首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rainbow trout (Onchorhynchus mykiss), 40–80 mm in length,were fed the cladoceran Bythotrephes cederstroemi with and withoutits caudal appendage (spined or despined) to determine if theappendage makes ingestion of the zooplankter difficult for smallfish. Handling time was measured as the period of opercularand buccal activity as fish ingested prey. In 980 observationsfor 13 trout, fish spent 8 s longer or 800% more time handlingspined Bythotrephes than despined. Fish ultimately rejectedsignificantly more spined prey than despined prey. Average handlingtimes of spined prey were negatively correlated with fork lengthand smaller fish rejected spined prey more often. All fish handleddespined prey equally well. Eight of 13 fish changed their handlingefficiency over time. However, only two fish decreased handlingtime on spined prey, while two fish increased handling timeon spined prey. Four fish decreased their handling time on despineditems. Bythotrephes' caudal appendage increases the likelihoodthat it will be rejected after capture by fish and decreasesfish predation rate by increasing handling time. This is newevidence of a freshwater zooplankter having a structural defenseeffective against young fish. Present address: Department of Biological Sciences, Lake SuperiorEcosystems Research Center, Michigan Technological University,Houghton, Ml 49931, USA  相似文献   

2.
We hypothesized that native Leptodora kindtii would be shorter and have smaller feeding baskets in central Ontario lakes with greater abundances of small-bodied zooplankton prey, and that differences in zooplankton size among lakes could be attributed to the invasive cladoceran Bythotrephes longimanus. We evaluated these conjectures by comparing size metrics of Leptodora and the size of their preferred cladoceran prey in lakes invaded or not by Bythotrephes. Leptodora was less abundant in invaded lakes, but were smaller bodied with smaller feeding baskets only in lakes with long invasion histories. Small cladoceran abundance was greater in non-invaded lakes and was directly related to Leptodora abundance although not to Leptodora size. Mean Leptodora body size declined with increasing abundance of Bythotrephes. We evaluated three possible explanations for these patterns in Leptodora—(a) competition with Bythotrephes for zooplankton prey, (b) direct predation by Bythotrephes, and (c) size-selective predation by fish. While we were unable to unequivocally distinguish among these hypotheses, our observations are most consistent with predation by Bythotrephes changing zooplankton community composition and size structure in a manner that is detrimental to Leptodora. Our results indicate that Bythotrephes invasion may trigger more complex and subtle changes in food webs than previously thought.  相似文献   

3.
Invasive species have widespread and pronounced effects on ecosystems and adaptive evolution of invaders is often considered responsible for their success. Despite the potential importance of adaptation to invasion, we still have limited knowledge of the agents of natural selection on invasive species. Bythotrephes longimanus, a cladoceran zooplankton, invaded multiple Canadian Shield lakes over the past several decades. Bythotrephes have a conspicuous caudal process (tail spine) that provides a morphological defense against fish predation. We measured viability selection on the longest component of the Bythotrephes spine, the distal spine segment, through a comparison of the lengths of first and second instar Bythotrephes collected from lakes differing in the dominance of gape‐limited predation (GLP) and nongape‐limited predation (NGLP) by fish. We found that natural selection varied by predator gape‐limitation, with strong selection (selection intensity: 0.20–0.79) for increased distal spine length in lakes dominated by GLP, and no significant selection in lakes dominated by NGLP. Further, distal spine length was 17% longer in lakes dominated by GLP, suggesting the possibility of local adaptation. As all study lakes were invaded less than 20 years prior to our collections, our results suggest rapid divergence in defensive morphology in response to selection from fish predators.  相似文献   

