首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport properties of the rabbit peritoneal polymorphonuclear leukocyte (PMN) plasma membrane to Na+, K+, and Ca2+ have been characterized. The use of a silicone oil centrifugation technique provided a rapid and reliable method for measuring ion fluxes in these cells. Na+ and K+ movements across PMN membranes were found to be rapid. The value for the unifirectional steady-state fluxes (in meq/liter cell X min) were of the order of 3.0 for Na+ and 7.4 for K+. Ouabian inhibited both K+ influx and Na+ efflux, the latter being also dependent on the presence of extracellular potassium. The rate constant (in min-1) for 45Ca influx was found to be .05 and that for 45Ca efflux .04. The synthetic chemotactic factor formyl-methionyl-leucyl-phenylalanine (FMLP) was found to affect the fluxes of Na+, K+, and Ca2+ at concentrations as low as 10(-10)M. FMLP induced a large and rapid increase in the permeability of the PMN plasma membrane to 22Na. Smaller and delayed enhancements of 42K influx and 22Na efflux were also noted. Some evidence that the latter findings are a consequence of the increased 22Na influx is presented. 45Ca influx and efflux were also stimulated by FMLP. In the presence of 0.25 mM extracellular calcium, FMLP induced an increase in the steady-state level of cell-associated 45Ca. In the presence of .01 mM extracellular calcium, however, a transient decrease in the steady-state level of cell-associated 45Ca was induced by FMLP. The curves relating the concentration of FMLP to its effects on cation fluxes are very similar to those found for its enhancement of migration.  相似文献   

2.
Numerous biological assays and pharmacological studies on various higher plant tissues have led to the suggestion that voltage-dependent plasma membrane Ca2+ channels play prominent roles in initiating signal transduction processes during plant growth and development. However, to date no direct evidence has been obtained for the existence of such depolarization-activated Ca2+ channels in the plasma membrane of higher plant cells. Carrot suspension cells (Daucus carota L.) provide a well-suited system to determine whether voltage-dependent Ca2+ channels are present in the plasma membrane of higher plants and to characterize the properties of putative Ca2+ channels. It is known that both depolarization, caused by raising extracellular K+, and exposure to fungal toxins or oligogalacturonides induce Ca2+ influx into carrot cells. By direct application of patch-clamp techniques to isolated carrot protoplasts, we show here that depolarization of the plasma membrane positive to -135 mV activates Ca(2+)-permeable channels. These voltage-dependent ion channels were more permeable to Ca2+ than K+, while displaying large permeabilities to Ba2+ and Mg2+ ions. Ca(2+)-permeable channels showed slow and reversible inactivation. The single-channel conductance was 13 pS in 40 mM CaCl2. These data provide direct evidence for the existence of voltage-dependent Ca2+ channels in the plasma membrane of a higher plant cell and point to physiological mechanisms for plant Ca2+ channel regulation. The depolarization-activated Ca(2+)-permeable channels identified here could constitute a regulated pathway for Ca2+ influx in response to physiologically occurring stimulus-induced depolarizations in higher plant cells.  相似文献   

3.
The rabbit main pulmonary artery (RMPA) has frequently been used for studies of contraction, membrane properties, and ion fluxes. The resting membrane potential (Em) of the smooth muscle cells of the RMPA is close to -60 mV. The diffusion potential calculated from ion concentrations and permeabilities is -31 to -40 mV, which suggests that electrogenic ion pumping contributes to the actual Em. Circumferential strips of RMPA possess cablelike properties with a space constant lambda of 1.9 mm. Contraction of RMPA to high K+ depends on extracellular Ca2+, is associated with 45Ca influx, is inhibited by Ca2+ entry blockers, and occurs after depolarization of the membrane to -45 to -33 mV. Maximal contractile responses to K+ and norepinephrine (NE) were similar. At low concentrations (3 X 10(-8)-10(-6) M) NE and the alpha 1-agonist methoxamine induced concentration-dependent depolarization and contraction. Above 10(-6) M contraction occurred in the absence of further changes in Em. Membrane resistance, estimated from measurements of space constant, decreased over the entire concentration-contraction curve of alpha agonists. Blockade of potassium channels by tetraethylammonium unmasked depolarization at high NE concentrations. It is concluded that in the RMPA alpha 1-adrenoceptor stimulation is associated with changes in electrical membrane properties and may in this way trigger contraction.  相似文献   

