首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Screening of cdc mutants of fission yeast for those whose cell cycle arrest is independent of the DNA damage checkpoint identified the RNA splicing-deficient cdc28 mutant. A search for mutants of cdc28 cells that enter mitosis with unspliced RNA resulted in the identification of an orb5 point mutant. The orb5+ gene, which encodes a catalytic subunit of casein kinase II, was found to be required for cell cycle arrest in other mutants with defective RNA metabolism but not for operation of the DNA replication or DNA damage checkpoints. Loss of function of wee1+ or rad24+ also suppressed the arrest of several splicing mutants. Overexpression of the major B-type cyclin Cdc13p induced cdc28 cells to enter mitosis. The abundance of Cdc13p was reduced, and the phosphorylation of Cdc2p on tyrosine 15 was maintained in splicing-defective cells. These results suggest that regulation of Cdc13p and Cdc2p is required for G2 arrest in splicing mutants.  相似文献   

4.
Fission yeast Cdc37 is required for multiple cell cycle functions   总被引:1,自引:0,他引:1  
The identification of a Schizosaccharomyces pombe homologue of the cdc37 gene is described. The gene product is most similar to the budding yeast homologue, but shows similarity to metazoan Cdc37 proteins, with a region of high similarity at the extreme N-terminus. Gene transplacement experiments in diploid cells followed by tetrad dissection show that the gene is essential. Depletion of the gene product after switching off expression of cdc37 from the regulatable nmt81 promoter results in cessation of growth and division. The cells arrest heterogeneously, with a significant proportion showing mitotic defects; paradoxically, a proportion of the cells show a short-cell phenotype consistent with an advanced cell cycle.Communicated by D. Y. Thomas  相似文献   

5.
Many enzymes show a pattern of increase in activity through the cell cycle which is different from the continuous exponential pattern of total protein synthesis. A group of proteins at an intermediate level between single enzymes and total protein, the soluble proteins, was examined to resolve this anomaly. The synthesis of the pH 8.1 soluble proteins of Schizosaccharomyces pombe through the cell cycle was followed by pulse labelling with 3H-leucine in synchronous cultures. The soluble proteins were analysed by electrophoresis on acrylamide gels. Soluble proteins represent 30% of the total proteins of S. pombe and the rates of synthesis showed a continuous increase through the cell cycle. Individual groups of proteins, represented by a single band after electrophoresis, showed a similar continuous increase in synthesis through the cell cycle. Any proteins which may be synthesised discontinuously, such as some enzymes, represent such a small proportion of any one protein group in the electrophoretic separation that their effect was not detectable. These results are different from those described for mammalian cells.  相似文献   

6.
Regulation of microtubule organizing centers (MTOCs) orchestrates the reorganization of the microtubule (MT) cytoskeleton. In the fission yeast Schizosaccharomyces pombe, an equatorial MTOC (eMTOC) at the cell division site disassembles after cytokinesis, and multiple interphase MTOCs (iMTOCs) appear on the nucleus. Here, we show that, upon eMTOC disassembly, small satellites carrying MTOC components such as the gamma-tubulin complex travel in both directions along interphase MTs. We identify rsp1p, an MTOC protein required for eMTOC disassembly. In rsp1 loss-of-function mutants, the eMTOC persists and organizes an abnormal microtubule aster, while iMTOCs and satellites are greatly reduced. Conversely, rsp1p overexpression inhibits eMTOC formation. Rsp1p is a J domain protein that interacts with an hsp70. Thus, our findings suggest a model in which rsp1p is part of a chaperone-based mechanism that disassembles the eMTOC into satellites, contributing to the dynamic redistribution of MTOC components for organization of interphase microtubules.  相似文献   

