首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sarcomeric Z-disk, the anchoring plane of thin (actin) filaments, links titin (also called connectin) and actin filaments from opposing sarcomere halves in a lattice connected by alpha-actinin. We demonstrate by protein interaction analysis that two types of titin interactions are involved in the assembly of alpha-actinin into the Z-disk. Titin interacts via a single binding site with the two central spectrin-like repeats of the outermost pair of alpha-actinin molecules. In the central Z-disk, titin can interact with multiple alpha-actinin molecules via their C-terminal domains. These interactions allow the assembly of a ternary complex of titin, actin and alpha-actinin in vitro, and are expected to constrain the path of titin in the Z-disk. In thick skeletal muscle Z-disks, titin filaments cross over the Z-disk centre by approximately 30 nm, suggesting that their alpha-actinin-binding sites overlap in an antiparallel fashion. The combination of our biochemical and ultrastructural data now allows a molecular model of the sarcomeric Z-disk, where overlapping titin filaments and their interactions with the alpha-actinin rod and C-terminal domain can account for the essential ultrastructural features.  相似文献   

2.
We have determined the crystal structure of the two central repeats in the alpha-actinin rod at 2.5 A resolution. The repeats are connected by a helical linker and form a symmetric, antiparallel dimer in which the repeats are aligned rather than staggered. Using this structure, which reveals the structural principle that governs the architecture of alpha-actinin, we have devised a plausible model of the entire alpha-actinin rod. The electrostatic properties explain how the two alpha-actinin subunits assemble in an antiparallel fashion, placing the actin-binding sites at both ends of the rod. This molecular architecture results in a protein that is able to form cross-links between actin filaments.  相似文献   

3.
The spectrin family of proteins represents a discrete group of cytoskeletal proteins comprising principally alpha-actinin, spectrin, dystrophin, and homologues and isoforms. They all share three main structural and functional motifs, namely, the spectrin repeat, EF-hands, and a CH domain-containing actin-binding domain. These proteins are variously involved in organisation of the actin cytoskeleton, membrane cytoskeleton architecture, cell adhesion, and contractile apparatus. The highly modular nature of these molecules has been a hindrance to the determination of their complete structures due to the inherent flexibility imparted on the proteins, but has also been an asset, inasmuch as the individual modules were of a size amenable to structural analysis by both crystallographic and NMR approaches. Representative structures of all the major domains shared by spectrin family proteins have now been solved at atomic resolution, including in some cases multiple domains from several family members. High-resolution structures, coupled with lower resolution methods to determine the overall molecular shape of these proteins, allow us for the first time to build complete atomic structures of the spectrin family of proteins.  相似文献   

4.
Young P  Gautel M 《The EMBO journal》2000,19(23):6331-6340
The assembly of stable cytoskeletal structures from dynamically recycled molecules requires developmental and spatial regulation of protein interactions. In muscle, titin acts as a molecular ruler organizing the actin cytoskeleton via interactions with many sarcomeric proteins, including the crosslinking protein alpha-actinin. An interaction between the C-terminal domain of alpha-actinin and titin Z-repeat motifs targets alpha-actinin to the Z-disk. Here we investigate the cellular regulation of this interaction. alpha-actinin is a rod shaped head-to-tail homodimer. In contrast to C-terminal fragments, full-length alpha-actinin does not bind Z-repeats. We identify a 30-residue Z-repeat homologous sequence between the actin-binding and rod regions of alpha-actinin that binds the C-terminal domain with nanomolar affinity. Thus, Z-repeat binding is prevented by this 'pseudoligand' interaction between the subunits of the alpha-actinin dimer. This autoinhibition is relieved upon binding of the Z-disk lipid phosphatidylinositol-bisphosphate to the actin-binding domain. We suggest that this novel mechanism is relevant to control the site-specific interactions of alpha-actinin during sarcomere assembly and turnover. The intramolecular contacts defined here also constrain a structural model for intrasterical regulation of all alpha-actinin isoforms.  相似文献   

