首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Strains of three anaerobic rumen bacteria, Bacteroides ruminicola, Anaerovibrio lipolytica and Selenomonas ruminantium, were able to use extracellular H2 to reduce fumarate to succinate. Each bacterium possessed membrane-bound hydrogenase and fumarate reductase activity. Membrane-bound cytochrome b was reducible by H2 and oxidizable by fumarate in each bacterium. The apparent Km values for hydrogen of the hydrogenases were 4 . 5 x 10(-6) M, 1 . 4 x 10(-5) M and 4 . 4 x 10(-5) M for B. ruminicola, A. lipolytica and S. ruminantium, respectively. The apparent Km values for fumarate of the fumarate reductases were approximately 1 . 0 x 10(-4) M for each bacterium.  相似文献   

2.
The distribution of endoglucanase activities in cultures of Fibrobacter succinogenes subsp. succinogenes S85 grown on different carbon sources was examined by a variety of biochemical and immunological techniques. Total culture endoglucanase activity was primarily cell associated and was expressed constitutively, although synthesis of endoglucanase 1 (EG1) was repressed by cellobiose. Western immunoblotting showed that EG1 and EG3 were released into the culture fluid during growth, while EG2 remained largely associated with the cell. Subcellular localization showed low endoglucanase activity in the periplasmic fraction and similar, high levels in the cytoplasmic and membrane fractions. Western immunoblotting showed that EG2 was absent from the periplasmic fraction. Data from immunoelectron microscopy with either polyclonal or monoclonal antibody to EG2 revealed a high density of gold labeling at sites where there was a disruption in the regular features of the cell surface, such as in blebbing or physical tearing of the membrane. When cells were grown on cellulose, there was a high density of labeling on the cellulose but not on the cells, indicating that EG2 has limited exposure at the cell surface. On the basis of these data, export of enzymes from their intracellular locations appears to occur via three different mechanisms: a specific secretory pathway independent of cellulose, a secretory mechanism which is mediated by contact with cellulose, and a generalized blebbing process that occurs irrespective of the carbon source.  相似文献   

3.
M McGavin  J Lam    C W Forsberg 《Applied microbiology》1990,56(5):1235-1244
The distribution of endoglucanase activities in cultures of Fibrobacter succinogenes subsp. succinogenes S85 grown on different carbon sources was examined by a variety of biochemical and immunological techniques. Total culture endoglucanase activity was primarily cell associated and was expressed constitutively, although synthesis of endoglucanase 1 (EG1) was repressed by cellobiose. Western immunoblotting showed that EG1 and EG3 were released into the culture fluid during growth, while EG2 remained largely associated with the cell. Subcellular localization showed low endoglucanase activity in the periplasmic fraction and similar, high levels in the cytoplasmic and membrane fractions. Western immunoblotting showed that EG2 was absent from the periplasmic fraction. Data from immunoelectron microscopy with either polyclonal or monoclonal antibody to EG2 revealed a high density of gold labeling at sites where there was a disruption in the regular features of the cell surface, such as in blebbing or physical tearing of the membrane. When cells were grown on cellulose, there was a high density of labeling on the cellulose but not on the cells, indicating that EG2 has limited exposure at the cell surface. On the basis of these data, export of enzymes from their intracellular locations appears to occur via three different mechanisms: a specific secretory pathway independent of cellulose, a secretory mechanism which is mediated by contact with cellulose, and a generalized blebbing process that occurs irrespective of the carbon source.  相似文献   

4.
Fibrobacter succinogenes S85, a cellulolytic rumen bacterium, is very efficient in degrading lignocellulosic substrates and could be used to develop a biotechnological process for the treatment of wastes. In this work, the metabolism of cellulose by F. succinogenes S85 was investigated using in vivo 13C NMR and 13C-filtered spin-echo difference 1H NMR spectroscopy. The degradation of unlabelled cellulose synthesised by Acetobacter xylinum was studied indirectly, in the presence of [1-13C]glucose, by estimating the isotopic dilution of the final bacterial fermentation products (glycogen, succinate, acetate). During the pre-incubation period of F. succinogenes cells with cellulose fibres, some cells ('non-adherent') did not attach to the solid material. Results for 'adherent' cells showed that about one fourth of the glucose units entering F. succinogenes metabolism originated from cellulose degradation. A huge reversal of succinate metabolism pathway and production of large amounts of unlabelled acetate which was observed during incubation with glucose only, was found to be much decreased in the presence of solid substrate. The synthesis of glucose 6-phophate was slightly increased in the presence of cellulose. Results clearly showed that 'non-adherent' cells were able to metabolise glucose very efficiently; consequently the metabolic state of these cells was not responsible for their 'non-adherence' to cellulose fibre.  相似文献   