4.
Cerebellar granule cells (CGCs) express K+-dependent (NCKX) and K+-independent (NCX) plasmalemmal Na+/Ca2+ exchangers which, under plasma membrane-depolarizing conditions and high cytosolic [Na+], may reverse and mediate potentially toxic Ca2+ influx. To examine this possibility, we inhibited NCX or NCKX with KB-R7943 or K+-free medium, respectively, and studied how gramicidin affects cytosolic [Ca2+] and 45Ca2+ accumulation. Gramicidin forms pores permeable to alkali cations but not Ca2+. Therefore, gramicidin-induced Ca2+ influx is indirect; it results from fluxes of monovalent cations. In the presence of Na+, but not Li+ or Cs+, gramicidin induced Ca2+ influx that was inhibited by simultaneous application of KB-R7943 and K+-free medium. The data indicate that gramicidin-induced Na+ influx reverses NCX and NCKX. To test the role of NCX and/or NCKX in excitotoxicity, we studied how NMDA affects the viability of glucose-deprived and depolarized CGCs. To assure depolarization of the plasma membrane, we inhibited Na+,K+-ATPase with ouabain. Although inhibition of NCX or NCKX reversal failed to significantly limit 45Ca2+ accumulation and excitotoxicity, simultaneously inhibiting NCX and NCKX reversal was neuroprotective and significantly decreased NMDA-induced 45Ca2+ accumulation. Our data suggest that NMDA-induced Na+ influx reverses NCX and NCKX and leads to the death of depolarized and glucose-deprived neurons.  相似文献   

5.
A Barzilai  H Rahamimoff 《Biochemistry》1987,26(19):6113-6118
The stoichiometry of the Na+-Ca2+ exchanger from synaptic plasma membranes was studied in both native and reconstituted preparations. In kinetic experiments performed with the native preparation, initial rates of Na+ gradient-dependent Ca2+ influx were compared to Ca2+-dependent Na+ efflux. These experiments showed that 4.82 Na+ ions are exchanged for each Ca2+ ion. A thermodynamic approach in which equilibrium measurements were made with the reconstituted preparation resulted in a similar (4.76) stoichiometry. The effects of membrane potential generated by valinomycin-induced K+ fluxes could be demonstrated in the reconstituted preparation. In addition, the direct contribution of the Na+-Ca2+ exchanger to the membrane potential across the reconstituted vesicle membrane could be demonstrated by using the lipophilic cation tetraphenylphosphonium.  相似文献   

6.
Ion-specific mechanisms of osmoregulation in bean mesophyll cells   总被引:9,自引:0,他引:9  
Transient kinetics of net H+, K+, Ca2+, and Cl- fluxes were measured non-invasively, using an ion-selective microelectrode technique, for bean (Vicia faba L.) leaf mesophyll in response to 150 mM mannitol treatment. In a parallel set of experiments, changes in the plasma membrane potential and the total proline content in leaves were monitored. Regardless of the ionic composition of the bath solution, hyperosmotic stress caused a significant increase in the K+ and Cl- uptake into mesophyll cells. At the same time, no significant proline changes were observed for at least 16 h after the onset of stress. Experiments with inhibitors suggested that potassium inward rectifier (KIR) channels, exhibiting mechanosensitive properties and acting as primary receptors of osmotic stress, are likely to be involved. Due to the coupling by membrane potential, changes in K+ and Cl- transport may modify activity of the plasma membrane H+-pump. Such coupling may also be responsible for the mannitol-induced oscillations (period of about 4 min) in net ion fluxes observed in 90% of plants. Calculations show that influx of K+ and Cl- observed in response to hyperosmotic treatment may provide an adequate osmotic adjustment in bean mesophyll, which suggests that the activity of the plasma membrane transporters for these ions should be targeted to improve osmotolerance, at least in this crop.  相似文献   

