首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in the Arabidopsis sequencing project has elucidated the presence of two genes Atb561-A and Atb561-B that show limited homology to the DNA sequence encoding for the mammalian chromaffin granule cytochrome b-561 (cyt b-561). Detailed analysis of the structural features and conserved residues reveals, however, that the structural homology between the presumptive Arabidopsis proteins and the animal proteins is very high. All proteins are hydrophobic and show highly conserved transmembrane helices. The presumably heme-binding histidine residues in the plant and animal sequences as well as the suggested binding site for the electron acceptor, monodehydroascorbate, are strictly conserved. In contrast, the suggested electron donor (ascorbate) binding site is not very well conserved between the plant and animal sequences questioning the function of this motif. Sequence analysis of the Atb561-B gene demonstrates a different splicing than that initially predicted in silico resulting in a protein with nine extra amino acids and a significantly higher homology to the other cyt b-561 sequences. The homology between the plant and animal sequences is further supported by the strong similarity between a number of biochemical properties of the chromaffin cyt b-561 and the cyt b-561 isolated from bean hook plasma membranes. Since the mammalian cyt b-561 is considered specific to neuroadrenergic tissues, the identification of a closely related homologue in an aneural organism demonstrates that these proteins constitute a new class of widely occurring membrane proteins. Both the plant and animal cyt b-561 are involved in transmembrane electron transport using ascorbate as an electron donor. The similarity between these proteins therefore suggests, for the first time, that this transport supports a number of different cell physiological processes. An evolutionary relationship between the plant and animal proteins is presented.  相似文献   

2.
Recent advances in the Arabidopsis sequencing project has elucidated the presence of two genes Atb561-A and Atb561-B that show limited homology to the DNA sequence encoding for the mammalian chromaffin granule cytochrome b-561 (cyt b-561). Detailed analysis of the structural features and conserved residues reveals, however, that the structural homology between the presumptive Arabidopsis proteins and the animal proteins is very high. All proteins are hydrophobic and show highly conserved transmembrane helices. The presumably heme-binding histidine residues in the plant and animal sequences as well as the suggested binding site for the electron acceptor, monodehydroascorbate, are strictly conserved. In contrast, the suggested electron donor (ascorbate) binding site is not very well conserved between the plant and animal sequences questioning the function of this motif. Sequence analysis of the Atb561-B gene demonstrates a different splicing than that initially predicted in silico resulting in a protein with nine extra amino acids and a significantly higher homology to the other cyt b-561 sequences. The homology between the plant and animal sequences is further supported by the strong similarity between a number of biochemical properties of the chromaffin cyt b-561 and the cyt b-561 isolated from bean hook plasma membranes. Since the mammalian cyt b-561 is considered specific to neuroadrenergic tissues, the identification of a closely related homologue in an aneural organism demonstrates that these proteins constitute a new class of widely occurring membrane proteins. Both the plant and animal cyt b-561 are involved in transmembrane electron transport using ascorbate as an electron donor. The similarity between these proteins therefore suggests, for the first time, that this transport supports a number of different cell physiological processes. An evolutionary relationship between the plant and animal proteins is presented.  相似文献   

3.
Summary During the past twenty years evidence has accumulated on the presence of a specific high-potential, ascorbate-reducibleb-type cytochrome in the plasma membrane (PM) of higher plants. This cytochrome is named cytochromeb 561 (cytb 561) according to the wavelength maximum of its -band in the reduced form. More recent evidence suggests that this protein is homologous to ab-type cytochrome present in chromaffin granules of animal cells. The plant and animal cytochromes share a number of strikingly similar features, including the high redox potential, the ascorbate reducibility, and most importantly the capacity to transport electrons across the membrane they are located in. The PM cytb 561 is found in all plant species and in a variety of tissues tested so far. It thus appears to be a ubiquitous electron transport component of the PM. The cytochromesb 561 probably constitute a novel class of transmembrane electron transport proteins present in a large variety of eukaryotic cells. Of particular interest is the recent discovery of a number of plant genes that show striking homologies to the genes coding for the mammalian cytochromesb 561. A number of highly relevant structural features, including hydrophobic domains, heme ligation sites, and possible ascorbate and monodehydroascorbate binding sites are almost perfectly conserved in all these proteins. At the same time the plant gene products show interesting differences related to their specific location at the PM, such as potentially N-linked glycosylation sites. It is also clear that at least in several plants cytb 561 is represented by a multigene family. The current paper presents the first overview focusing exclusively on the plant PM cytb 561, compares it to the animal cytb 561, and discusses the possible physiological function of these proteins in plants.Abbreviations Asc ascorbate - cyt cytochrome - DHA dehydroascorbate - E0 standard redox potential - EST expressed sequence tag - His histidine - MDA monodehydroascorbate - Met methionine - PM plasma membrane  相似文献   