4.
1. Oligotrophic lakes are generally dominated by calanoid copepods because of their competitive advantage over cladocerans at low prey densities. Planktivory also can alter zooplankton community structure. We sought to understand the role of planktivory in driving recent changes to the zooplankton community of Lake Huron, a large oligotrophic lake on the border of Canada and the United States. We tested the hypothesis that excessive predation by fish (rainbow smelt Osmerus mordax, bloater Coregonus hoyi) and invertebrates (Mysis relicta, Bythotrephes longimanus) had driven observed declines in cladoceran and cyclopoid copepod biomass between 2002 and 2007. 2. We used a field sampling and bioenergetics modelling approach to generate estimates of daily consumption by planktivores at two 91‐m depth sites in northern Lake Huron, U.S.A., for each month, May–October 2007. Daily consumption was compared to daily zooplankton production. 3. Bythotrephes was the dominant planktivore and estimated to have eaten 78% of all zooplankton consumed. Bythotrephes consumption exceeded total zooplankton production between July and October. Mysis consumed 19% of all the zooplankton consumed and exceeded zooplankton production in October. Consumption by fish was relatively unimportant – eating only 3% of all zooplankton consumed. 4. Because Bythotrephes was so important, we explored other consumption estimation methods that predict lower Bythotrephes consumption. Under this scenario, Mysis was the most important planktivore, and Bythotrephes consumption exceeded zooplankton production only in August. 5. Our results provide no support for the hypothesis that excessive fish consumption directly contributed to the decline of cladocerans and cyclopoid copepods in Lake Huron. Rather, they highlight the importance of invertebrate planktivores in structuring zooplankton communities, especially for those foods webs that have both Bythotrephes and Mysis. Together, these species occupy the epi‐, meta‐ and hypolimnion, leaving limited refuge for zooplankton prey.  相似文献   

5.
We estimated the effects of Bythotrephes longimanus invasion on the trophic position (TP) of zooplankton communities and lake herring, Coregonus artedi. Temporal changes in lacustrine zooplankton communities following Bythotrephes invasion were contrasted with non-invaded reference lakes, and along with published information on zooplankton and herring diets, formed the basis of estimated changes in TP. The TP of zooplankton communities and lake herring increased significantly following the invasion of Bythotrephes, whereas TP in reference lakes decreased (zooplankton) or did not change significantly (lake herring) over a similar time frame. Elevated TP following Bythotrephes invasion was most prominent in lakes that also supported the glacial relict, Mysis diluvania, suggesting a possible synergistic interaction between these two species on zooplankton community composition. Our analysis indicated that elevated TPs of zooplankton communities and lake herring are not simply due to the presence of Bythotrephes, but rather reflect changes in the zooplankton community induced by Bythotrephes; namely, a major reduction in the proportion of herbivorous cladoceran biomass and a concomitant increase in the proportion of omnivorous and/or predatory copepod biomass in invaded lakes. We demonstrated that increases in TP of the magnitude reported here can lead to substantial increases in fish contaminant concentrations. In light of these results, we discuss potential mechanisms that may be responsible for the disconnect between empirical and theoretical evidence that mid-trophic level species invasions (e.g., Bythotrephes) elevate contaminant burdens of consumer species, and provide testable hypotheses to evaluate these mechanisms.  相似文献   

6.
The relationship between fecundity and adult body weight in Homeotherms   总被引:3,自引:0,他引:3  
Summary Bythotrephes cederstroemii Schoedler, a predatory freshwater zooplankter (Crustacea: Cladocera), was first found in the Laurentian Great Lakes in December 1984. The first individuals were from Lake Huron, followed in 1985 with records from Lakes Erie and Ontario. By late August, 1986 the species had spread to southern Lake Michigan (43°N). Bythotrephes has not previously been reported from North America, but has been restricted to a northern and central Palearctic distribution. Its dramatic and widespread rise in abundance in Lake Michigan was greatest in offshore regions. Bythotrephes appears to be invading aggressively, but avoiding habitats presently occupied by glacio-marine relict species that became established in deep oligotrophic North American lakes after the Wisconsin glaciation. Because it is a voracious predator its invasion may lead to alterations in the native zooplankton fauna of the Great Lakes. It offers the chance to study how invading plankton species join an existing community. Judging from its persistence and success in deep European lakes, Bythotrephes may now become a permanent member of zooplankton communities in the Nearctic.  相似文献   