5.
The N-terminal actin-binding domain of alpha-actinin is connected to the C-terminal EF-hands by a rod domain. Because of its ability to form dimers, alpha-actinin can cross-link actin filaments in muscle cells as well as in nonmuscle cells. In the prototypic alpha-actinins, the rod domain contains four triple helical bundles, or so-called spectrin repeats. We have found some atypical alpha-actinins in early diverging organisms, such as protozoa and yeast, where the rod domain contains one and two spectrin repeats, respectively. This implies that the four repeats present in modern alpha-actinins arose after two consecutive intragenic duplications from an alpha-actinin with a single repeat. Further, the evolutionary gene tree of alpha-actinins shows that the appearance of four distinct alpha-actinin isoforms may have occurred after the vertebrate-invertebrate split. The topology of the tree lends support to the hypothesis that two rounds (2R) of genome duplication occurred early in the vertebrate radiation. The phylogeny also considers these atypical isoforms as the most basal to alpha-actinins of vertebrates and other eukaryotes. The analysis also positioned alpha-actinin of the fungi Encephalitozoo cuniculi close to the protozoa, supporting the suggestion that microsporidia are early eukaryotes. Because alpha-actinin is considered the basal member of the spectrin family, our studies will improve the understanding of the origin and evolution of this superfamily.  相似文献   

6.
The antiparallel side-to-side association of spectrin alpha and beta monomers is a two-step process which occurs in seconds even at 0 degrees C and at low concentrations. Assembly involves initial contact of complementary nucleation sites on each subunit, which are located near the actin binding end of the long, flexible heterodimer rod. The minimum nucleation sites are comprised of approximately four contiguous 106-residue homologous segments or repeats. Three repeats in the nucleation site contain an 8-residue insertion and have the highest homology to the four spectrin-like repeats in alpha-actinin. The adjacent actin binding domain on the beta subunit and the adjacent EF hand motifs on the alpha subunit are not required for heterodimer assembly. The nucleation sites probably have a specific lock and key structure which defines the unique side-to-side pairing of the many homologous segments in both subunits. Assembly of spectrin heterodimers is probably most analogous to a zipper. After initial nucleation site binding, the remainder of the subunits quickly associate along their full lengths to reconstitute a normal dimer by supercoiling around each other to form a rope-like, flexible rod. Assembly is terminated if either polypeptide is interrupted by a protease cleavage. Heterozygotic mutations involving either nucleation site are predicted to affect allele incorporation into the mature membrane skeleton.  相似文献   

7.
The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein   总被引:181,自引:0,他引:181  
M Koenig  A P Monaco  L M Kunkel 《Cell》1988,53(2):219-228
The complete sequence of the human Duchenne muscular dystrophy (DMD) cDNA has been determined. The 3685 encoded amino acids of the protein product, dystrophin, can be separated into four domains. The 240 amino acid N-terminal domain has been shown to be conserved with the actin-binding domain of alpha-actinin. A large second domain is predicted to be rod-shaped and formed by the succession of 25 triple-helical segments similar to the repeat domains of spectrin. The repeat segment is followed by a cysteine-rich segment that is similar in part to the entire COOH domain of the Dictyostelium alpha-actinin, while the 420 amino acid C-terminal domain of dystrophin does not show any similarity to previously reported proteins. The functional significance of some of the domains is addressed relative to the phenotypic characteristics of some Becker muscular dystrophy patients. Dystrophin shares many features with the cytoskeletal protein spectrin and alpha-actinin and is a large structural protein that is likely to adopt a rod shape about 150 nm in length.  相似文献   

8.
Cypher is a member of a recently emerging family of proteins containing a PDZ domain at their NH(2) terminus and one or three LIM domains at their COOH terminus. Cypher knockout mice display a severe form of congenital myopathy and die postnatally from functional failure in multiple striated muscles. Examination of striated muscle from the mutants revealed that Cypher is not required for sarcomerogenesis or Z-line assembly, but rather is required for maintenance of the Z-line during muscle function. In vitro studies demonstrated that individual domains within Cypher localize independently to the Z-line via interactions with alpha-actinin or other Z-line components. These results suggest that Cypher functions as a linker-strut to maintain cytoskeletal structure during contraction.  相似文献   