4.
Adrenal cytochrome b561 (cyt b561), a transmembrane protein that shuttles reducing equivalents derived from ascorbate, has two heme centers with distinct spectroscopic signals and reactivity towards ascorbate. The His54/His122 and His88/His161 pairs furnish axial ligands for the hemes, but additional amino acid residues contributing to the heme centers have not been identified. A computational model of human cyt b561 (Bashtovyy, D., Berczi, A., Asard, H., and Pali, T. (2003) Protoplasma 221, 31-40) predicts that His92 is near the His88/His161 heme and that His110 abuts the His54/His122 heme. We tested these predictions by analyzing the effects of mutations at His92 or His110 on the spectroscopic and functional properties. Wild type cytochrome and mutants with substitutions in other histidine residues or in Asn78 were used for comparison. The largest lineshape changes in the optical absorbance spectrum of the high-potential (bH) peak were seen with mutation of His92; the largest changes in the low-potential (bL) peak lineshape were observed with mutation of His110. In the EPR spectra, mutation of His92 shifted the position of the g = 3.1 signal (bH) but not the g = 3.7 signal (bL). In reductive titrations with ascorbate, mutations in His92 produced the largest increase in the midpoint for the bH transition; mutations in His110 produced the largest decreases in ΔA561 for the bL transition. These results indicate that His92 can be considered part of the bH heme center, and His110 part of the bL heme center, in adrenal cyt b561.  相似文献   

5.
Summary The amino acid sequences of the protonmotive cytochromeb from seven representative and phylogenetically diverse species have been compared to identify protein regions or segments that are conserved during evolution. The sequences analyzed included both prokaryotic and eukaryotic examples as well as mitochondrial cytochromeb and chloroplastb 6 proteins. The principal conclusion from these analyses is that there are five protein regions-each comprising about 20 amino acid residues—that are consistently conserved during evolution. These domains are evident despite the low density of invariant residues. The two most highly conserved regions, spanning approximately consensus residues 130–150 and 270–290, are located in extramembrane loops and are hypothesized to constitute part of the Qo reaction center. The intramembrane, hydrophobic protein regions containing the heme-ligating histidines are also conserved during evolution. It was found, however, that the conservation of the protein segments extramembrane to the histidine residues ligating the low potential b566 heme group showed a higher degree of sequence conservation. The location of these conserved regions suggests that these extramembrane segments are also involved in forming the Qo reaction center. A protein segment putatively constituting a portion of the Qi reaction center, located approximately in the region spanned by consensus residues 20–40, is conserved in species as divergent as mouse andRhodobacter. This region of the protein shows substantially less sequence conservation in the chloroplast cytochromeb 6. The catalytic role of these conserved regions is strongly supported by locations of residues that are altered in mutants resistant to inhibitors of cytochromeb electron transport.  相似文献   

6.
Cytochrome (cyt) b561 proteins are dihaem-containing membrane proteins, belonging to the CYBASC (cytochrome-b561-ascorbate-reducible) family, and are proposed to be involved in ascorbate recycling and/or the facilitation of iron absorption. Here, we present the heterologous production of two cyt b561 paralogs from Arabidopsis thaliana (Acytb561-A, Acytb561-B) in Escherichia coli and Pichia pastoris, their purification, and initial characterisation. Spectra indicated that Acytb561-A resembles the best characterised member of the CYBASC family, the cytochrome b561 from adrenomedullary chromaffin vesicles, and that Acytb561-B is atypical compared to other CYBASC proteins. Haem oxidation–reduction midpoint potential (EM) values were found to be fully consistent with ascorbate oxidation activities and Fe3 +-chelates reductase activities. The ascorbate dependent reduction and protein stability of both paralogs were found to be sensitive to alkaline pH values as reported for the cytochrome b561 from chromaffin vesicles. For both paralogs, ascorbate-dependent reduction was inhibited and the low-potential haem EM values were affected significantly by incubation with diethyl pyrocarbonate (DEPC) in the absence of ascorbate. Modification with DEPC in the presence of ascorbate left the haem EM values unaltered compared to the unmodified proteins. However, ascorbate reduction was inhibited. We concluded that the ascorbate-binding site is located near the low-potential haem with the Fe3 +-chelates reduction-site close to the high-potential haem. Furthermore, inhibition of ascorbate oxidation by DEPC treatment occurs not only by lowering the haem EM values but also by an additional modification affecting ascorbate binding and/or electron transfer. Analytical gel filtration experiments suggest that both cyt b561 paralogs exist as homodimers.  相似文献   