7.
  • 1 Dry weight, body length and spine length were measured for the exotic cladoceran Bythotrephes cederstroemii collected from offshore and inshore stations in southeastern Lake Michigan. Average dry weight of each developmental stage exhibited seasonal variation by a factor of more than 5.
  • 2 Mean dry weight of Bythotrephes was closely correlated with water temperature. Contrary to the inverse relationship between water temperature and body size frequently observed for other invertebrates, the dry weight of Bythotrephes increased at higher ambient temperatures.
  • 3 No significant correlation was observed between abundances of major zooplankton taxa and the dry weight of Bythotrephes. An indirect effect of temperature on prey consumption may cause seasonal variation in dry weight of Bythotrephes in Lake Michigan.
  • 4 Distances between adjacent pairs of barbs, added to the caudal spine with each moult, are significantly shorter in Bythotrephes which produce resting eggs. Less material investment in the exoskeleton of sexually reproducing females was observed in favour of growth and reproduction.
  相似文献   

8.
1. Bythotrephes cederstroemi (Crustacea: Onychopoda: Cercopagidae) invaded Harp Lake, Ontario in 1993, since when the zooplankton community has shifted from dominance of small-bodied to large-bodied species. During 1995 diets of adult lake herring (Coregonus artedii), Harp Lake’s primary planktivorous fish, were examined to determine the extent to which this conspicuous zooplankter has become integrated into the lake’s foodweb and whether fish condition has been affected in consequence. 2. Bythotrephes and Daphnia galeata mendotae were strongly preferred prey, whilst Holopedium gibberum and calanoid and cyclopoid copepods were negatively selected by lake herring. Predation on Bythotrephes and Holopedium was not size-selective, although D. galeata mendotae and calanoid copepods (Leptodiaptomus minutus and L. sicilis) consumed by herring were significantly larger than co-occurring conspecifics in the lake. 3. Caudal spines of Bythotrephes may form boluses in lake herring stomachs. However, the number of caudal spines in fish digestive tracts did not differ significantly from the number of Bythotrephes’ mandible pairs, indicating that the former were not differentially retained. 4. Lake herring weight-at-length relationships in lakes in Muskoka, Ontario, invaded by Bythotrephes did not differ from those in adjacent non-invaded lakes, indicating that Bythotrephes invasion of lakes apparently has not affected condition of lake herring.  相似文献   

9.
The forage base and the food selectivity of 0+ representatives of six abundant freshwater fish species were studied in a shallow, eutrophic Dutch lake. Most species relied on the zooplankton; the size-selective predation in early summer was directed to the smaller copepods and in late summer to larger cladocerans and copepods than concurrently present in the lake. Daphnia spp. and cyclopoid copepods were the main zooplankton taxa for smelt, perch and pikeperch. Energetically, the large cladoceran, Leptodora kindtii, was especially important for pikeperch. Bream and roach preyed upon smaller zooplankton than the other fish species. The influence of the zooplankton predation by abundant 0+ fish was clear from a small mean Daphnia size in September; this size is to be used as an indicator in fishery management. Neomysis integer, the most important macrofauna species, was consumed by perch, pikeperch and ruffe; pikeperch was most size-selective in this respect. The 0+ ruffe was à typically benthivorous fish. Only the 0+ pikeperch became piscivorous, especially in years when smelt was abundant.  相似文献   

10.
As a recent invader of North American lakes, Bythotrephes longimanus has induced large changes in crustacean zooplankton communities through direct predation effects. Here we demonstrate that Bythotrephes can also have indirect food web effects, specifically on rotifer fauna. In historical time series data, the densities of the colonial rotifer Conochilus unicornis significantly increased after Bythotrephes invasion in Harp Lake, Ontario. No such changes were observed in a non-invaded reference lake, the nearby Red Chalk Lake. Evidence for two mechanisms explaining the Conochilus increase was examined based on changes to the crustacean zooplankton community over time. Rapid and severe declines in several herbivorous species of cladoceran zooplankton after Bythotrephes detection indicated a decrease in exploitative competition pressure on Conochilus. Secondly, a later and significant decline to virtual extinction of native invertebrate predators (Mesocyclops and Leptodora) could account for the observed Conochilus increase which also began 1–2 years after invasion by Bythotrephes. Ultimately, it appears that both reduced competition followed by a loss of native invertebrate predators were necessary to lead to the large Conochilus densities observed following invader establishment. From this analysis of long-term community data, it appears that Bythotrephes has important indirect, as well as direct, food web effects in newly invaded North American lakes with implications for trophic relationships.  相似文献   

