共查询到20条相似文献,搜索用时 0 毫秒
1.
Radiation therapy causes both muscle and nerve tissue damage. However, the evolution and mechanisms of these damages are not fully understood. Information on the state of active muscle fibres and motoneurons can be obtained by measuring sEMG signals and calculating the conduction velocity (CV) and firing rate of individual motor units, respectively. The aim of this pilot study was to evaluate if the multi-channel surface EMG (sEMG) technique could be applied to the sternocleidomastoideus muscle (SCM) of radiotherapy patients, and to assess if the CV and firing rate are altered as a consequence of the radiation. Surface EMG signals were recorded from the radiated and healthy SCM muscles of 10 subjects, while subjects performed isometric rotation of the head. CV and firing rate were calculated using two recently proposed methods based on spatio-temporal processing of the sEMG signals. The multi-channel sEMG technique was successfully applied to the SCM muscle and CV and firing rates were obtained. The measurements were fast and simple and comfortable for the patients. Sufficient data quality was obtained from both sides of seven and four subjects for the CV and firing rate analysis, respectively. No differences in CV or firing rate were found between the radiated and non-radiated sides (p = 0.13 and p = 0.20, respectively). Firing rate and CV were also obtained from a myokymic discharge pattern. It was found that the CV decreased significantly (p = 0.01) during the bursts. 相似文献
3.
This paper contributes to clarifying the conditions under which electrode position for surface EMG detection is critical and leads to estimates of EMG variables that are different from those obtained in other nearby locations. Whereas a number of previous works outline the need to avoid the innervation zone (or the muscle belly), many authors place electrodes in the central part or bulge of the muscle of interest where the innervation zone is likely to be. Computer simulations are presented to explain the effect of the innervation zone on amplitude, frequency and conduction velocity estimates from the signal and the need to avoid placing electrodes near it. Experimental signals recorded from some superficial muscles of the limbs and trunk (abductor pollicis brevis, flexor pollicis brevis, biceps, upper trapezius, vastus medialis, vastus lateralis) were processed providing support for the findings obtained from simulations. The use of multichannel techniques is recommended to estimate the location of the innervation zone and to properly choose the optimal position of the detection point(s) allowing meaningful estimates of EMG variables during movement analysis. 相似文献
4.
In a randomized clinical trial the efficacy of strength training was studied in patients with myotonic dystrophy ( n=33) and in patients with Charcot-Marie-Tooth disease ( n=29). Measurements were performed at the start and after 8, 16 and 24 weeks of progressive resistance training. Surface electromyography (SEMG) of proximal leg muscles was recorded during isometric knee extension at maximum voluntary contraction (MVC) and at 20, 40, 60 and 80% of MVC. Changes in MVC, maximum electrical activity and torque–EMG ratios (TER) were calculated. Fatigue was studied by determining the changes in endurance and in the decline of the median frequency ( Fmed) of the SEMG during a sustained contraction at 80% MVC. These parameters showed no significant changes after the training in either of the diagnostic groups. Only the Charcot-Marie-Tooth training group showed a gradual significant increase in mean MVC over the whole training period (21%). After 24 weeks, the increase in mean RMS was similar (25%), but this was mainly due to a sharp rise during the first 8 weeks of training (20%). The findings indicate that the initial strength increase was due to a neural factor, while the subsequent increase was mainly due to muscle hypertrophy. 相似文献
5.
The aims of this study are (1) to demonstrate that multi-channel surface electromyographic (EMG) signals can be detected with negligible artifacts during fast dynamic movements with an adhesive two-dimensional (2D) grid of 64 electrodes and (2) to propose a new method for the estimation of muscle fiber conduction velocity from short epochs of 2D EMG recordings during dynamic tasks. Surface EMG signals were collected from the biceps brachii muscle of four subjects with a grid of 13 × 5 electrodes during horizontal elbow flexion/extension movements (range 120–170°) at the maximum speed, repeated cyclically for 2 min. Action potentials propagating between the innervation zone and tendon regions could be detected during the dynamic task. A maximum likelihood method for conduction velocity estimation from the 2D grid using short time intervals was developed and applied to the experimental signals. The accuracy of conduction velocity estimation, assessed from the standard deviation of the residual of the regression line with respect to time, decreased from (range) 0.20–0.33 m/s using one column to 0.02–0.15 m/s when combining five columns of the electrode grid. This novel method for estimation of muscle fiber conduction velocity from 2D EMG recordings provides an estimate which is global in space and local in time, thus representative of the entire muscle yet able to track fast changes over the execution of a task, as is required for assessing muscle properties during fast movements. 相似文献
6.