7.
8.
Cytokinesis and septation in the fission yeast Schizosaccharomyces pombe are studied as a model for mammalian cell division. In fission yeast, septation is positively regulated by Spg1, a Ras family GTPase that localizes to spindle-pole bodies (SPBs) throughout the cell cycle. As cells enter mitosis, Spg1 accumulates in an active, GTP-bound form and binds the Cdc7 protein kinase to cause Cdc7 translocation to SPBs. Cdc7 disappears from one SPB in mid-anaphase and from the second SPB in late mitosis. Byr4 plus Cdc16 negatively regulate septation by forming a two-component GTPase-activating protein for Spg1. These results led us to hypothesize that Byr4 localization to SPBs regulated the nucleotide state of Spg1, due to its ability to form Spg1GAP activity with Cdc16 and thus the binding of Cdc7 to Spg1 at SPBs. To test this hypothesis, Byr4 localization was determined using indirect immunofluorescence. This analysis revealed that Byr4 was localized to SPBs that did not contain Cdc7. In byr4(-) mutants, Cdc7 localized to interphase SPBs and only symmetrically localized to mitotic SPBs. In contrast, Byr4 overexpression prevented Spg1 and Cdc7 localization to SPBs. These results suggest that Byr4 localization to SPBs maintains Spg1 in an inactive form, presumably by stimulating Spg1 GTPase activity with Cdc16, and that loss of Byr4 from mitotic SPBs increases the active fraction of Spg1 and thereby increases Spg1-Cdc7 binding. Byr4 localization to SPBs was decreased in spg1, cdc16, sid4, and cdc11 mutants as well as in several mutants that affect medial F-actin structures, suggesting that multiple pathways regulate Byr4 localization to SPBs.  相似文献   

9.
Longitudinal F-actin cables are thought to be important for transporting materials for polarized cell growth in fission yeast. We show that most F-actin in the cables is oriented such that the barbed end faces the nearest cell tip during interphase; however, this directionality is reversed during mitosis. These orientations of F-actin ensure proper transport of materials to growing sites during these cell-cycle stages.  相似文献   

10.
11.
During Saccharomyces cerevisiae mating, chemotropic growth and cell fusion are critical for zygote formation. Cdc24p, the guanine nucleotide exchange factor for the Cdc42 G protein, is necessary for oriented growth along a pheromone gradient during mating. To understand the functions of this critical Cdc42p activator, we identified additional cdc24 mating mutants. Two mating-specific mutants, the cdc24-m5 and cdc24-m6 mutants, each were isolated with a mutated residue in the conserved catalytic domain. The cdc24-m6 mutant responds normally to pheromone and orients its growth towards a mating partner yet accumulates prezygotes during mating. cdc24-m6 prezygotes have two apposed intact cell walls and do not correctly localize proteins required for cell fusion, despite normal exocytosis. Our results indicate that the exchange factor Cdc24p is necessary for maintaining or restricting specific proteins required for cell fusion to the cell contact region during mating.  相似文献   

12.
Fission yeast capping protein SpCP is a heterodimer of two subunits (Acp1p and Acp2p) that binds actin filament barbed ends. Neither acp1 nor acp2 is required for viability, but cells lacking either or both subunits have cytokinesis defects under stressful conditions, including elevated temperature, osmotic stress, or in combination with numerous mild mutations in genes important for cytokinesis. Defects arise as the contractile ring constricts and disassembles, resulting in delays in cell separation. Genetic and biochemical interactions show that the cytokinesis formin Cdc12p competes with capping protein for actin filament barbed ends in cells. Deletion of acp2 partly suppresses cytokinesis defects in temperature-sensitive cdc12-112 cells and mild overexpression of capping protein kills cdc12-112 cells. Biochemically, profilin has opposite effects on filaments capped with Cdc12p and capping protein. Profilin depolymerizes actin filaments capped by capping protein but allows filaments capped by Cdc12p to grow at their barbed ends. Once associated with a barbed end, either Cdc12p or capping protein prevents the other from influencing polymerization at that end. Given that capping protein arrives at the division site 20 min later than Cdc12p, capping protein may slowly replace Cdc12p on filament barbed ends in preparation for filament disassembly during ring constriction.  相似文献   