11.
In August, growth rate of young–of–the–year (YOY) Perch In lake enclosures could be explained by both YOY density and mean cladoceran biomass, suggesting that in a lake where YOY perch are dominant, growth may be density dependent in late summer and mediated through top–down control on daphnid biomass. In June, growth rate of YOY perch could not be fully explained by YOY density or by mean cladoceran biomass, suggesting that growth and survival during the first part of the summer is negatively affected by a diet of Bosmina and cyclopoid copepods only. The experiments also suggest why YOY perch have a slow growth and a low abundance in eutrophic lakes where small zooplankton dominate. The June experiment also indicated that growth of late larval or early juvenile perch improved when a larger cladoceran became available and was included in the diet.  相似文献   

12.
Asellus aquaticus (L.) was the most important benthic food item for perch, Perca fluviatilis (L.), in a small, extremely humic forest lake in southern Finland. The proportion of A. aquaticus in the diet of perch varied according to the former's availability, which, in turn, depended on its life cycle. Perch 11.0–12.9 cm (total length) most frequently fed on A. aquaticus; smaller and larger perch fed more frequently on crustacean zooplankton and aquatic insect larvae, respectively. The high density of the perch population, the importance of A. aquaticus in the benthos of the study lake and the general high activity level of the prey resulted in a high predation (0.1–1.8% per day). The population of A. aquaticus was also limited by the scarcity of macrophytic vegetation and the small area of oxygenated littoral in the lake.  相似文献   

13.
Summary Densities of the cladoceran, Holopedium gibberum, were manipulated in 18 enclosures containing juvenile (age 0+) yellow perch (Perca flavescens) and mean-lake densities of other zooplankton. In enclosures, where nearlake densities of all zooplankton species including Holopedium were maintained, young-of-the-year perch grew significantly heavier and longer than in experimental enclosures where Holopedium was excluded. Holopedium comprised between 15–45% of the diet (wet weight) of perch in the first 2 weeks of July in the control treatment (Holopedium at or near ambient lake densities) and only 3–7% of total biomass ingested in the experimental treatment (Holopedium density selectively reduced). Predation on Holopedium decreased dramatically after the 2nd week of July in the control treatment after which Chaoborus, chironomids, and Sida became dominant prey items (by weight) of juvenile perch. These findings suggest that growth and survivorship of age 0+ perch in Precambrian Shield lakes may be coupled to Holopedium abundance. Thus, utilization of Holopedium by young-of-the-year yellow perch may affect recruitment of this species since overwintering survivorship, range of accessible prey sizes or species, and vulnerability of juvenile perch to predation by larger fish depend on body size, which is reduced when Holopedium is excluded from the diet.  相似文献   

14.
The impact of Pseudorasbora parva, a common zooplanktivorous fish species in Japan, on a zooplankton community was analyzed in experimental tanks, half of which were stocked with the fish. Different zooplankton species showed different responses to the introduction of the fish. In the presence of the fish, the populations of the large cladoceran Ceriodaphnia and the predatory copepod Mesocyclops were reduced, but the population of the herbivorous copepod Eodiaptomus and the small cladocerans Bosmina fatalis and Bosminopsis deitersi increased relative to the controls. The increase of Mesocyclops seen in the control tanks might have suppressed the populations of the small cladocerans, which are vulnerable to invertebrate predation. The results suggest that the population densities of the large prey items preferred by the fish, Ceriodaphnia and Mesocyclops, were controlled directly by fish predation, but the population densities of the smaller and less preferred zooplankton were controlled indirectly through the food-web cascade.  相似文献   