The visual inspection is a widely used method for evaluating the surface electromyographic signal (sEMG) during deglutition, a process highly dependent of the examiners expertise. It is desirable to have a less subjective and automated technique to improve the onset detection in swallowing related muscles, which have a low signal-to-noise ratio. In this work, we acquired sEMG measured in infrahyoid muscles with high baseline noise of ten healthy adults during water swallowing tasks. Two methods were applied to find the combination of cutoff frequencies that achieve the most accurate onset detection: discrete wavelet decomposition based method and fixed steps variations of low and high cutoff frequencies of a digital bandpass filter. Teager-Kaiser Energy operator, root mean square and simple threshold method were applied for both techniques. Results show a narrowing of the effective bandwidth vs. the literature recommended parameters for sEMG acquisition. Both level 3 decomposition with mother wavelet db4 and bandpass filter with cutoff frequencies between 130 and 180 Hz were optimal for onset detection in infrahyoid muscles. The proposed methodologies recognized the onset time with predictive power above 0.95, that is similar to previous findings but in larger and more superficial muscles in limbs. 相似文献
7.
The objective was to elucidate the relation between the Macro EMG parameters fiber density (FD) and Macro amplitude in reinnervation in the purpose to use the FD parameter as a surrogate marker for reinnervation instead of the Macro amplitude.Macro EMG with FD was performed in 278 prior polio patients. The Biceps Brachii and the Tibialis anterior muscles were investigated.FD was more sensitive for detection of signs of reinnervation but showed lesser degree of abnormality than the Macro amplitude. FD and Macro MUP amplitude showed a non-linear relation with a great variation in FD for given Macro amplitude level.The relatively smaller increase in FD compared to Macro amplitude in addition to the non-linear relationship between the FD and the Macro amplitude regarding reinnervation in prior polio can be due to technical reasons and muscle fiber hypertrophy. The FD parameter has a relation to Macro MUP amplitude but cannot alone be used as a quantitative marker of the degree of reinnervation. 相似文献
8.
A doublet is defined as two consecutive discharges of a motor unit occurring at short time interval between each other (e.g., <20 ms). In this paper, we propose a method for the estimation of muscle fiber conduction velocity (CV) from two partly overlapping action potentials generated by the same motor units. The method is based on the minimization of the mean square error between time-filtered versions of two surface EMG signals recorded along the direction of muscle fibers. The minimization is performed over the filter parameters that define the two propagation delays. The method was tested on simulated and experimental signals. Simulation results showed that the method is only in some cases superior to the simpler peak approach, due to limitations in the ideal model used for the algorithm development. However, application to experimental signals that mimic doublet motor unit discharges showed a substantial improvement in estimation quality of the new method with respect to the peak method. 相似文献
9.
A new flexible sensor for in vitro experiments was developed to measure the surface potential, Φ, and its gradient, E (electric near field), at given sites of the heart. During depolarisation, E describes a vector loop from which direction and magnitude of local conduction velocity θ can be computed. Four recording silver electrodes (14 μm × 14 μm) separated by 50 μm, conducting leads, and solderable pads were patterned on a 50 μm thick polyimide film. The conductive structures, except the electrodes, were isolated with polyimide, and electrodes were chlorided. Spacer pillars mounted on the tip fulfil two functions: they keep the electrodes 70 μm from the tissue allowing non-contact recording of Φ and prevent lateral slipping. The low mass (9.1 mg) and flexibility (6.33 N/m) of the sensor let it easily follow the movement of the beating heart without notable displacement. We examined the electrodes on criteria like rms-noise of Φ, signal-to-noise ratio of Φ and E, maximum peak-slope recording d Φ/d t, and deviation of local activation time (LAT) from a common signal and obtained values of 24–28 μV, 46 and 41 dB, 497–561 V/s and no differences, respectively. With appropriate data acquisition (sampling rate 100 kHz, 24-bit), we were able to record Φ and to monitor E and θ on-line from beat-to-beat even at heart rates of 600 beats/min. Moreover, this technique can discriminate between uncoupled cardiac activations (as occur in fibrotic tissue) separated by less than 1 mm and 1 ms. 相似文献
10.