7.
Ion fluxes associated with translocation of diphtheria toxin across the surface membrane of Vero cells were studied. When cells with surface-bound toxin were exposed to low pH to induce toxin entry, the cells became permeable to Na+, K+, H+, choline+, and glucosamine+. There was no increased permeability to Cl-, SO4(-2), glucose, or sucrose, whereas the uptake of 45Ca2+ was slightly increased. The influx of Ca2+, which appears to be different from that of monovalent cations, was reduced by several inhibitors of anion transport and by verapamil, Mn2+, Co2+, and Ca2+, but not by Mg2+. The toxin-induced fluxes of N+, K+, and protons were inhibited by Cd2+. Cd2+ also protected the cells against intoxication by diphtheria toxin, suggesting that the open cation-selective channel is required for toxin translocation. The involvement of the toxin receptor is discussed.  相似文献   

8.
We examined the effects of K+ substitution for Na+ on the response of hepatocytes to vasopressin, and on the hepatocyte plasma-membrane potential. (1) High K+ (114 mM) had no effect on the initial increase in phosphorylase a activity in response to vasopressin, but abolished the ability of the hormone to maintain increased activity beyond 10 min. With increasing concentrations a decrease in the vasopressin response was first observed at 30-50 mM-K+. (2) High K+ (114 mM) had no effect on basal 45Ca2+ influx, but abolished the ability of vasopressin to stimulate influx. This effect was also first observed at a concentration of 30-50 mM-K+. (3) Increasing K+ had little effect on the plasma-membrane potential until a concentration of 40 mM was reached. With further increases in concentration the plasma membrane was progressively depolarized. (4) Replacement of Na+ with N-methyl-D-glucamine+ depolarized the plasma membrane to a much smaller extent than did replacement with K+, and was also much less effective in inhibiting the vasopressin response. (5) The plasma-membrane potential was restored to near the control value by resuspending cells in normal-K+ medium after exposure to high-K+ medium. The effects of vasopressin on phosphorylase activity were also restored. (6) We conclude that the Ca2+ channels responsible for vasopressin-stimulated Ca2+ influx are closed by depolarization of the plasma membrane.  相似文献   

9.
Since gravistimulation is followed by alterations in the external current symmetry (Behrens et al., 1982), the effect of gravistimulation on cellular membrane potential was investigated using conventional glass microelectrode techniques. The resting potential of statocytes in a vertically oriented root is approx. -118 mV. Upon gravistimulation, the membrane potential is temporarily depolarized (lag time = 2 s) to a potential of approx. -93 mV. This depolarization is only observed in statocytes located on the physically lower root flank while those on the corresponding upper flank become weakly hyperpolarized (approx. -13 mV). These results reflect altered ion fluxes across the plasma membrane. The perception of gravistimulus was suggested to result from a pressure of the amyloplasts on the distal endoplasmic reticulum (ER) of the statocytes (Sievers and Volkmann, 1972). A causal relationship between changes in ER-amyloplast interactions and the rapid alterations in plasma membrane potential described above is not known. A candidate for such an intracellular messenger is Ca2+. As a first step in establishing the validity of such an assumption, we have isolated ER membranes from roots. When incubated with micromolar concentrations of Ca2+, the vesicular membrane fraction accumulates Ca2+. The accumulation is ATP-dependent and -specific and is directly coupled to ATP hydrolysis since a protonophore shows no inhibitory effect. Thus, in analogy to the sarcoplasmic reticulum of muscle, regulation of an ER-localized Ca2+ compartment might be an important step in such complex processes as stimulus-transduction in gravitropism.  相似文献   