15.
Phytoplankton often develop various defense mechanisms in response to zooplankton grazing, such as spines and colonies. While it is now known that increased spine length and cells in a colony of members of the genus Scenedesmus, when zooplankton grazing is intense, helps in reducing zooplankton filtering rates, the effect of these defense mechanisms at the population level has been observed in few studies. Here we present data on the growth rates of four zooplankton species, Brachionus calyciflorus, B. patulus, Ceriodaphnia dubia and Daphnia pulex at two food levels using two species of colony-forming Scenedesmus spp.: S. acutus (cell length = 18.2 ± 0.4 µm; width = 4.2 ± 0.1 µm; average colony length = 90 µm; width: 21 µm) and S. quadricauda (cell length: 21 ± 0.5 width 7.5 ± 0.3 µm; average colony length: 84 µm; width: 30 µm). Whereas S. acutus had no spines, S. quadricauda had spines of 6–10 µm. Population growth experiments of the test rotifers and cladocerans were conducted in 100 ml containers with 50 ml of the medium with test algae. Algae concentrations used were: 13 and 52 mg dw l–1 of each of the two algal species offered in colonial forms. We used an initial inoculation zooplankter density of 1 ind. ml–1 for either of the rotifer species and 0.2 ind. ml–1 for either of the cladoceran species. In all, we had 64 test containers (4 test species of zooplankton × 2 test species of algae × 2 algal densities × 4 replicates). We found a significant effect of algal size on the growth rates of all the four tested species of zooplankton. The population growth rates of zooplankton ranged from –0.58 to 0.66 and were significantly higher on diet of S. acutus than of S. quadricauda. Thus, our study confirms that the larger colony size and the formation of spines in S. quadricauda were effective defenses against grazing by both rotifers and smaller sized cladoceran Ceriodaphnia dubia but that larger-bodied Daphnia pulex could exploit both the algal populations equally.  相似文献   

16.
Bythotrephes longimanus is an invertebrate predator that has invaded the North American Great Lakes and a number of inland lakes, where it preys on crustacean zooplankton. We examined the effect of Bythotrephes on two measures of ecosystem function during a four-month observational study of freshwater lakes on the boreal shield. Bythotrephes-invaded lakes had significantly lower epilimnetic zooplankton abundance and production compared to reference lakes. On average, Bythotrephes consumed 34% of zooplankton production when it was present in lakes. There was some evidence of changes in the timing of zooplankton production, as well as shifts to cooler, less productive habitats, which may lessen the overall effect of the invader on the transfer of energy to higher trophic levels. We experimentally demonstrated a weak trophic cascade where invader predation reduced zooplankton biomass, and subsequently increased phytoplankton growth. However, the response was small in magnitude and not biologically relevant at the whole lake-scale. The most conspicuous effect of Bythotrephes that we measured was a diversion of energy away from native predators at higher trophic levels. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The diet of perch Perca fluviatilis was studied to reveal possible predation on vendace Coregonus albula larvae in an oligotrophic lake. Perch diet changed with the size of the fish: small perch ate mainly zooplankton and the diet shifted more to benthic invertebrates and fishes in larger perch. There were also annual and spatial differences in the diet, probably reflecting differences in the availability of prey animals. Perch predation on vendace larvae was only observed in the area with high availability of the larvae. The result suggested strengthened predation when the density of the larvae increases. According to bioenergetics modelling, the perch population increased natural mortality of vendace larvae only marginally. Food intake of spawning female perch was slightly reduced, whereas spawning males fed similarly to non-spawning males. Hence, the spawning period of perch was only a minor refuge for vendace larvae. Laboratory experiments of perch digestion rate demonstrated that, due to rapid digestion of the small fish larvae, diet sampling interval should not be >2 h in the field.  相似文献   