7.
Summary.  We examined the nature of the posttranslational modification of bovine cytochrome b 561, a membrane-spanning protein and an essential component of neuroendocrine secretory vesicles. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) showed two populations in the partially digested fragments of cytochrome b 561, which were obtained by controlled treatment of cytochrome b 561-proteoliposomes with trypsin. One population, containing the posttranslationally modified amino-terminal region, showed molecular masses which were by about 40 Da larger than the theoretical molecular masses. The other population, without the modified amino-terminal region, showed a reasonable matching with the theoretical masses. This result suggested that the posttranslational modification occurred only in the amino-terminal region. The amino-terminal peptide was isolated by tryptic peptide mapping followed by treatment with acylamino-acid-releasing enzyme. Amino acid sequence and MALDI-TOF-MS analyses of the amino-terminal peptide showed that the initial Met residue was acetylated. There was no other posttranslational modification in the amino-terminal region, such as covalent fatty acylation through an ester linkage to Ser or Thr residues. Received May 9, 2002; accepted July 26, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Department of Molecular Science, Graduate School of Science and Technology, Kobe University, Rokkodai-cho 1-1, Nada-ku, Hyogo 657-8501, Japan.  相似文献   

8.
Iron uptake in Arabidopsis thaliana is mediated by ferric chelate reductase FRO2, a transmembrane protein belonging to the flavocytochrome b family. There is no high resolution structural information available for any member of this family. We have determined the transmembrane topology of FRO2 experimentally using the alkaline phosphatase fusion method. The resulting topology is different from that obtained by theoretical predictions and contains 8 transmembrane helices, 4 of which build up the highly conserved core of the protein. This core is present in the entire flavocytochrome b family. The large water soluble domain of FRO2, which contains NADPH, FAD and oxidoreductase sequence motifs, was located on the inside of the membrane.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at This work was supported by grants from the Swedish Research Council (VR) to S. Al-Karadaghi and Hans Hebert.  相似文献   

9.
Summary Cytochromeb 561 (cytb 561) is a trans-membrane cytochrome probably ubiquitous in plant cells. In vitro, it is readily reduced by ascorbate or by juglonol, which in plasma membrane (PM) preparations from plant tissues is efficiently produced by a PM-associated NAD(P)Hquinone reductase activity. In bean hypocotyl PM, juglonol-reduced cytb 561 was not oxidized by hydrogen peroxide alone, but hydrogen peroxide led to complete oxidation of the cytochrome in the presence of a peroxidase found in apoplastic extracts of bean hypocotyls. This peroxidase active on cytb 561 was purified from the apoplastic extract and identified as an ascorbate peroxidase of the cytosolic type. The identification was based on several grounds, including the ascorbate peroxidase activity (albeit labile), the apparent molecular mass of the subunit of 27 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the dimeric native structure, the typical spectral properties of a heme-containing peroxidase, and an N-terminal sequence strongly conserved with cytosolic ascorbate peroxidases of plants. Cytb 561 used in the experiments was purified from bean hypocotyl PM and juglonol was enzymatically produced by recombinant NAD(P)H:quinone reductase. It is shown that NADPH, NAD(P)H:quinone reductase, juglone, cytb 561, the peroxidase interacting with cytb 561, and H2O2, in this order, constitute an artificial electron transfer chain in which cytb 561 is indirectly reduced by NADPH and indirectly oxidized by H2O2.Abbreviations APX ascorbate peroxidase - b 561PX cytochrome 6561 peroxidase - CPX coniferol peroxidase - cyt cytochrome - GPX guaia-col peroxidase - IWF intercellular washing fluid - MDHA monodehydroascorbate - PM plasma membrane  相似文献   