10.
The role of the plasma membrane potential (delta psi p) in the commitment to differentiation of murine erythroleukemia (MEL) cells has been studied by analyzing the ionic basis and the time course of this potential in the absence or the presence of different types of inducers. delta psi p was determined by measuring the distribution of tetraphenylphosphonium (TPP+) across the plasma membrane and displayed a 22-hour depolarization phase (from -28 to +5 mV) triggered by factors contained in foetal calf serum (FCS) and followed by a nearly symmetrical repolarization phase. After measuring the electrochemical equilibrium potential of Na+, K+, and Cl-, the relative contribution of these ions to delta psi p was evaluated by means of ion substitution experiments and by the addition of ion flux inhibitors (tetrodotoxin [TTX], 4-acetoamide-4'-isothiocyanostilbene-2,2'-disulfonate [SITS]) and ionophores (Valinomycin, A23187). The Na+ contribution to delta psi p appeared negligible, the potential being essentially generated by K+ and Cl- fluxes. When evaluated by a new mathematical approach, the effects of Valinomycin and A23187 at different times of incubation provided evidence that both the depolarization and the repolarization phase were due to variations of the K+ permeability across the plasma membrane (PK) mediated by Ca2+-activated K+ channels. All the inducers tested (dimethylsulfoxide [DMSO], hexamethylen-bis-acetamide [HMBA], diazepam), although they did not modify the ionic basis of delta psi p, strongly attenuated the depolarization rate of this potential. This attenuation was not brought about when the inducers were added to noninducible MEL cell clonal sublines. Cell commitment occurred only during the depolarization phase and increased proportionally to the attenuation of this phase up to a threshold beyond which the further increase of the attenuation was associated with the inhibition of commitment. The major role of the inducers apparently consisted of the stabilization of the Ca2+-activated K+ channels, suggesting that a properly modulated delta psi p depolarization through these channels is primarily involved in the signal generation for MEL cell commitment to differentiation.  相似文献   

11.
Aggregation of immunoglobulin E-receptor complexes on the surface of rat basophilic leukemia cells stimulates an increase in plasma membrane K+ permeability that is monitored as an increase in the rate of efflux of preloaded 86Rb+. A major component of this stimulated 86Rb+ efflux appears to be due to a Ca(2+)-activated K+ channel because it is inhibited by quinidine in parallel with the inhibition of degranulation and membrane potential repolarization, it is blocked by 0.1 mM La3+, and it is dependent on external Ca2+. Depolarization of the plasma membrane by carbonyl cyanide 3-chlorophenylhydrazone inhibits stimulated Ca2+ influx and prevents antigen-induced 86Rb+ efflux, and increased external Ca2+ partially restores 86Rb+ efflux under these conditions. In addition, potentiation of antigen-stimulated Ca2+ influx by pretreatment with cholera toxin increases the initial rate of stimulated 86Rb+ efflux. Another component of antigen-stimulated K+ efflux appears to be mediated by a guanine nucleotide-binding protein because pretreatment of rat basophilic leukemia cells with pertussis toxin decreases the initial rate of antigen-stimulated 86Rb+ efflux to 40% of that for the untreated cells. Stimulated 86Rb+ efflux is also observed when ionomycin is used to increase cytoplasmic Ca2+ and to trigger membrane depolarization. The efflux stimulated by ionomycin is inhibited by quinidine but not by pertussis toxin pretreatment; thus, it appears to occur through the Ca(2+)-activated K+ efflux pathway. It is proposed that these K+ efflux pathways serve to sustain the Ca2+ influx that is necessary for receptor-mediated triggering of cellular degranulation.  相似文献   