9.
BACKGROUND: Alpha-actinin is a ubiquitously expressed protein found in numerous actin structures. It consists of an N-terminal actin binding domain, a central rod domain, and a C-terminal domain and functions as a homodimer to cross-link actin filaments. The rod domain determines the distance between cross-linked actin filaments and also serves as an interaction site for several cytoskeletal and signaling proteins. RESULTS: We report here the crystal structure of the alpha-actinin rod. The structure is a twisted antiparallel dimer that contains a conserved acidic surface. CONCLUSIONS: The novel features revealed by the structure allow prediction of the orientation of parallel and antiparallel cross-linked actin filaments in relation to alpha-actinin. The conserved acidic surface is a possible interaction site for several cytoplasmic tails of transmembrane proteins involved in the recruitment of alpha-actinin to the plasma membrane.  相似文献   

10.
Newly determined structures of the alpha-helical repeats that make up the key 'rod' domains of spectrin and alpha-actinin - which serve as spacers between their actin-binding domains - have provided important insights into how these proteins function as molecular shock absorbers in cells.  相似文献   

11.
Previous X-ray crystal structures have shown that linkers of five amino acid residues connecting pairs of chicken brain alpha-spectrin and human erythroid beta-spectrin repeats can undergo bending without losing their alpha-helical structure. To test whether bending at one linker can influence bending at an adjacent linker, the structures of two and three repeat fragments of chicken brain alpha-spectrin have been determined by X-ray crystallography. The structure of the three-repeat fragment clearly shows that bending at one linker can occur independently of bending at an adjacent linker. This observation increases the possible trajectories of modeled chains of spectrin repeats. Furthermore, the three-repeat molecule crystallized as an antiparallel dimer with a significantly smaller buried interfacial area than that of alpha-actinin, a spectrin-related molecule, but large enough and of a type indicating biological specificity. Comparison of the structures of the spectrin and alpha-actinin dimers supports weak association of the former, which could not be detected by analytical ultracentrifugation, versus strong association of the latter, which has been observed by others. To correlate features of the structure with solution properties and to test a previous model of stable spectrin and dystrophin repeats, the number of inter-helical interactions in each repeat of several spectrin structures were counted and compared to their thermal stabilities. Inter-helical interactions, but not all interactions, increased in parallel with measured thermal stabilities of each repeat and in agreement with the thermal stabilities of two and three repeats and also partial repeats of spectrin.  相似文献   

12.
R S Hock  G Davis  D W Speicher 《Biochemistry》1990,29(40):9441-9451
A method was developed to purify human smooth muscle filamin in high yield and structural domains were defined by using mild proteolysis to dissect the molecule into intermediate-sized peptides. Unique domains were defined and aligned by using high-resolution peptide mapping of iodinated peptides on cellulose plates. The amino- and carboxyl-terminal orientation of these domains within the molecule was determined by amino acid sequence analysis of several aligned peptides. In addition to the three unique domains which were identified, a number of smaller and larger fragments were also characterized and aligned within the intact molecule. These structural domains and related peptides provide a useful set of defined fragments for further elucidation of structure-function relationships. The two known functionally important binding sites of filamin, the self-association site and the actin-binding site, have been localized. Self-association of two monomers in a tail-to-tail orientation involves a small protease-sensitive region near the carboxyl terminal of the intact polypeptide chain. Sedimentation assays indicate that an actin-binding site is located near the blocked amino terminal of the filamin molecule. Sequences derived from large peptides mapping near the amino terminal show homology to the amino-terminal actin-binding site of alpha-actinin (chicken fibroblast and Dictyostelium), Dictyostelium 120-kDa actin gelation factor, beta-spectrin (human red cell and Drosophila), and human dystrophin. This homology is particularly interesting for two reasons. The functional form of filamin is single stranded, in contrast to alpha-actinin and spectrin which are antiparallel double-stranded actin cross-linkers. Also, no homology to the spectrin-like segments which comprise most of the mass of spectrin, alpha-actinin, and dystrophin was found. Instead, the sequence of a domain located near the center of the filamin molecule (tryptic 100-kDa peptide, T100) shows homology to the published internal repeats of the Dictyostelium 120-kDa actin gelation factor. On the basis of these results, a model of human smooth muscle filamin substructure is presented. Also, comparisons of human smooth muscle filamin, avian smooth muscle filamin, and human platelet filamin are reported.  相似文献   