5.
New strains with enhanced resistance to monensin were developed from Prevotella (Bacteroides) ruminicola subsp. ruminicola 23 and P. ruminicola subsp. brevis GA33 by stepwise exposure to increasing concentrations of monensin. The resulting resistant strains (23MR2 and GA33MR) could initiate growth in concentrations of monensin which were 4 to 40 times greater than those which inhibited the parental strains. Resistant strains also showed enhanced resistance to nigericin and combinations of monensin and nigericin but retained sensitivity to lasalocid. Glucose utilization in cultures of the monensin-sensitive strains (23 and GA33) and one monensin-resistant strain (23MR2) was retarded but not completely inhibited when logarithmic cultures were challenged with monensin (10 mg/liter). Monensin challenge of cultures of the two monensin-sensitive strains (23 and GA33) was characterized by 78 and 51% decreases in protein yield (milligrams of protein per mole of glucose utilized), respectively. Protein yields in cultures of resistant strain 23MR2 were decreased by only 21% following monensin challenge. Cell yields and rates of glucose utilization by resistant strains GA33MR were not decreased by challenge with 10 mg of monensin per liter. Resistant strains produced greater relative proportions of propionate and less acetate than the corresponding sensitive strains. The relative amounts of succinate produced were greater in cultures of strains 23, GA33, and 23MR2 following monensin challenge. However, only minor changes in end product formation were associate with monensin challenge of resistant strain GA33MR. These results suggest that monensin has significant effects on both the growth characteristics and metabolic activities of these predominant, gram-negative ruminal bacteria.  相似文献   

6.
New strains with enhanced resistance to monensin were developed from Prevotella (Bacteroides) ruminicola subsp. ruminicola 23 and P. ruminicola subsp. brevis GA33 by stepwise exposure to increasing concentrations of monensin. The resulting resistant strains (23MR2 and GA33MR) could initiate growth in concentrations of monensin which were 4 to 40 times greater than those which inhibited the parental strains. Resistant strains also showed enhanced resistance to nigericin and combinations of monensin and nigericin but retained sensitivity to lasalocid. Glucose utilization in cultures of the monensin-sensitive strains (23 and GA33) and one monensin-resistant strain (23MR2) was retarded but not completely inhibited when logarithmic cultures were challenged with monensin (10 mg/liter). Monensin challenge of cultures of the two monensin-sensitive strains (23 and GA33) was characterized by 78 and 51% decreases in protein yield (milligrams of protein per mole of glucose utilized), respectively. Protein yields in cultures of resistant strain 23MR2 were decreased by only 21% following monensin challenge. Cell yields and rates of glucose utilization by resistant strains GA33MR were not decreased by challenge with 10 mg of monensin per liter. Resistant strains produced greater relative proportions of propionate and less acetate than the corresponding sensitive strains. The relative amounts of succinate produced were greater in cultures of strains 23, GA33, and 23MR2 following monensin challenge. However, only minor changes in end product formation were associate with monensin challenge of resistant strain GA33MR. These results suggest that monensin has significant effects on both the growth characteristics and metabolic activities of these predominant, gram-negative ruminal bacteria.  相似文献   