12.
Ion fluxes and the production of reactive oxygen species (ROS) are early events that follow elicitor treatment or microbial infection. However, molecular mechanisms for these responses as well as their relationship have been controversial and still largely unknown. We here simultaneously monitored the temporal sequence of initial events at the plasma membrane in suspension-cultured tobacco cells (cell line BY-2) in response to a purified proteinaceous elicitor, cryptogein, which induced hypersensitive cell death. The elicitor induced transient rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) showing two distinct peaks, followed by biphasic (rapid/transient and slow/prolonged) Cl(-) efflux and H(+) influx. Pharmacological analyses suggested that the two phases of the [Ca(2+)](cyt) response correspond to Ca(2+) influx through the plasma membrane and an inositol 1,4,5-trisphophate-mediated release of Ca(2+) from intracellular Ca(2+) stores, respectively, and the [Ca(2+)](cyt) transients and the Cl(-) efflux were mutually dependent events regulated by protein phosphorylation. The elicitor also induced production of ROS including (*)O(2)(-) and H(2)O(2), which initiated after the [Ca(2+)](cyt) rise and required Ca(2+) influx, Cl(-) efflux and protein phosphorylation. An inhibitor of NADPH oxidase, diphenylene iodonium, completely inhibited the elicitor-induced production of (*)O(2)(-) and H(2)O(2), but did not affect the [Ca(2+)](cyt) transients. These results suggest that cryptogein-induced plasma membrane Ca(2+) influx is independent of ROS, and NADPH oxidase dependent ROS production is regulated by these series of ion fluxes.  相似文献   

13.
Calcium can ameliorate Na+ toxicity in plants by decreasing Na+ influx through nonselective cation channels. Here, we show that elevated external [Ca2+] also inhibits Na+ -induced K+ efflux through outwardly directed, K+ -permeable channels. Noninvasive ion flux measuring and patch-clamp techniques were used to characterize K+ fluxes from Arabidopsis (Arabidopsis thaliana) root mature epidermis and leaf mesophyll under various Ca2+ to Na+ ratios. NaCl-induced K+ efflux was not related to the osmotic component of the salt stress, was inhibited by the K+ channel blocker TEA+, was not mediated by inwardly directed K+ channels (tested in the akt1 mutant), and resulted in a significant decrease in cytosolic K+ content. NaCl-induced K+ efflux was partially inhibited by 1 mm Ca2+ and fully prevented by 10 mm Ca2+. This ameliorative effect was at least partially attributed to a less dramatic NaCl-induced membrane depolarization under high Ca2+ conditions. Patch-clamp experiments (whole-cell mode) have demonstrated that two populations of Ca2+ -sensitive K+ efflux channels exist in protoplasts isolated from the mature epidermis of Arabidopsis root and leaf mesophyll cells. The instantaneously activating K+ efflux channels showed weak voltage dependence and insensitivity to external and internal Na+. Another population of K+ efflux channels was slowly activating, steeply rectifying, and highly sensitive to Na+. K+ efflux channels in roots and leaves showed different Ca2+ and Na+ sensitivities, suggesting that these organs may employ different strategies to withstand salinity. Our results suggest an additional mechanism of Ca2+ action on salt toxicity in plants: the amelioration of K+ loss from the cell by regulating (both directly and indirectly) K+ efflux channels.  相似文献   

14.
Tetrodotoxin-sensitive sodium channels of lobster nerve membranes were incorporated into soybean liposomes by the freeze-thaw-sonication procedure and their ionic selectivity was studied. Veratridine and grayanotoxin-I were used to activate the sodium channels and the increment of the ionic flux through them was specifically abolished by tetrodotoxin. The drug-sensitive 22Na+, 42K+, 86Rb+ and 137Cs+ influxes were measured. The permeability ratios calculated directly from ion fluxes showed that the channels preferably allow the passage of Na+. No anion influx ([32P]phosphate, [35S]sulfate, 36Cl) sensitive to the drugs was observed. The data reveal that the sodium channels incorporated into liposomes remain cation-selective and discriminate among different cations.  相似文献   

