首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The X-linked tabby (Ta) syndrome in the mouse is homologous to the hypohidrotic ectodermal dysplasia (HED) in humans. As in humans with HED, Ta mice exhibit hypohidrosis, characteristic defects of hairs and tooth abnormalities. To analyze the effects of Ta mutation on lower incisor development, histology, morphometry and computer-aided 3D reconstructions were combined. We observed that Ta mutation had major consequences for incisor development leading to abnormal tooth size and shape, change in the balance between prospective crown- and root-analog tissues and retarded cytodifferentiations. The decrease in size of Ta incisor was observed at ED13.5 and mainly involved the width of the tooth bud. At ED14.5-15.5, the incisor appeared shorter and narrower in the Ta than in the wild type (WT). Growth alterations affected the diameter to a greater extent than the length of the Ta incisor. From ED14.5, changes in the shape interfered with the medio-lateral asymmetry and alterations in the posterior growth of the cervical loop led to a loss of the labio-lingual asymmetry until ED17.0. Although the enamel organ in Ta incisors was smaller than in the WT, a larger proportion of the dental papilla was covered by preameloblasts-ameloblasts. These changes apparently resulted from reduced development of the lingual part of the enamel organ and might be correlated with a possible heterogeneity in the development of the enamel organ, as demonstrated for upper incisors. Our observations suggest independent development of the labial and lingual parts of the cervical loop. Furthermore, it appeared that the consequences of Ta mutation could not be interpreted only as a delay in tooth development.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Fibroblast growth factor (FGF) signaling has been shown to play critical roles in vertebrate segmentation and elongation of the embryonic axis. Neither the exact roles of FGF signaling, nor the identity of the FGF ligands involved in these processes, has been conclusively determined. Fgf8 is required for cell migration away from the primitive streak when gastrulation initiates, but previous studies have shown that drastically reducing the level of FGF8 later in gastrulation has no apparent effect on somitogenesis or elongation of the embryo. In this study, we demonstrate that loss of both Fgf8 and Fgf4 expression during late gastrulation resulted in a dramatic skeletal phenotype. Thoracic vertebrae and ribs had abnormal morphology, lumbar and sacral vertebrae were malformed or completely absent, and no tail vertebrae were present. The expression of Wnt3a in the tail and the amount of nascent mesoderm expressing Brachyury were both severely reduced. Expression of genes in the NOTCH signaling pathway involved in segmentation was significantly affected, and somite formation ceased after the production of about 15-20 somites. Defects seen in the mutants appear to result from a failure to produce sufficient paraxial mesoderm, rather than a failure of mesoderm precursors to migrate away from the primitive streak. Although the epiblast prematurely decreases in size, we did not detect evidence of a change in the proliferation rate of cells in the tail region or excessive apoptosis of epiblast or mesoderm cells. We propose that FGF4 and FGF8 are required to maintain a population of progenitor cells in the epiblast that generates mesoderm and contributes to the stem cell population that is incorporated in the tailbud and required for axial elongation of the mouse embryo after gastrulation.  相似文献   

10.
11.
The expression of all four fgfr genes was extensively examined throughout early embryogenesis of the zebrafish (Danio rerio). fgfr1 alone was expressed maternally throughout the blastoderm, and then zygotically in the anterior neural plate and presomitic mesoderm. fgfr4 expression was first detected in late blastulae and was gradually restricted to the brain. fgfr2 and fgfr3 expression were initiated in early and late gastrulae, respectively; fgfr2 was expressed in the anterior neural plate and somitic mesoderm, whereas fgfr3 was activated in the axial mesoderm and then in the midbrain and somitic mesoderm. During somitogenesis, each of these fgfr genes was expressed in a characteristic manner in the brain. Using an FGF signal inhibitor, dominant-negative FGF receptors and fgf8.1/fgf8a mutants, we found that fgfr expression is directly or indirectly regulated by FGF signaling during epiboly and at the end of somitogenesis, revealing the presence of an autoregulatory mechanism.  相似文献   

