyte proliferation and nitric oxide (NO) production in the BALB/c mice fibrosarcoma tumor model. To do so, HSP-70 was induced in the lysate of heat-shocked tumor cells and WEHI-164 cells (mouse fibrosarcoma cell line) were injected subcutaneously into the right flank of inbred BALB/c mice to establish a tumor model. Three animal bearing tumor groups were applied: the test group; vaccinated with HSP-70 enriched tumor lysate; control group I, vaccinated with tumor lysate only; and control group II, which received PBS. Using immunoblot analysis, an increase of HSP-70 expression was detected in the lysate of heat-shocked cells in comparison with non-heat-shocked cells. The effect of the test lysate on NO production was measured both in vitro and in vivo in the peritoneal macrophages and splenocytes of tumor bearing mice, respectively. The result showed a significant increase in NO production both in vitro by peritoneal macrophages and in vivo after immunization with HSP-70 enriched tumor lysate. In addition, tumor growth was significantly postponed and the proliferation of splenocytes was increased in the test group. Our results indicate that the lysate of heat-shocked tumor cells was more potent than that of non-heat-shocked tumor cells in inducing anti-tumor immunity. Since production of NO by HSP-activated antigen presenting cells (APCs) is likely to affect innate immunity and tumor growth, the probable mechanism of postponing tumor growth would be NO production by innate immune cells. These findings provide a useful therapeutic model for developing novel approaches to cancer treatments.  相似文献   

14.
Treating membranes from rat heart with phospholipase C (phosphatidylcholine choline-phosphohydrolase) fromClostridium perfringens increased the affinity of muscarinic acetylcholine receptors (M2) for the agonists carbachol and oxotremorine. The affinity for antagonists was not affected. Phospholipase C activity, i.e., the cleavage of polar heads of membrane phospholipids, led to the disappearance of the guanine nucleotide-dependent rightward shift of the isotherm for agonist binding. The treatment of tracheal smooth muscle with phospholipase C led to a decrease in the maximum contractile effect of muscarinic (M2) stimulation with no modification of the agonist EC50, i.e., to the uncoupling of the stimulation-contraction process. These results demonstrate that when phospholipid polar heads are hydrolysed by phospholipase C, M2 receptors are uncoupled from G proteins, which enhances their affinity for agonists but prevents information transfer.  相似文献   

15.
A potent antitumor CD4+ T-helper cell immune response is created by inducing tumor cells in vivo to a MHC class II+/Iiphenotype. MHC class II and Ii molecules were induced in tumor cells in situ following tumor injection of a plasmid containing the gene for the MHC class II transactivator (CIITA). Ii protein was suppressed by the antisense effect of an Ii-reverse gene construct (Ii-RGC) in the same or another co-injected plasmid. The MHC class II+/Iiphenotype of the tumor cells was confirmed by FACS analysis of cells transfected in vitro and by immunostaining of tumor nodules transfected by injections in vivo. Subcutaneous Renca tumors in BALB/c mice were treated by intratumoral injection with CIITA and Ii-RGC, in combination with a subtherapeutic dose of IL-2, to up-regulate the activation of T cells. Significant tumor shrinkage and decrease in rates of progression of established Renca tumors were seen in the groups injected with Ii-RGC, compared with groups in which only IL-2 plus empty plasmid controls were injected. Our method provides an effective immunotherapy warranting further development for human cancers.Abbreviations CIITA MHC class II transactivator - DMRIE 1,2-dimeristyloxypropyl-3-dimethyl-hydroxy ethyl ammonium bromide/cholesterol - FCS fetal calf serum - RGC reverse gene constructThis research was funded in part by NCI grants R43 CA85100 and R43CA 89856.  相似文献   

16.