15.
Endothelial cells in vivo form an interface between flowing blood and vascular tissue, responding to humoral and physical stimuli to secrete relaxing and contracting factors that contribute to vascular homeostasis and tone. The activation of endothelial cell-surface receptors by vasoactive agents is coupled to an elevation in cytosolic Ca2+, which is caused by Ca2+ entry via ion channels in the plasma membrane and by Ca2+ release from intracellular stores. Ca2+ entry may occur via four different mechanisms: 1) a receptor-mediated channel coupled to second messengers; 2) a Ca2+ leak channel dependent on the electrochemical gradient for Ca2+; 3) a stretch-activated nonselective cation channel; and 4) internal Na+-dependent Ca2+ entry (Na+-Ca2+ exchange). The rate of Ca2+ entry through these ion pathways can be modulated by the resting membrane potential. Membrane potential may be regulated by at least two types of K channels: inwardly rectifying K channels activated upon hyperpolarization or shear stress; and a Ca2+-activated K channel activated upon depolarization, which may function to repolarize the agonist-stimulated endothelial cell. After agonist stimulation, cytosolic Ca2+ increases in a biphasic manner, with an initial peak due to inositol 1,4,5-trisphosphate-mediated Ca2+ release from intracellular stores, followed by a sustained plateau that is dependent on the presence of [Ca2+]o and on membrane potential. The delay in agonist-activated Ca2+ influx is consistent with the coupling of receptor activation to Ca2+ entry via a second messenger. Oscillations in [Ca2+]i, which may involve both Ca2+ entry and release, have been observed in isolated and confluent endothelial cell monolayers stimulated by histamine and bradykinin. Receptor-mediated Ca2+ entry, release, and refilling of intracellular stores follows a cycle that involves the plasma membrane.  相似文献   

16.
The interference of glibenclamide, an antidiabetic sulfonylurea, with mitochondrial bioenergetics was assessed on mitochondrial ion fluxes (H+, K+, and Cl-) by passive osmotic swelling of rat liver mitochondria in K-acetate, KNO3, and KCl media, by O2 consumption, and by mitochondrial transmembrane potential (Deltapsi). Glibenclamide did not permeabilize the inner mitochondrial membrane to H+, but induced permeabilization to Cl- by opening the inner mitochondrial anion channel (IMAC). Cl- influx induced by glibenclamide facilitates K+ entry into mitochondria, thus promoting a net Cl-/K+ cotransport, Deltapsi dissipation, and stimulation of state 4 respiration rate. It was concluded that glibenclamide interferes with mitochondrial bioenergetics of rat liver by permeabilizing the inner mitochondrial membrane to Cl- and promoting a net Cl-/K+ cotransport inside mitochondria, without significant changes on membrane permeabilization to H+.  相似文献   

17.
Nod factor [NodRm-IV(Ac,S)], isolated from the bacterium Rhizobium meliloti, induces a well-known depolarization in Medicago sativa (cv Sitel) root hairs. Analysis of this membrane response using the discontinuous single-electrode voltage-clamp technique (dSEVC) shows that anion channel, K+ channel and H+-ATPase pump currents are involved in young growing root hairs. The early Nod-factor-induced depolarization is due to increase of the inward ion current and inhibition of the H+ pump. It involved an instantaneous inward anion current (IIAC) and/or a time-dependent inward K+ current (IRKC). These two ion currents are then down-regulated while the H+ pump is stimulated, allowing long-term rectification of the membrane potential (Em). Our results support the idea that the regulation of inward current plays a primary role in the Nod-factor-induced electrical response, the nature of the ions carried by these currents depending on the activated anion and/or K+ channels at the plasma membrane.  相似文献   