PURPOSE: The purpose of the study was to demonstrate that anatomical features of individual motor units of the puborectalis muscle can be detected with non-invasive electromyography (EMG) and to evaluate differences in electrophysiological properties of the puborectalis muscles in a small group of healthy and pathologic subjects. METHODS: Multichannel EMG was recorded by means of a flexible probe applied on the gloved index finger and carrying an array of eight equally spaced (1.15 mm) electrodes. A multichannel EMG amplifier provided seven outputs corresponding to the pairs of adjacent electrodes. Tests were performed in three different positions (dorsal, left and right) over the puborectalis muscle on 20 subjects (nine healthy, seven constipated and four incontinent patients). Motor unit action potentials (MUAPs) generated at the innervation zone of a MU and propagating along the muscle fibers generated repetitive characteristic patterns on the seven output channels allowing identification of anatomical features of the motor units. RESULTS: MUAPs were observed travelling in either one or both directions with the array in dorsal position, and mainly in ventral-to-dorsal direction in either lateral position. MUAP amplitude was lower in constipated and incontinent patients with respect to healthy subjects. The conduction velocity estimated on the identified MUAPs was lower for constipated patients with respect to healthy subjects suggesting different mechanical properties of the active motor units. CONCLUSIONS: This technique allows the extraction of relevant information about the anatomical features (innervation zone position and overlapping of motor unit branches) of the puborectalis muscle and its electrophysiological properties and maybe can be applied as an novel methodology for assessing the anorectal function in patients. 相似文献
11.
The purpose of this study was to evaluate the effect of patella taping in normal subjects. Previous work has established positive effects of patella taping on patellofemoral pain syndrome patients, but the mode of action remains unclear. It has been hypothesized that taping brings about subtle changes in the internal physiological environment of the joint. It could be expected that in normal joints taping would bring about a measurable change in function, as the joint is no longer operating in an optimal physiological environment. 10 normal female subject’s (21.4 ± 1.2 years) vastus medialis oblique (VMO) and vastus laterialis (VL) EMG activity and knee kinematics (peak stance flexion angle and angular velocity) were assessed during a step descent, with and without a taped patella. The effect of taping was to significantly decrease VMO and VL EMG activity. Taping also significantly reduced peak stance phase knee flexion and peak stance phase knee flexion angular velocity. In normal asymptomatic subjects patella taping created a situation in which their performance was changed to one similar to that of the pathological patellofemoral pain syndrome population. It would appear that taping caused the joint to function sub-optimally supporting the hypothesis that taping could change the functioning of the patellofemoral joint. 相似文献
12.
BackgroundNon-specific low back pain (LBP) has been one of the most frequently occurring musculoskeletal problems. Impairment in the mechanical stability of the lumbar spine has been known to lower the safety margin of the spine musculature and can result in the occurrence of pain symptoms of the low back area. Previously, changes in spinal stability have been identified by investigating recruitment patterns of low back and abdominal muscles in laboratory experiments with controlled postures and physical activities that were hard to conduct in daily life. The main objective of this study was to explore the possibility of developing a reliable spine stability assessment method using surface electromyography (EMG) of the low back and abdominal muscles in common physical activities. MethodsTwenty asymptomatic young participants conducted normal walking, plank, and isometric back extension activities prior to and immediately after maintaining a 10-min static upper body deep flexion on a flat bed. EMG data of the erector spinae, external oblique, and rectus abdominals were collected bilaterally, and their mean normalized amplitude values were compared between before and after the static deep flexion. Changes in the amplitude and co-contraction ratio values were evaluated to understand how muscle recruitment patterns have changed after the static deep flexion. ResultsMean normalized amplitude of antagonist muscles (erector spinae muscles while conducting plank; external oblique and rectus abdominal muscles while conducting isometric back extension) decreased significantly ( P < 0.05) after the 10-min static deep flexion. Normalized amplitude of agonist muscles did not vary significantly after deep flexion. ConclusionsResults of this study suggest the possibility of using surface EMG in the evaluation of spinal stability and low back health status in simple exercise postures that can be done in non-laboratory settings. Specifically, amplitude of antagonist muscles was found to be more sensitive than agonist muscles in identifying changes in the spinal stability associated with the 10-min static deep flexion. Further research with various loading conditions and physical activities need to be performed to improve the reliability and utility of the findings of the current study. 相似文献
13.