The development of tumors is a complex pathological process involving multiple factors, multiple steps, and multiple genes. Their prevention and treatment have always been a difficult problem at present. A large number of studies have proved that the tumor microenvironment plays an important role in the progression of tumors. The tumor microenvironment is the place where tumor cells depend for survival, and it plays an important role in regulating the growth, proliferation, apoptosis, migration, and invasion of tumor cells. P2X purinergic receptors, which depend on the ATP ion channel, can be activated by ATP in the tumor microenvironment, and by mediating tumor cells and related cells (such as immune cells) in the tumor microenvironment. They play an important regulatory role on the effects of the skeleton, membrane fluidity, and intracellular molecular metabolism of tumor cells. Therefore, here, we outlined the biological characteristics of P2X purinergic receptors, described the effect of tumor microenvironment on tumor progression, and discussed the effect of ATP on tumor. Moreover, we explored the role of P2X purinergic receptors in the development of tumors and anti-tumor therapy. These data indicate that P2X purinergic receptors may be used as another potential pharmacological target for tumor prevention and treatment.

  相似文献   

17.
18.
IL-2 and IL-15 are cytokines involved in T cell activation and death. Their non-shared receptors, IL-2Ralpha and IL-15Ralpha, are important in the homeostasis of lymphocytes as evidenced by gene deletion studies. How these cytokine/receptor systems affect T cell antigen receptor signaling pathways is poorly understood. Here, we show that the IL-2 and IL-15 cytokine/receptor alpha systems regulate activation of nuclear factor of activated T cells (NF-AT) in opposing ways. IL-15Ralpha increased while IL-2Ralpha decreased basal NF-AT activation status in a Jurkat transient transfection model. The effect of each of the alpha chain receptors on NF-AT activation was further opposed by addition of the respective cytokine. These effects were inhibited by anti-cytokine and anti-cytokine receptor reagents as well as by inhibitors of TCR signaling. These results suggest a novel pathway of cytokine action to regulate T cell signaling, activation, death, and homeostasis.  相似文献   

19.
The Her2 is one of tumor-associated antigens (TAA), regarded as an ideal target of immunotherapy. DNA encoding full-length or truncated rat Her2/neu have shown protective and therapeutics potentials against Her2/neu-expressing mammary tumors. However, the efficacy of active vaccination is limited since Her2 is a self-tolerated antigen. Hence, new strategies are required to enhance both the quality and quantity of the immune response against Her2-expressing tumors. Many studies have used Her2/neu gene with cytokine or other molecules involved in regulation of immune response to enhance the potency of Her2/neu DNA vaccines. Some studies fused adjuvant gene to C-terminal domain of Her2/neu gene, while others fused the adjuvant gene N-terminally to Her2/neu gene, but no comparison on how direction of fusion could affect efficiency of DNA vaccine has ever been made. Based on previous reports demonstrating potent adjuvant activity of gp96 C-terminal domain, we chose it as adjuvant. The aim of this study was to investigate if direction of fusion could affect adjuvant activity of gp96 C-terminal domain or potency of Her2/neu DNA vaccination. To do so, we fused C-terminal domain of gp96 to downstream or C-terminal end of transmembrane and extracellular domain (TM+ECD) of rat Her2/neu and resultant immune response to DNA vaccination was evaluated. The results were compared with that of N-terminally fusion of gp96 C-terminal domain to TM+ECD of rat Her2/neu. Our results revealed that adjuvant activity of gp96 C-terminal domain is enhanced when fused N-terminally to TM+ECD of rat Her2/neu. It suggests that adjuvant activity of gp96 C-terminal domain towards Her2/neu is fusion direction-dependent.  相似文献   

20.
A fusion protein of single chain antibody (scFv) specific for transferrin receptor (TfR, CD71) and viral peptide/HLA-A2 complex was prepared in this study to redirect cytotoxic T cells (CTLs) of viral specificity to tumor cells by attaching the ligand of T cell receptor (TCR) to tumor cells via binding of TfR scFv to TfR. The results demonstrate that the fusion protein can attach the active virus-peptide/HLA-A2 complex to HLA class I-negative, TfR-expressing K562 cells through binding of TfR scFv to TfR, and mediate cytotoxicity of viral peptide-specific CTLs against K562 cells in vitro. In addition, the fusion protein can induce inhibition of solid tumor formation and improve survival time in tumor xenograft nude mouse with the injection of the sorted viral peptide-specific CTLs generated by co-culture of peripheral blood lymphocytes from HLA-A2 positive donors with inactivated T2 cells pulsed with the viral peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号