7.
Succinate is formed as an intermediate but not as a normal end product of the bovine rumen fermentation. However, numerous rumen bacteria are present, e.g., Bacteroides succinogenes, which produce succinate as a major product of carbohydrate fermentation. Selenomonas ruminantium, another rumen species, produces propionate via the succinate or randomizing pathway. These two organisms were co-cultured to determine if S. ruminantium could decarboxylate succinate produced by B. succinogenes. When energy sources used competitively by both species, i.e. glucose or cellobiose, were employed, no succinate was found in combined cultures, although a significant amount was expected from the numbers of Bacteroides present. The propionate production per S. ruminantium was significantly greater in combined than in single S. ruminantium cultures, which indicated that S. ruminantium was decarboxylating the succinate produced by B. succinogenes. S. ruminantium, which does not use cellulose, grew on cellulose when co-cultured with B. succinogenes. Succinate, but not propionate, was produced from cellulose by B. succinogenes alone. Propionate, but no succinate, accumulated when the combined cultures were grown on cellulose. These interspecies interactions are models for the rumen ecosystem interactions involved in the production of succinate by one species and its decarboxylation to propionate by a second species.  相似文献   

8.
1D and 2D NMR experiments were used to analyse the synthesis of various metabolites by resting cells of Fibrobacter succinogenes S85 when incubated with [1-(13)C]glucose, in both extracellular and cellular media. Besides the expected glycogen, succinate, acetate, glucose-1-P and glucose-6-P, maltodextrins and cellodextrins were detected. Maltodextrins were excreted into the external medium. They were found to have linear structures with a maximum degree of polymerization (DP) of about 6 or 7 units. Cellodextrins were located in the cells (cytoplasm and/or periplasm), and their DP was < or = 4. Both labelled (1-(13)C and 6-(13)C) and unlabelled maltodextrins and cellodextrins were detected, showing the contribution of carbohydrate cycling in F. succinogenes, including the reversal of glycolysis and the futile cycle of glycogen. The mechanisms of these oligosaccharide syntheses are discussed.  相似文献   

9.
Polyclonal and monoclonal antibodies to the Cl-stimulated cellobiosidase of Fibrobacter succinogenes subsp. succinogenes S85 reacted with numerous proteins of both higher and lower molecular weights from F. succinogenes subsp. succinogenes S85, but not with Escherichia coli proteins, and only one protein each from Butyrivibrio fibrisolvens and Ruminococcus albus. Different profiles were observed for Western blots (immunoblots) of peptide digests of both the purified enzyme from F. succinogenes and immunoreactive proteins of higher and lower molecular weights, demonstrating that they were different proteins. Therefore, F. succinogenes appeared to produce numerous proteins with one or more common antigenic determinants. However, with the exception of Cl-stimulated cellobiosidase, none were cellulases that have been characterized. An affinity-purified polyclonal antibody to Cl-stimulated cellobiosidase reacted with numerous proteins in cells of each of three fresh isolates of F. succinogenes subsp. succinogenes and one of F. succinogenes subsp. elongata when analyzed by Western blotting. Antibodies to periplasmic cellodextrinase, endoglucanase 2 (EG2), and EG3, when reacted in Western blots with the various cellulases, including Cl-stimulated cellobiosidase, revealed limited antigenic similarity among the different proteins and none with either B. fibrisolvens or R. albus proteins. The periplasmic cellodextrinase antibody reacted with an antigen with a size corresponding to cellodextrinase in each of the three F. succinogenes subsp. succinogenes isolates but not with any antigens from the F. succinogenes subsp. elongata isolate. The anti-EG2 antibody reacted with single antigens in each of the four isolates, while the anti-EG3 antibody reacted with only one of the four isolates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Polyclonal and monoclonal antibodies to the Cl-stimulated cellobiosidase of Fibrobacter succinogenes subsp. succinogenes S85 reacted with numerous proteins of both higher and lower molecular weights from F. succinogenes subsp. succinogenes S85, but not with Escherichia coli proteins, and only one protein each from Butyrivibrio fibrisolvens and Ruminococcus albus. Different profiles were observed for Western blots (immunoblots) of peptide digests of both the purified enzyme from F. succinogenes and immunoreactive proteins of higher and lower molecular weights, demonstrating that they were different proteins. Therefore, F. succinogenes appeared to produce numerous proteins with one or more common antigenic determinants. However, with the exception of Cl-stimulated cellobiosidase, none were cellulases that have been characterized. An affinity-purified polyclonal antibody to Cl-stimulated cellobiosidase reacted with numerous proteins in cells of each of three fresh isolates of F. succinogenes subsp. succinogenes and one of F. succinogenes subsp. elongata when analyzed by Western blotting. Antibodies to periplasmic cellodextrinase, endoglucanase 2 (EG2), and EG3, when reacted in Western blots with the various cellulases, including Cl-stimulated cellobiosidase, revealed limited antigenic similarity among the different proteins and none with either B. fibrisolvens or R. albus proteins. The periplasmic cellodextrinase antibody reacted with an antigen with a size corresponding to cellodextrinase in each of the three F. succinogenes subsp. succinogenes isolates but not with any antigens from the F. succinogenes subsp. elongata isolate. The anti-EG2 antibody reacted with single antigens in each of the four isolates, while the anti-EG3 antibody reacted with only one of the four isolates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Conditions promoting maximal in vitro activity of the particulate NADH:fumarate reductase from Fibrobacter succinogenes were determined. This system showed a pH optimum of 6.0 in K+ MES buffer only when salt (NaCl or KCl) was present. Salt stimulated the activity eightfold at the optimal concentration of 150m M. This effect was due to stimulation of fumarate reductase activity as salt had little effect on NADH: decylubiquinone oxidoreductase (NADH dehydrogenase). The stimulation of fumarate reductase by salt at pH 6.0 was not due to removal of oxaloacetate from the enzyme. Kinetic parameters for several inhibitors were also measured. NADH dehydrogenase was inhibited by rotenone at a single site with a K i of 1 M. 2-Heptyl-4-hydroxyquinonline-N-oxide (HOQNO) inhibited NADH: fumarate reductase with a K i of 0.006 M, but NADH dehydrogenase exhibited two HOQNO inhibition constants of approximately 1 M and 24 M. Capsaicin and laurylgallate each inhibited NADH dehydrogenase by only 20% at 100 M. NADH dehydrogenase gave K m values of 1 M for NADH and 4 M for reduced hypoxanthine adenine dinucleotide.Published with the approval of the Director of the Agricultural Experiment Station, North Dakota State University, as journal article no. 2201  相似文献   