The identification of the motor unit (MU) innervation zone (IZ) using surface electromyographic (sEMG) signals detected on the skin with a linear array or a matrix of electrodes has been recently proposed in the literature. However, an analysis of the reliability of this procedure and, therefore, of the suitability of the sEMG signals for this purpose has not been reported.The purpose of this work is to describe the intra and inter-rater reliability and the suitability of surface EMG in locating the innervation zone of the upper trapezius muscle.Two operators were trained on electrode matrix positioning and sEMG signal analysis. Ten healthy subjects, instructed to perform a series of isometric contractions of the upper trapezius muscle participated in the study. The two operators collected sEMG signals and then independently estimated the IZ location through visual analysis.Results showed an almost perfect agreement for intra-rater and inter-rater reliability. The constancy of IZ location could be affected by the factors reflecting the population of active MUs and their IZs, including: the contraction intensity, the acquisition period analyzed, the contraction repetition. In almost all cases the IZ location shift due to these factors did not exceed 4 mm. Results generalization to other muscles should be made with caution. 相似文献
14.
The most detailed information about the structural and functional characteristics of the muscle can be gained from the single motor unit (MU) action potential. In addition, information about the activity of a single MU is essential for the diagnosis of neuromuscular disorders. Due to the low spatial resolution of conventional bipolar surface electromyography (EMG), the resulting signal is a superposition of a large number of simultaneous active MUs. The difficulty is in separating the activity of a single MU from simultaneous active adjacent MUs. In contrast to other non-invasive EMG procedures, the high-spatial-resolution-EMG (HSR-EMG), which is based on the use of a multi-electrode array in combination with a spatial filter procedure, allows the detection of single MU activity in a non-invasive way. It opens access to the excitation spread and enables the determination of the conduction velocity in single MUs, and the localization of the endplate region. In addition, HSR-EMG detects changes in the electrical activities of the MUs which are typical in neuromuscular disorders. Using HSR-EMG it was possible to identify 97% of all investigated volunteers and patients with muscular or neuronal disorders. Therefore, HSR-EMG is suitable as a tool for the non-invasive diagnosis of neuromuscular disorders. 相似文献
15.
Twenty chronic low back pain patients (CBP), twenty tension headache (THA) patients, and twenty healthy controls (HC) participated in a tension production task where subjects had to attain four levels (4, 8, 12, 16 V) of muscle tension at the m. frontalis and the m. erector spinae. Ratings of perceived tension, pain, and aversiveness as well as EMG, heart rate, and skin conductance levels were recorded. Signal detection and correlational methods revealed that the patients were deficient in muscle tension discrimination at high tension levels in both muscles. They generally overestimated low and underestimated high levels of muscle tension, especially in the CBP group. At low muscle tension levels, both healthy controls and patients showed deficient discrimination ability. Perceived muscle tension, aversiveness, and pain ratings during the tasks were higher in the patient groups. These data confirm and clarify previous reports of deficient tension perception and show concurrent overestimation of bodily symptoms in chronic musculoskeletal pain patients. 相似文献
16.