13.
The amino acid sequences of chick and slime mould alpha-actinin each contain four repeats of approximately 122 residues. These repeats are homologous to the 18-22 repeats, each of approximately 106 residues, found in the alpha and beta subunits of spectrin and fodrin, and to the multiple repeats of approximately 110 residues found in the Duchenne muscular dystrophy protein (dystrophin). The repeats correspond to the elongated rod-like portion of these molecules. We present a multiple sequence alignment of 21 repeats from this superfamily (8 alpha-actinin and 13 spectrin/fodrin), based on optimal pairwise alignments, from which a characteristic consensus pattern of amino acid types is deduced. Trp 46 is invariant in all but one repeat, and physicochemical classes of amino acids are conserved at 25 other positions. Secondary structure prediction on both the alpha-actinin and spectrin repeats taken together with the distribution of proline residues in the sequences, strongly suggest that each repeated domain consists of a four-helix structure. Our predictions differ significantly from previous three-helix models based on analyses of fewer sequences. To determine possible interdomain regions, sites of limited proteolysis of the native chick alpha-actinin dimer were determined and located in the amino acid sequence. The majority of these sites were in corresponding positions in different repeats within a segment predicted as a long helix. We propose a model, consistent with the overall dimensions of the rod-like portions of the molecules, in which these long, probably interrupted helices, link adjacent domains.  相似文献   

14.
Dystrophin, the protein product of the Duchenne/Becker muscular dystrophy gene has been localized in muscle to the inner surface of the plasma membrane and is likely to be associated with an integral membrane glycoprotein. The potential to make multiple isoforms via alternate splicing at the carboxyl domain of dystrophin suggests that it may interact with a variety of proteins in neuronal and muscle tissues and have a structural role similar to the cytoskeletal proteins alpha-actinin and spectrin.  相似文献   

15.
16.
The pathogenic potential of many Gram-negative bacteria is indicated by the possession of a specialized type III secretion system that is used to deliver virulence effector proteins directly into the cellular environment of the eukaryotic host. Extracellular assemblies of secreted proteins contrive a physical link between the pathogen and host cytosol and enable the translocated effectors to bypass the bacterial and host membranes in a single step. Subsequent interactions of some effector proteins with host cytoskeletal and signalling proteins result in modulation of the cytoskeletal architecture of the aggressed cell and facilitate entry, survival and dissemination of the pathogen. Although the secreted components of type III secretion systems are diverse, many are predicted to share a common coiled-coil structural feature. Coiled-coils are ubiquitous and highly versatile assembly motifs found in a wide range of structural and regulatory proteins. The prevalence of these domains in secreted virulence effector proteins suggests a fundamental contribution to multiple aspects of their function, and evidence accumulating from functional studies suggests an intrinsic involvement of coiled-coils in subunit assembly, translocation and flexible interactions with multiple bacterial and host proteins. The known functional flexibility that coiled-coil domains confer upon proteins provides insights into some of the pathogenic mechanisms used during interaction with the host.  相似文献   

17.
Antisera to vertebrate actin and actin-binding proteins were used to characterize the cytoskeleton of adult Schistosoma mansoni. Actin, alpha-actinin and tropomyosin immunoreactivities were detected in the cytoplasm of the apical tegument. Antiserum to alpha-actinin bound to the tegumental spines and this protein may be involved in cross-linking of spine actin filaments. Actin, alpha-actinin and tropomyosin antisera bound to the musculature. Strongest immunoreactivity was seen in the parenchyma. Antisera to actin, alpha-actinin, tropomyosin and spectrin bound to parenchyma cells including those of the tubercles, suggesting that these proteins are located in muscle cell bodies. The distribution of cytoskeletal proteins is discussed in relation to tegumental repair processes.  相似文献   