12.
Fibrobacter is a highly cellulolytic genus commonly found in the rumen of ruminant animals and cecum of monogastric animals. In this study, suppression subtractive hybridization was used to identify the genes present in Fibrobacter succinogenes S85 but absent from F. intestinalis DR7. A total of 1,082 subtractive clones were picked, plasmids were purified, and inserts were sequenced, and the clones lacking homology to F. intestinalis were confirmed by Southern hybridization. By comparison of the sequences of the clones to one another and to those of the F. succinogenes genome, 802 sequences or 955 putative genes, comprising approximately 409 kb of F. succinogenes genomic DNA, were identified that lack similarity to those of F. intestinalis chromosomal DNA. The functional groups of genes, including those involved in cell envelope structure and function, energy metabolism, and transport and binding, had the largest number of genes specific to F. succinogenes. Low-stringency Southern hybridization showed that at least 37 glycoside hydrolases are shared by both species. A cluster of genes responsible for heme, porphyrin, and cobalamin biosynthesis in F. succinogenes S85 was either missing from or not functional in F. intestinalis DR7, which explains the requirement of vitamin B12 for the growth of the F. intestinalis species. Two gene clusters encoding NADH-ubiquinone oxidoreductase subunits probably shared by Fibrobacter genera appear to have an important role in energy metabolism.  相似文献   

13.
Fibrobacter succinogenes subsp. succinogenes S85, formerly Bacteroides succinogenes, adheres to crystalline cellulose present in the culture medium. When the cells are suspended in buffer, adhesion is enhanced by increasing the ionic strength. Heat, glutaraldehyde, trypsin, and pronase treatments markedly reduce the extent of adhesion. Treatment with dextrinase, modification of amino and carboxyl groups with Formalin or other chemical agents, and inclusion of either albumin (1%) or Tween 80 (0.5%) do not decrease the degree of adhesion. Adherence-defective mutants isolated by their inability to bind to cellulose exhibited different growth characteristics. Class 1 mutants grew on glucose, cellobiose, amorphous cellulose, and crystalline cellulose. Class 3 mutants grew on glucose and cellobiose but not on amorphous or crystalline cellulose. No substantial changes were detected in the endoglucanase, cellobiosidase, and cellobiase activities of the wild type and the mutants. These data suggest that adhesion to crystalline cellulose is specific and that it involves surface proteins.  相似文献   