Objectives:To examine the relationship between the biceps brachii muscle innervation zone (IZ) width and the mean muscle fiber conduction velocity (MFCV) during a sustained isometric contraction. Methods:Fifteen healthy men performed a sustained isometric elbow flexion exercise at their 60% maximal voluntary contraction (MVC) until they could not maintain the target force. Mean MFCV was estimated through multichannel surface electromyographic recordings from a linear electrode array. Before exercise, IZ width was quantified. Separate non-parametric one-way analyses of variance (ANOVAs) were used to examine whether there was a difference in each mean MFCV variable among groups with different IZ width. In addition, separate bivariate correlations were also performed to examine the relationships between the IZ width and the mean MFCV variables during the fatiguing exercise. Results:There was a significant difference in the percent decline of mean MFCV (%ΔMFCV) among groups with different IZ width (χ 2 (3)=11.571, p=0.009). In addition, there was also a significant positive relationship between the IZ width and the %ΔMFCV (Kendall’s tau= 0.807; p<0.001). Conclusions:We believe that such relationship is likely influenced by both muscle fiber size and the muscle fiber type composition. 相似文献
17.
The effectiveness of EMG biofeedback training for tension headache has been well established. Previous studies evaluating changes in an average EMG activity score from pre- to posttreatment have not consistently found a relationship between a reduction in average EMG activity and headache improvement at posttreatment. The current study is a preliminary analysis of the utility of EMG variance as another possible mechanism of change. Frontalis EMG average activity and variances from 6 chronic tension-type headache sufferers who demonstrated significant improvement in headache activity at posttreatment (at least 70%) and 6 chronic tension-type headache sufferers who did not demonstrate improvement (less than 30%) were examined across 6 sessions of biofeedback treatment. The improved group demonstrated larger time-specific EMG variance in relation to mean EMG amplitudes during all treatment sessions. A dramatic decline in time-specific variance was observed during the later treatment sessions for improved participants; this pattern was not observed in the group who demonstrated little or no improvement. Results from the current study suggest that the inclusion of both average EMG activity and EMG variance may provide a more comprehensive measure to evaluate possible physiological changes responsible for improvement in headache activity following EMG biofeedback training. 相似文献
18.
Amplitude electromyography (EMG) is often used as an estimator of muscular load. Such measurements can, however, be biased by other factors, for example muscular fatigue. The aim of this study was to examine the influence of fatigue on amplitude parameters of the EMG. The test subjects raised the arm to 90 9 of abduction in the plane of the scapula. The hand was loaded with 0, 1 and 2 kg during 5, 3 and 2 min respectively. EMG was recorded from the trapezius muscle, and spectral and amplitude parameters were calculated. There was a significant rise of the EMG amplitude as a sign of fatigue at all load levels: 7% min −1 at 0 kg, 15% min −1 at 1 kg, and 19% min −1 at 2 kg. At 0 kg hand load there was no change of the spectral parameters but at higher load levels there was a significant decline of mean power frequency: 3% min −1 at 1 kg and 11% at 2 kg. The amplitude rise due to muscle fatigue may seriously jeopardize calibration measurements unless the duration of the load is kept limited. 相似文献
19.
Underlying most research on biofeedback learning is a theoretical model of the processes involved. The current study tested a prediction from the Awareness Model: High initial EMG awareness should facilitate response control during EMG biofeedback training. Seventy-two undergraduates were assessed for forehead EMG awareness by asking them to produce target responses from 1.0 to 5.0 µ V every 15 s for 16 trials. Based on this assessment, two groups (high and low awareness) were trained for 64 trials to produce these target levels with either EMG biofeedback, practice (no feedback), or noncontingent EMG feedback. A transfer task was identical to the initial assessment. During training, the biofeedback group deviated less from target than the practice and noncontingent groups. The biofeedback group was the only group to improve from initial EMG awareness activity. During transfer, only the low awareness biofeedback group remained below initial EMG awareness level. These findings can be interpreted in terms of the Two-Process Model. 相似文献
20.
The propagation of a metal plasma jet in a transport system with a curvilinear magnetic field was studied experimentally. The jet was generated by a pulsed vacuum arc discharge with a composite (W + Fe) cathode. Spatial separation of ions of the cathode material was observed at the exit from the system. The ions of the lighter element (Fe) were concentrated in the inner part of the cathode plasma jet deflected by the magnetic field. The jet is also found to be deflected along the binormal to the magnetic field lines due to plasma drift in the crossed magnetic and electric fields. The degree of mass separation of elements is shown to increase with increasing jet deflection along the binormal. The maximum value of the mass separation efficiency reaches 45, the effective value being 7.7. 相似文献
|