12.
Gabay L  Lowell S  Rubin LL  Anderson DJ 《Neuron》2003,40(3):485-499
The CNS is thought to develop from self-renewing stem cells that generate neurons, astrocytes, and oligodendrocytes. Other data, however, have suggested that astrocytes and oligodendrocytes are generated from separate progenitor populations. To reconcile these observations, we have prospectively isolated progenitors that do or do not express Olig2, an oligodendrocyte bHLH determination factor. Both Olig2(-) and Olig2(+) progenitors can behave as tripotential CNS stem cells (CNS-SCs) in vitro. Growth in FGF-2 causes induction of Olig2 in the former population, permitting oligodendrocyte differentiation; extinction of Olig2 in the latter cells permits astrocyte differentiation. The induction of Olig2 by FGF-2 is mediated, in part, via endogenous Sonic Hedgehog. These data indicate that clonogenic competence to generate neurons, astrocytes, and oligodendrocytes reflects a deregulation of dorsoventral patterning during expansion in vitro, raising the question of whether such trifatent cells actually exist in vivo.  相似文献   

13.
In this article, an adjunct to a platform presentation at the Winternational 2000 Symposium, we summarize the recent findings of this group concerning the regulation and functions of FGF8 expressed at the isthmus of the developing brain. We show that several different FGF8 isoforms, ectopically expressed in midbrain or posterior forebrain, are able to mimic the proliferative and patterning functions previously attributed to the isthmus in tissue grafting studies. Moreover, we also show that FGF8 protein is sufficient to induce an ectopic isthmic organiser (Fgf-8+, Gbx2+) in anterior midbrain. We also provide evidence that isthmic FGF8 patterns anterior hindbrain, repressing Hox-a2 expression and setting aside a territory of the brain that includes the cerebellar anlage. We show that these effects of FGF8 are likely to be mediated via FGFR1 and be modulated by the putative FGF antagonist, Sprouty2, identified using a differential display screen. Finally, we provide evidence that the onset of Fgf8 expression is regulated by En1 and that its expression at the isthmus is subsequently maintained by a specific and direct interaction between rhombomere 1 and midbrain.  相似文献   

14.
Many members of the animal kingdom display coat or skin color differences along their dorsoventral axis. To determine the mechanisms that control regional differences in pigmentation, we have studied how a classical mouse mutation, droopy ear (de(H)), affects dorsoventral skin characteristics, especially those under control of the Agouti gene. Mice carrying the Agouti allele black-and-tan (a(t)) normally have a sharp boundary between dorsal black hair and yellow ventral hair; the de(H) mutation raises the pigmentation boundary, producing an apparent dorsal-to-ventral transformation. We identify a 216 kb deletion in de(H) that removes all but the first exon of the Tbx15 gene, whose embryonic expression in developing mesenchyme correlates with pigmentary and skeletal malformations observed in de(H)/de(H) animals. Construction of a targeted allele of Tbx15 confirmed that the de(H) phenotype was caused by Tbx15 loss of function. Early embryonic expression of Tbx15 in dorsal mesenchyme is complementary to Agouti expression in ventral mesenchyme; in the absence of Tbx15, expression of Agouti in both embryos and postnatal animals is displaced dorsally. Transplantation experiments demonstrate that positional identity of the skin with regard to dorsoventral pigmentation differences is acquired by E12.5, which is shortly after early embryonic expression of Tbx15. Fate-mapping studies show that the dorsoventral pigmentation boundary is not in register with a previously identified dermal cell lineage boundary, but rather with the limb dorsoventral boundary. Embryonic expression of Tbx15 in dorsolateral mesenchyme provides an instructional cue required to establish the future positional identity of dorsal dermis. These findings represent a novel role for T-box gene action in embryonic development, identify a previously unappreciated aspect of dorsoventral patterning that is widely represented in furred mammals, and provide insight into the mechanisms that underlie region-specific differences in body morphology.  相似文献   

15.
Gastrula organiser and embryonic patterning in the mouse   总被引:1,自引:0,他引:1  
Embryonic patterning of the mouse during gastrulation and early organogenesis engenders the specification of anterior versus posterior structures and body laterality by the interaction of signalling and modulating activities. A group of cells in the mouse gastrula, characterised by the expression of a repertoire of "organiser" genes, acts as a source and the conduit for allocation of the axial mesoderm, floor plate and definitive endoderm. The organiser and its derivatives provide the antagonistic activity that modulates WNT and TGFbeta signalling. Recent findings show that the organiser activity is augmented by morphogenetic activity of the extraembryonic and embryonic endoderm, suggesting embryonic patterning is not solely the function of the organiser.  相似文献   