13.
Oriented cell growth requires the specification of a site for polarized growth and subsequent orientation of the cytoskeleton towards this site. During mating, haploid Saccharomyces cerevisiae cells orient their growth in response to a pheromone gradient overriding an internal landmark for polarized growth, the bud site. This response requires Cdc24p, Far1p, and a heterotrimeric G-protein. Here we show that a two- hybrid interaction between Cdc24p and Gbeta requires Far1p but not pheromone-dependent MAP-kinase signaling, indicating Far1p has a role in regulating the association of Cdc24p and Gbeta. Binding experiments demonstrate that Cdc24p, Far1p, and Gbeta form a complex in which pairwise interactions can occur in the absence of the third protein. Cdc24p localizes to sites of polarized growth suggesting that this complex is localized. In the absence of CDC24-FAR1-mediated chemotropism, a bud site selection protein, Bud1p/Rsr1p, is essential for morphological changes in response to pheromone. These results suggest that formation of a Cdc24p-Far1p-Gbetagamma complex functions as a landmark for orientation of the cytoskeleton during growth towards an external signal.  相似文献   

14.
15.
Maintenance of genome integrity requires a checkpoint that restrains mitosis in response to DNA damage [1]. This checkpoint is enforced by Chk1, a protein kinase that targets Cdc25 [2--7]. Phosphorylated Cdc25 associates with 14-3-3 proteins, which appear to occlude a nuclear localization signal (NLS) and thereby inhibit Cdc25 nuclear import [6, 8--14]. Proficient checkpoint arrest is thought to require Cdc25 nuclear exclusion, although definitive evidence for this model is lacking. We have tested this hypothesis in fission yeast. We show that elimination of an NLS in Cdc25 causes Cdc25 nuclear exclusion and a mitotic delay, as predicted by the model. Attachment of an exogenous NLS forces nuclear inclusion of Cdc25 in damaged cells. However, forced nuclear localization of Cdc25 fails to override the damage checkpoint. Thus, nuclear exclusion of Cdc25 is unnecessary for checkpoint enforcement. We propose that direct inhibition of Cdc25 phosphatase activity by Chk1, as demonstrated in vitro with fission yeast and human Chk1 [15, 16], is sufficient for proficient checkpoint regulation of Cdc25 and may be the primary mechanism of checkpoint enforcement in fission yeast.  相似文献   

16.
17.
Cell cycle control genes in fission yeast and mammalian cells   总被引:20,自引:0,他引:20  
  相似文献   

18.
19.
V Simanis  P Nurse 《Cell》1986,45(2):261-268
The cdc2+ gene function has an important role in controlling the commitment of the fission yeast cell to the mitotic cycle and the timing of mitosis. We have raised antibodies against the cdc2+ protein using synthetic peptides and have demonstrated that it is a 34 kd phosphoprotein with protein kinase activity. The protein level and phosphorylation state remain unchanged during the mitotic cycle of rapidly growing cells. When cells cease to proliferate and arrest in G1 the protein becomes dephosphorylated and loses protein kinase activity. Exit from the mitotic cycle and entry into stationary phase may be controlled in part by modulation of the cdc2 protein kinase activity by changes in its phosphorylation state.  相似文献   

20.
Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins   总被引:34,自引:18,他引:34       下载免费PDF全文
《The Journal of cell biology》1993,120(6):1305-1320
Analysis of cell cycle regulation in the budding yeast Saccharomyces cerevisiae has shown that a central regulatory protein kinase, Cdc28, undergoes changes in activity through the cell cycle by associating with distinct groups of cyclins that accumulate at different times. The various cyclin/Cdc28 complexes control different aspects of cell cycle progression, including the commitment step known as START and mitosis. We found that altering the activity of Cdc28 had profound effects on morphogenesis during the yeast cell cycle. Our results suggest that activation of Cdc28 by G1 cyclins (Cln1, Cln2, or Cln3) in unbudded G1 cells triggers polarization of the cortical actin cytoskeleton to a specialized pre-bud site at one end of the cell, while activation of Cdc28 by mitotic cyclins (Clb1 or Clb2) in budded G2 cells causes depolarization of the cortical actin cytoskeleton and secretory apparatus. Inactivation of Cdc28 following cyclin destruction in mitosis triggers redistribution of cortical actin structures to the neck region for cytokinesis. In the case of pre-bud site assembly following START, we found that the actin rearrangement could be triggered by Cln/Cdc28 activation in the absence of de novo protein synthesis, suggesting that the kinase may directly phosphorylate substrates (such as actin-binding proteins) that regulate actin distribution in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号