10.
Bovine liver cytochrome b 5 (cyt b 5), with heme bound noncovalently, has been converted into a cyt c-like protein (cyt b 5 N57C) by constructing a thioether linkage between the heme and the engineered cysteine residue. With no X-ray or NMR structure available, we herein performed a molecular modeling study of cyt b 5 N57C. On the other hand, using amino acid sequence information for a newly discovered member of the cyt b 5 family, domestic silkworm cyt b 5 (DS cyt b 5), we predicted the protein structure by homology modeling in combination with MD simulation. The modeling structure shows that both Cys57 in cyt b 5 N57C, and Cys56, a naturally occurring cysteine in DS cyt b 5, have suitable orientations to form a thioether bond with the heme 4-vinyl group, as the heme is in orientation A. In addition to providing structural information that was not previously obtained experimentally, these modeling studies provide insight into the formation of cyt c-like thioether linkages in cytochromes, and suggest that c-type cyt b 5 maturation involves a b-type intermediate.  相似文献   

11.
The cytochrome (cyt) b6f complex is involved in the transmembrane redox signaling that triggers state transitions in cyanobacteria and chloroplasts. However, the components and molecular mechanisms are still unclear. In an attempt to solve this long-standing problem, we first focused on the unknown role of a single chlorophyll a (Chla) in cyt b6f with a new approach based on Chla structural properties. Various b6f X-ray crystal structures were analyzed to identify their differences, which correlate with differences in Chla molecular volume. We found that the distance of the Rieske [2Fe-2S] cluster to Chla correlates with the distance between a pair of residues at the Qo-site and the distance between a pair of residues at the opposite membrane side. These correlations were accompanied by the rotation of a key peripheral residue and by changes in the hydrophobic thickness of cyt b6f. Parallel analysis of cyt bc1 crystal structures allowed us to conclude that Chla acts as the crucial redox sensor and transmembrane signal transmitter in b6f for changes in the plastoquinone pool redox state. The hydrophobic mismatch induced by the changed hydrophobic thickness of cyt b6f is the driving force for the structural reorganizations of the photosynthetic apparatus during induction and the progression of state transitions in cyanobacteria and chloroplasts. A mechanism for LHCII kinase activation in chloroplasts is also proposed. Our understanding of the dynamic structural changes in bc-complexes during turnover at the Qo-site and state transitions is augmented by the time-sequence ordering of 56 bc crystal structures.  相似文献   

12.
Summary The complete nucleotide sequence of the Escherichia coli cybB gene for diheme cytochrome b 561 and its flanking region was determined. The cybB gene comprises 525 nucleotides and encodes a 175 amino acid polypeptide with a molecular weight of 20160. From its deduced amino acid sequence, cytochrome b 561 is predicted to be very hydrophobic (polarity 33.7%) and to have three membrane spanning regions. Histidines, canonical ligand residues for protohemes, are localized in these regions, and the heme pockets are thought to be in the cytoplasmic membrane. No significant homology of the primary structure of cytochrome b 561 with those of other bacterial b-type cytochromes was observed.  相似文献   

13.
The structure of pea light-harvesting complex LHCII determined to 3.4 Å resolution by electron crystallography (Kühlbrandt, Wang and Fujiyoshi (1994) Nature 367: 614–621) was examined to determine the relationship between structural elements and sequence motifs conserved in the extended family of light-harvesting antennas (Chl a/b, fucoxanthin Chl a/c proteins) and membrane-intrinsic stress-induced proteins (ELIPs) to which LHCII belongs. It is predicted that the eukaryotic ELIPs can bind at least four molecules of Chl. The one-helix prokaryotic ELIP of Synechococcus was modelled as a homodimer based on the high degree of conservation of residues involved in the interactions of the first (B) and third (A) helices of LHCII.Abbreviations CAB Chl a/b-binding - ELIP early light-inducible protein - FCP fucoxanthin-Chl a/c protein - Lut1, Lut2 lutein molecules 1 and 2  相似文献   