16.
The signals which induce vertebrate neural tissue and pattern it along the anterior-posterior (A-P) axis have been proposed to emanate from Spemann's organizer, which in mammals is a structure termed the node. However, mouse embryos mutant for HNF3 beta lack a morphological node and node derivatives yet undergo neural induction. Gene expression domains occur at their normal A-P axial positions along the mutant neural tubes in an apparently normal temporal manner, including the most anterior and posterior markers. This neural patterning occurs in the absence of expression of known organizer genes, including the neural inducers chordin and noggin. Other potential signaling centers in gastrulating mutant embryos appear to express their normal constellation of putative secreted factors, consistent with the possibility that neural-inducing and -patterning signals emanate from elsewhere or at an earlier time. Nevertheless, we find that the node and the anterior primitive streak, from which the node derives, are direct sources of neural-inducing signals, as judged by expression of the early midbrain marker Engrailed, in explant-recombination experiments. Similar experiments showed the neural-inducing activity in HNF3 beta mutants to be diffusely distributed. Our results indicate that the mammalian organizer is capable of neural induction and patterning of the neural plate, but that maintenance of an organizer-like signaling center is not necessary for either process.  相似文献   

17.
We propose a model mechanism for the initiation and spatial positioning of teeth primordia in the alligator, Alligator mississippiensis. Detailed embryological studies by Westergaard and Ferguson (1986, 1987, 1990) have shown that jaw growth plays a crucial role in the developmental patterning of the tooth initiation process. Based on biological data we develop a dynamic patterning mechanism, which crucially includes domain growth. The mechanism can reproduce the spatial pattern development of the first seven teeth primordia in each half jaw of A. mississippiensis. The results for the precise spatio-temporal sequence compare well with experiment. Simulation of the model also predicts that certain transplantations can alter the spatial sequence of teeth primordia initiation.  相似文献   

18.
A network of molecular interactions is required in the developing vertebrate hindbrain for the formation and anterior-posterior patterning of the rhombomeres. FGF signaling is required in this network to upregulate the expression of the Krox20 and Kreisler segmentation genes, but little is known of how FGF gene expression is regulated in the hindbrain. We show that the dynamic expression of FGF3 in chick hindbrain segments and boundaries is similar to that of the BMP antagonist, follistatin. Consistent with a regulatory relationship between BMP signaling and FGF3 expression, we find that an increase in BMP activity due to blocking of follistatin translation by morpholino antisense oligonucleotides or overexpression of BMP results in strong inhibition of FGF3 expression. Conversely, addition of follistatin leads to an increase in the level of FGF3 expression. Furthermore, the segmental inhibition of BMP activity by follistatin is required for the expression of Krox20, Hoxb1 and EphA4 in the hindbrain. In addition, we show that the maintenance of FGF3 gene expression requires FGF activity, suggestive of an autoregulatory loop. These results reveal an antagonistic relationship between BMP activity and FGF3 expression that is required for correct segmental gene expression in the chick hindbrain, in which follistatin enables FGF3 expression by inhibiting BMP activity.  相似文献   

19.
Heparan sulfate (HS) interacts with diverse growth factors, including Wnt, Hh, BMP, VEGF, EGF, and FGF family members, and is a necessary component for their signaling. These proteins regulate multiple cellular processes that are critical during development. However, a major question is whether developmental changes occur in HS that regulate the activity of these factors. Using a ligand and carbohydrate engagement assay, and focusing on FGF1 and FGF8b interactions with FGF receptor (FR)2c and FR3c, this paper reveals global changes in HS expression in mouse embryos during development that regulate FGF and FR complex assembly. Furthermore, distinct HS requirements are identified for both complex formation and signaling for each FGF and FR pair. Overall, these results suggest that changes in HS act as critical temporal regulators of growth factor and morphogen signaling during embryogenesis.  相似文献   

20.
Stochastic patterning in the mouse pre-implantation embryo   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号