18.
The distribution and diet of age 0+ fish were studied in the deep canyon‐shaped Římov Reservoir (Czech Republic), which is characterized by a longitudinal trophic gradient. During late summer of two years, 0+ fish were sampled from inshore and offshore habitats along the longitudinal reservoir axis. Offshore catches of 0+ fish from the surface layer were dominated by roach (Rutilus rutilus ), bream (Abramis brama ) and perch (Perca fluviatilis ), whereas in the deeper open water perch predominated. Inshore catches of 0+ fish were constituted mainly by perch and roach. The proportions of roach in the inshore catches were highest at the upper and most eutrophic part of the reservoir, whereas the proportions of perch in the inshore catches were higher at the downstream areas. Total catches of both inshore and offshore 0+ fish increased upstream in the reservoir. Offshore 0+ perch were of consistently smaller size than inshore 0+ perch. Inshore 0+ perch had significantly smaller size at the upstream reservoir part than at the downstream, more lacustrine regions. The diet of both inshore and offshore 0+ fish consisted predominantly of crustacean zooplankton. Perch diet was generally dominated both by cladocerans and copepods, whereas roach diet consisted chiefly of cladocerans. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Feeding selectivity and efficiency of young-of-the-year European perch and roach were compared under field and laboratory conditions. In laboratory experiments, the importance of prey evasiveness versus prey movement conspicuousness for fish selectivity was evaluated with respect to changing Cladocera/Copepoda prey ratio. Feeding efficiency was additionally investigated in relation to feeding time (5, 10, 20 min) and prey density (approx. 50, 200, 700 ind. L−1). In Říov Reservoir, the diet of both fish species was nearly exclusively composed of crustacean zooplankton. In roach, diet shifted from rotifers and bosminids in May, towards Daphnia sp. and Leptodora kindtii in June and July. Daphnia contributed almost exclusively to the roach diet since June, composing on average more than 94% of total prey. Cyclopoid copepods, occurred in the roach’s diet only on the first sampling date; later on both cyclopoid and calanoid copepods were completely absent. On the other hand, copepods played an important role in the diet of perch. In early and mid-June when their share in the zooplankton was particularly high, copepods contributed by more than 50% to the diet of perch. Although their contribution dropped with their decline in zooplankton in June/July, by the end of July they again comprised about one third of perch’s diet. In both fish species, the increase in numbers of cladocerans in their diet was related to increase in SL. In roach, the numbers of consumed prey were doubled every twenty days during the investigated period. In perch the increase was not so consistent, but significantly higher efficiency of perch was reported on three out of six sampling dates. In laboratory experiments, roach showed a distinct avoidance for copepods and a preference for cladocerans. Both prey categories were only fed non-selectively when they dominated the prey mixture. Perch selectivity was more diversified. Contrary to roach, perch were fed copepods non-selectively on a balanced prey ratio. Further, with an increasing share of Cladocera, a situation resembling that of roach and Copepoda was avoided. However, when the share of copepods in the prey mixture dropped below ten percent, they were consumed non-selectively and with their ongoing decline in the prey mixture their preference even increased. Feeding efficiency differed significantly between perch and roach when foraging on copepods exclusively or on a prey mixture where copepods predominated. In the short time feeding experiment (5 min) with copepods, perch consumed on average 5.9 times more prey than roach. Although roach increased their success with increasing time it was still 1.7 times greater than for perch in the long time feeding experiment (20 min). Total numbers of prey consumed were positively affected by prey density and feeding time. With increasing feeding time, the consumption rate generally declined. With a fourfold increase in feeding time, the numbers of consumed prey increased on average only two times. Only in roach feeding on copepods did the numbers of prey consumed per minute of feeding increase with increasing feeding time. However, the overall numbers were low. Differences in feeding selectivity and efficiency between perch and roach juveniles were found to be significant both in the field and laboratory experiments. In roach, selectivity was determined solely by prey evasiveness. By contrast, perch’s selectivity was influenced by prey movement conspicuousness; prey escape abilities did not play an important role. Perch were more efficient foragers on evasive prey, but its feeding efficiency for non-evasive prey was not lower than that of roach. According to our observations, we suggest feeding behaviour to be responsible for the roach’s inefficiency in capturing evasive copepods.  相似文献   

20.
The diel and horizontal distributions of Bythotrephes longimanus Leydig, Leptodora kindti (Focke) and Anomopoda (cladocerans), as well as several life history parameters of each developmental stage of B. longimanus were studied in the non-stratified Biesbosch reservoirs. Anomopoda avoided the surface layer during the day only in the pelagic zone. In the surface layer near the shore, however, they were very abundant. Because densities in the pelagic zone during the day were very low, and high during the night, the population undoubtedly moved from the littoral zone or from the sediments to the pelagic. Accumulation of zooplankton at the littoral site is either the result of random dispersal or wind-induced movements. Bythotrephes' diel distribution pattern is possibly related to that of their prey, the anomopods. Leptodora mostly exhibited a normal diel vertical migration with a small amplitude. Wind most likely influenced the horizontal distribution of the zooplankton. Bythotrephes body length increased with higher temperatures, whereas spine length was constant throughout the year. Bythotrephes can already be fertile in the first developmental stage, indicating that a rapid adaptation to a favourable environment is possible. The number of parthenogenetically produced eggs per ovigerous female was higher at the start of the growing season and constant throughout the rest of the year. Relatively few resting eggs and males were found in autumn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号