14.
Adrenal cytochrome b561 (cyt b561) is the prototypical member of an emerging family of proteins that are distributed widely in vertebrate, invertebrate and plant tissues. The adrenal cytochrome is an integral membrane protein with two b-type hemes and six predicted transmembrane helices. Adrenal cyt b561 is involved in catecholamine biosynthesis, shuttling reducing equivalents derived from ascorbate. We have developed an Escherichia coli system for expression, solubilization and purification of the adrenal cytochrome. The spectroscopic and redox properties of the purified recombinant protein expressed in this prokaryotic system confirm that the cytochrome retains a native, fully functional form over a wide pH range. Mass spectral analysis shows that the N-terminal signal peptide is intact. The new bacterial expression system for cyt b561 offers a sixfold improvement in yield and other substantial advantages over existing insect and yeast cell systems for producing the recombinant cytochrome for structure-function studies.  相似文献   

15.
A three-dimensional model of the core proteins D1 and D2, including the cofactors, that form the Photosystem II reaction centre of pea (Pisum sativum), has been generated. This model was built with a rule-based computer modelling system using the information from the crystal structures of the photosynthetic reaction centres of Rhodopseudomonas viridis and Rhodobacter sphaeroides. An alignment of the primary sequences of twenty three D1, nine D2, eight bacterial L and eight bacterial M subunits predicts strong similarity between bacterial and higher plant reaction centres, especially in the transmembrane region where the cofactors responsible for electron transport are located. The sequence to be modelled was aligned to the bacterial structures using environment-dependent substitution tables to construct matrices, improving the alignment procedure. The ancestral relationship between the bacteria and higher plant sequences allowed both the L and M subunits to be used as structural templates as they were equally related to the higher plant polypeptides. The regions with the highest predicted structural homology were used as a framework for the construction of the structurally conserved regions. The structurally conserved region of the model shows strong similarity to the bacterial reaction centre in the transmembrane helices. The stromal and lumenal loops show greater sequence variation and are therefore predicted to be the structurally variable regions in the model. The key sidechain assignments and residues that may interact with cofactors are discussed.Abbreviations D Tyr161 in the D2 polypeptide - PS II Photosystem II - QA primary plastoquinone acceptor of Photosystem II - QB secondary plastoquinone acceptor of Photosystem II - Z Tyr161 in the D1 polypeptide  相似文献   

16.
Accessory chlorophyll-binding proteins (CBP) in cyanobacteria have six transmembrane helices and about 11 conserved His residues that might participate in chlorophyll binding. In various species of cyanobacteria, the CBP proteins bind different types of chlorophylls, including chlorophylls a, b, d and divinyl-chlorophyll a, b. The CBP proteins do not belong to the light-harvesting complexes (LHC) superfamily of plant and algae. The proposed new name of CBP for this class of proteins, which is a unique accessory light-harvesting superfamily in cyanobacteria, clarifies the confusion of names of prochlorophytes chlorophyll binding protein (Pcb), PSII-like light-harvesting proteins and iron-stress-induced protein A (IsiA). The CBP complexes are a member of a larger family that includes the chlorophyll a-binding proteins CP43 and CP47 that function as core antennas of photosystem II.  相似文献   

17.
A. Bérczi  S. Lüthje  H. Asard 《Protoplasma》2001,217(1-3):50-55
Summary The plasma membrane of higher plants contains more than one kind ofb-type cytochromes. One of these has a high redox potential and can be fully reduced by ascorbate. This component, the cytochromeb 561 (cytb 561), has its characteristic -band absorbance close to 561 nm wavelength at room temperature. Cytb 561 was first isolated from etiolated bean hook plasma membranes by two consecutive anion exchange chromatography steps. During the first step performed at pH 8, cytb 561 did not bind to the anion exchange column, but otherb-type cytochromes did. In the second step performed at pH 9.9, cytb 561 was bound to the column and was eluted from the column at an ionic strength of about 100 mM KCl. However, when the same protocol was applied to the solubilized plasma membrane proteins fromArabidopsis thaliana leaves and maize roots, the ascorbate-reducible cytb 561 bound already to the first anion exchange column at pH 8 and was eluted also at an ionic strength of about 100 mM KCl. Otherb-type cytochromes than the ascorbate-reducible cytb 561 from the plasma membranes of Arabidopsis leaves and maize roots showed similar Chromatographic characteristics to that of bean hypocotyls. These results demonstrate particular differences in the Chromatographic behavior of cytb 561 from different sources.Abbreviations cyt b 561 cytochromeb 561 - PM plasma membrane - PAGE polyacrylamide gel electrophoresis  相似文献   