18.
The effects of membrane potential on resting and bradykinin-stimulated changes in [Ca2+]i were measured in fura-2 loaded cultured endothelial cells from bovine atria by spectrofluorimetry. The basal and bradykinin-stimulated release of endothelium-derived relaxing factor, monitored by bioassay methods, were dependent on extracellular Ca2+. Similarly, the plateau phase of the biphasic [Ca2+]i response to bradykinin stimulation exhibited a dependence on extracellular Ca2+, whereas the initial transient [Ca2+]i peak was refractory to the removal of extracellular Ca2+. The effect of membrane depolarization on the plateau phase of the bradykinin-induced change in [Ca2+]i was determined by varying [K+]o. The resting membrane potential measured under current clamp conditions was positively correlated with the extracellular [K+] (52 mV change/10-fold change in [K+]o). The observed decrease in resting and bradykinin-stimulated changes in [Ca2+]i upon depolarization is consistent with an ion transport mechanism where the influx is linearly related to the electrochemical gradient for Ca2+ entry (Em - ECa). The inhibition of bradykinin-stimulated Ca2+ entry by isotonic K+ was not due to the absence of extracellular Na+ since Li+ substitution did not inhibit the agonist-induced Ca2+ entry. In K(+)-free solutions and in the presence of ouabain, bradykinin evoked synchronized oscillations in [Ca2+]i in confluent endothelial cell monolayers. These [Ca2+]i oscillations between the plateau and resting [Ca2+]i levels were dependent on extracellular Ca2+ and K+ concentrations. Although the mechanism(s) underlying [Ca2+]i oscillations in vascular endothelial cells is unclear, these results suggest a role of the membrane conductance.  相似文献   

19.
Regulation of insulin release by ionic and electrical events in B cells   总被引:3,自引:0,他引:3  
This review article is an attempt to schematize the major alterations in ionic fluxes and B cell membrane potential that underlie the changes in insulin release brought about by glucose and by other stimulators or inhibitors. Glucose metabolism in B cells leads to closure of K channels in the plasma membrane. The resulting decrease in K+ permeability causes depolarization with activation of voltage-dependent Ca channels. An increase in Ca2+ influx ensues, which raises the cytoplasmic concentration of free Ca2+ and ultimately triggers insulin release. Tolbutamide induces a similar sequence of events by a direct action on K channels. In contrast, diazoxide antagonizes the effects of glucose by increasing K+ permeability of the B cell membrane. Among amino acids, leucine largely mimics the effects of glucose, whereas arginine depolarizes the B cell membrane because of its transport in a positively charged form.  相似文献   

20.
Smooth muscle (SM) is essential to all aspects of human physiology and, therefore, key to the maintenance of life. Ion channels expressed within SM cells regulate the membrane potential, intracellular Ca2+ concentration, and contractility of SM. Excitatory ion channels function to depolarize the membrane potential. These include nonselective cation channels that allow Na+ and Ca2+ to permeate into SM cells. The nonselective cation channel family includes tonically active channels (Icat), as well as channels activated by agonists, pressure-stretch, and intracellular Ca2+ store depletion. Cl--selective channels, activated by intracellular Ca2+ or stretch, also mediate SM depolarization. Plasma membrane depolarization in SM activates voltage-dependent Ca2+ channels that demonstrate a high Ca2+ selectivity and provide influx of contractile Ca2+. Ca2+ is also released from SM intracellular Ca2+ stores of the sarcoplasmic reticulum (SR) through ryanodine and inositol trisphosphate receptor Ca2+ channels. This is part of a negative feedback mechanism limiting contraction that occurs by the Ca2+-dependent activation of large-conductance K+ channels, which hyper polarize the plasma membrane. Unlike the well-defined contractile role of SR-released Ca2+ in skeletal and cardiac muscle, the literature suggests that in SM Ca2+ released from the SR functions to limit contractility. Depolarization-activated K+ chan nels, ATP-sensitive K+ channels, and inward rectifier K+ channels also hyperpolarize SM, favouring relaxation. The expression pattern, density, and biophysical properties of ion channels vary among SM types and are key determinants of electrical activity, contractility, and SM function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号