18.
Enigma proteins are proteins that possess a PDZ domain at the amino terminal and one to three LIM domains at the carboxyl terminal. They are cytoplasmic proteins that are involved with the cytoskeleton and signal transduction pathway. By virtue of the two protein interacting domains, they are capable of protein-protein interactions. Here we report a study on a human Enigma protein hCLIM1, in particular. Our study describes the interaction of the human 36 kDa carboxyl terminal LIM domain protein (hCLIM1), the human homologue of CLP36 in rat, with alpha-actinin 2, the skeletal muscle isoform of alpha-actinin. hCLIM1 protein was shown to interact with alpha-actinin 2 by yeast two-hybrid screening and immunochemical analyses. Yeast two-hybrid analyses also demonstrated that the LIM domain of hCLIM1 binds to the EF-hand region of alpha-actinin 2, defining a new mode of LIM domain interactions. Immunofluorescent study demonstrates that hCLIM1 colocalizes with alpha-actinin at the Z-disks in human myocardium. Taken together, our experimental results suggest that hCLIM1is a novel cytoskeletal protein and may act as an adapter that brings other proteins to the cytoskeleton.  相似文献   

19.
Erythroid and neuronal spectrin (fodrin) are both known to interact strongly with the aminophospholipids that occur in the inner leaflet of plasma membranes. In erythroid spectrin the positions of the binding sites within the constituent (alphaI and betaI) polypeptide chains have been defined, and also the importance of the lipid interaction in regulating the properties of the membrane. Here we report the locations of the corresponding binding sites in the alphaII and betaII chains that make up the fodrin molecule. Of the 10 lipid-binding repeats in the erythroid spectrin chains 5 are conserved in fodrin; one cluster of 3 consecutive structural repeating units in alphaI erythroid spectrin (repeats 8-10) is displaced by one repeat in alphaII fodrin (repeats 9-11). Fodrin also contains one binding site at the N-terminus of the alphaII chain, not present in the erythroid protein. The regions of the two spectrins containing equivalent lipid-binding sites show a much higher degree of sequence identity than corresponding repeats that do not share this property. The evolutionary conservation of the distribution of a large proportion of strong lipid-binding sites in the polypeptide chains of these two proteins of disparate character argues for a specific function of fodrin-phospholipid interactions in the neuron.  相似文献   

20.
Plectin belongs to the plakin family of cytoskeletal crosslinkers, which is part of the spectrin superfamily. Plakins contain an N-terminal conserved region, the plakin domain, which is formed by an array of spectrin repeats (SR) and a Src-homology 3 (SH3), and harbors binding sites for junctional proteins. We have combined x-ray crystallography and small angle x-ray scattering (SAXS) to elucidate the structure of the central region of the plakin domain of plectin, which corresponds to the SR3, SR4, SR5, and SH3 domains. The crystal structures of the SR3-SR4 and SR4-SR5-SH3 fragments were determined to 2.2 and 2.95 Å resolution, respectively. The SH3 of plectin presents major alterations as compared with canonical Pro-rich binding SH3 domains, suggesting that plectin does not recognize Pro-rich motifs. In addition, the SH3 binding site is partially occluded by an intramolecular contact with the SR4. Residues of this pseudo-binding site and the SR4/SH3 interface are conserved within the plakin family, suggesting that the structure of this part of the plectin molecule is similar to that of other plakins. We have created a model for the SR3-SR4-SR5-SH3 region, which agrees well with SAXS data in solution. The three SRs form a semi-flexible rod that is not altered by the presence of the SH3 domain, and it is similar to those found in spectrins. The flexibility of the plakin domain, in analogy with spectrins, might contribute to the role of plakins in maintaining the stability of tissues subject to mechanical stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号