18.
Summary We have sequenced the mitochondrial cytochrome b gene from the guinea pig, the African porcupine, and a South American opossum. A phylogenetic analysis, which includes 22 eutherian and four other vertebrate cytochrome b sequences, indicates that the guinea pig and the porcupine constitute a natural clade (Hystricomorpha) that is not a sister group to the clade of mice and rats (Myomorpha). Therefore, the hypothesis that the Rodentia is paraphyletic receives additional support. The artiodactyls, the perissodactyls, and the cetaceans form a group that is separated from the primates and the rodents. The 26 sequences are used to study the structure/function relationships in cytochrome b, whose function is electron transport. Most of the amino acid residues involved in the two reaction centers are well conserved in evolution. The four histidines that are believed to ligate the two hemes are invariant among the 26 sequences, but their nearby residues are not well conserved in evolution. The eight transmembrane domains represent some of the most divergent regions in the cytochrome b sequence. The rate of nonsynonymous substitution is considerably faster in the human and elephant lineages than in other eutherian lineages; the faster rate might be due to coevolution between cytochrome b and cytochrome c. Offprint requests to: W.-H. Li  相似文献   

19.
The biological toxicity of uranyl ion (UO22+) lies in interacting with proteins and disrupting their native functions. The structural and functional consequences of UO22+ interacting with cytochrome b 5 (cyt b 5), a small membrane heme protein, and its heme axial ligand His39Ser variant, cyt b 5 H39S, were investigated both experimentally and theoretically. In experiments, although cyt b 5 was only slightly affected, UO22+ binding to cyt b 5 H39S with a K D of 2.5 μM resulted in obvious alteration of the heme active site, and led to a decrease in peroxidase activity. Theoretically, molecular simulation proposed a uranyl ion binding site for cyt b 5 at surface residues of Glu37 and Glu43, revealing both coordination and hydrogen bonding interactions. The information gained in this study provides insights into the mechanism of uranyl toxicity toward membrane protein at an atomic level.  相似文献   

20.
Bérczi A  Caubergs RJ  Asard H 《Protoplasma》2003,221(1-2):47-56
Summary.  The plant plasma membrane (PM) contains more than one b-type cytochrome. One of these proteins has a rather high redox potential (can be fully reduced by ascorbate) and is capable of transporting electrons through the PM. Four genes encoding proteins with considerable homology to the sequences of cytochrome b 561 proteins in the animal chromaffin granule membrane have recently been identified in the genome of Arabidopsis thaliana. In order to characterize the cytochrome b 561 located in the Arabidopsis PM, first PM vesicles were purified by aqueous polymer two-phase partitioning from the leaves of 9-week-old A. thaliana. PM proteins were solubilized by nonionic detergent, and the fully ascorbate-reducible b-type cytochrome was partially purified by anion-exchange chromatography steps. Potentiometric redox titration of the fraction, containing the fully ascorbate-reducible b-type cytochrome after the first anion-exchange chromatography step, revealed the presence of two hemes with redox potentials of 135 mV and 180 mV, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the fractions containing the fully ascorbate-reducible b-type cytochrome after the second anion-exchange chromatography step revealed the presence of a single polypeptide band at about 120 kDa. However, heat treatment (15 min, 90 °C) before electrophoresis was able to split the 120 kDa band into two bands with molecular masses of about 23 and 28 kDa. These values are lower than the apparent molecular mass for the fully ascorbate-reducible b-type cytochrome purified from Phaseolus vulgaris hypocotyls (about 52 kDa) but are in good agreement with those characteristic for the cytochrome b 561 proteins purified from chromaffin granule membranes (about 28 kDa) and the four polypeptides predicted from the Arabidopsis genome (24–31 kDa). Received May 4, 2002; accepted July 26, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Institute of Biophysics, BRC, Hungarian Academy of Sciences, POB 521, 6701 Szeged, Hungary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号