14.
Fibrobacter succinogenes subsp. succinogenes S85, formerly Bacteroides succinogenes, adheres to crystalline cellulose present in the culture medium. When the cells are suspended in buffer, adhesion is enhanced by increasing the ionic strength. Heat, glutaraldehyde, trypsin, and pronase treatments markedly reduce the extent of adhesion. Treatment with dextrinase, modification of amino and carboxyl groups with Formalin or other chemical agents, and inclusion of either albumin (1%) or Tween 80 (0.5%) do not decrease the degree of adhesion. Adherence-defective mutants isolated by their inability to bind to cellulose exhibited different growth characteristics. Class 1 mutants grew on glucose, cellobiose, amorphous cellulose, and crystalline cellulose. Class 3 mutants grew on glucose and cellobiose but not on amorphous or crystalline cellulose. No substantial changes were detected in the endoglucanase, cellobiosidase, and cellobiase activities of the wild type and the mutants. These data suggest that adhesion to crystalline cellulose is specific and that it involves surface proteins.  相似文献   

15.
The distribution of two xylanase genes was examined by Southern hybridization among 26 strains of the rumen anaerobic bacterium Prevotella (Bacteroides) ruminicola. Hybridization with a xylanase/endoglucanase gene from the type strain 23 was found in six strains while hybridization with a xylanase gene from strain D31d was found in 14 strains. Sequences related to both genes were present, on different restriction fragments, in six strains, whereas no hybridization to either gene was detected in five other strains capable of hydrolysing xylan, or in seven strains that showed little or no xylanase activity. Zymogram analyses of seven xylanolytic strains of P. ruminicola demonstrated interstrain variation in the apparent molecular masses of the major xylanases and carboxymethylcellulases that could be renatured following SDS polyacrylamide gel electrophoresis.  相似文献   

16.
An acetylxylan esterase (EC 3.1.1.6) was purified to apparent homogeneity from the nonsedimentable extracellular culture fluid of Fibrobacter succinogenes S85 grown on cellulose. This enzyme had an apparent molecular mass of 55 kDa and an isoelectric point of 4.0. The temperature and pH optima were 45 degrees C and 7.0, respectively. The apparent Km and Vmax were 2.7 mM and 9,100 U/mg, respectively, for the hydrolysis of alpha-naphthyl acetate. The enzyme cleaved acetyl residues from birchwood acetylxylan but did not hydrolyze carboxymethylcellulose, larchwood xylan, ferulic acid-arabinose-xylose polymer, p-nitrophenyl-alpha-L-arab-inofuranoside, or longer-chain naphthyl fatty acid esters. The esterase enzyme may play a role in enhancing hemicellulose degradation by F. succinogenes, thereby allowing it greater access to cellulose present in forage cell walls.  相似文献   

17.
Little change in glucose uptake by Fibrobacter succinogenes S85 was observed when the extracellular pH was between 8.0 and 6.5, but uptake was reduced 42 and 65% at pH values of 5.0 and 4.0, respectively. p -Coumaric acid and vanillin were the strongest inhibitors of glucose uptake by F. succinogenes S85, while ferulic acid was less inhibitory. Collectively, these results help to explain, in part, the growth inhibition observed when F. succinogenes S85 is exposed to low extracellular pH and phenolic monomers.  相似文献   

18.
A cellobiosidase with unique characteristics from the extracellular culture fluid of the anaerobic gram-negative cellulolytic rumen bacterium Bacteroides succinogenes grown on microcrystalline cellulose (Avicel) in a continuous culture system was purified to homogeneity by column chromatography. The enzyme was a glycoprotein with a molecular weight of approximately 75,000 and an isoelectric point of 6.7. When assayed at 39 degrees C and pH 6.5, the activity of the enzyme with p-nitrophenyl-beta-D-cellobioside as the substrate was stimulated by chloride, bromide, fluoride, iodide, nitrate, and nitrite, with maximum activation (approximately sevenfold) occurring at concentrations ranging from 1.0 mM (Cl-) to greater than 0.75 M (F-). The presence of chloride (0.2 M) did not affect the Km but doubled the Vmax. In the presence of chloride (0.2 M), the pH optimum of the enzyme was broadened, and the temperature optimum was increased from 39 to 45 degrees C. The enzyme released terminal cellobiose from cellotriose and cellobiose and cellotriose from longer-chain-length cellooligosaccharrides and acid-swollen cellulose, but it had no activity on cellobiose. The enzyme showed affinity for cellulose (Avicel) but did not hydrolyze it. It also had a low activity on carboxymethyl cellulose.  相似文献   

19.
Two different endoxylanases (1,4-beta-D-xylan xylanohydrolases, EC 3.2.1.8), designated 1 and 2, have been purified by column chromatography to apparent homogeneity from the nonsedimentable extracellular culture fluid of the strictly anaerobic, ruminal bacterium Fibrobacter succinogenes S85 grown on crystalline cellulose. Endoxylanases 1 and 2 were shown to be basic proteins of 53.7 and 66.0 kDa, respectively, with different pH and temperature optima, as well as different substrate hydrolysis characteristics. The Km and Vmax values with water-soluble oat spelts xylan as substrate were 2.6 mg ml-1 and 33.6 mumol min-1 mg-1 for endoxylanase 1 and 1.3 mg ml-1 and 118 mumol min-1 mg-1 for endoxylanase 2. Endoxylanase 1, but not endoxylanase 2, released arabinose from water-soluble oat spelts xylan and rye flour arabinoxylan, but not from arabinan, arabinogalactan, or aryl-alpha-L-arabinofuranosides. With an extended hydrolysis time, endoxylanase 1 released 62.5 and 50% of the available arabinose from water-soluble oat spelts xylan and rye flour arabinoxylan, respectively. Endoxylanase 1 released arabinose directly from the xylan backbone, and this preceded hydrolysis of the xylan to xylooligosaccharides. Endoxylanase 2 showed significant activity against carboxymethyl cellulose but was unable to substantially hydrolyze acid-swollen cellulose. Both enzymes were endo-acting, as revealed by their hydrolysis product profiles on water-soluble xylan and xylooligosaccharides. Because of their unique hydrolytic properties, endoxylanases 1 and 2 appear to have strategic roles in plant cell wall digestion by F. succinogenes in vivo.  相似文献   

20.
Two different endoxylanases (1,4-beta-D-xylan xylanohydrolases, EC 3.2.1.8), designated 1 and 2, have been purified by column chromatography to apparent homogeneity from the nonsedimentable extracellular culture fluid of the strictly anaerobic, ruminal bacterium Fibrobacter succinogenes S85 grown on crystalline cellulose. Endoxylanases 1 and 2 were shown to be basic proteins of 53.7 and 66.0 kDa, respectively, with different pH and temperature optima, as well as different substrate hydrolysis characteristics. The Km and Vmax values with water-soluble oat spelts xylan as substrate were 2.6 mg ml-1 and 33.6 mumol min-1 mg-1 for endoxylanase 1 and 1.3 mg ml-1 and 118 mumol min-1 mg-1 for endoxylanase 2. Endoxylanase 1, but not endoxylanase 2, released arabinose from water-soluble oat spelts xylan and rye flour arabinoxylan, but not from arabinan, arabinogalactan, or aryl-alpha-L-arabinofuranosides. With an extended hydrolysis time, endoxylanase 1 released 62.5 and 50% of the available arabinose from water-soluble oat spelts xylan and rye flour arabinoxylan, respectively. Endoxylanase 1 released arabinose directly from the xylan backbone, and this preceded hydrolysis of the xylan to xylooligosaccharides. Endoxylanase 2 showed significant activity against carboxymethyl cellulose but was unable to substantially hydrolyze acid-swollen cellulose. Both enzymes were endo-acting, as revealed by their hydrolysis product profiles on water-soluble xylan and xylooligosaccharides. Because of their unique hydrolytic properties, endoxylanases 1 and 2 appear to have strategic roles in plant cell wall digestion by F. succinogenes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号