首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using 500-MHz 1H NMR spectroscopy we have investigated the branch specificity that bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase shows in its sialylation of bi-, tri-, and tetraantennary glycopeptides and oligosaccharides of the N-acetyllactosamine type. The enzyme appears to highly prefer the galactose residue at the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch for attachment of the 1st mol of sialic acid in all the acceptors tested. The 2nd mol of sialic acid becomes linked mainly to the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6 branch in bi- and triantennary substrates, but this reaction invariably proceeds at a much lower rate. Under the conditions employed, the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch is extremely resistant to alpha 2----6-sialylation. A higher degree of branching of the acceptors leads to a decrease in the rate of sialylation. In particular, the presence of the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch strongly inhibits the rate of transfer of both the 1st and the 2nd mol of sialic acid. In addition, it directs the incorporation of the 2nd mol into tetraantennary structures toward the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch. In contrast, the presence of the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch has only minor effects on the rates of sialylation and, consequently, on the branch preference of sialic acid attachment. Results obtained with partial structures of tetraantennary acceptors indicate that the Man beta 1----4GlcNAc part of the core is essential for the expression of branch specificity of the sialyltransferase. The sialylation patterns observed in vivo in glycoproteins of different origin are consistent with the in vitro preference of alpha 2----6-sialyltransferase for the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch. Our findings suggest that the terminal structures of branched glycans of the N-acetyllactosamine type are the result of the complementary branch specificity of the various glycosyltransferases that are specific for the acceptor sequence Gal beta 1----4GlcNAc-R.  相似文献   

2.
K Yamashita  K Umetsu  T Suzuki  T Ohkura 《Biochemistry》1992,31(46):11647-11650
Two lectins were purified from tuberous roots of Trichosanthes japonica. The major lectin, which was named TJA-II, interacted with Fuc alpha 1-->2Gal beta/GalNAc beta 1-->groups, and the other one, which passed through a porcine stomach mucin-Sepharose 4B column, was purified by sequential chromatography on a human alpha 1-antitrypsin-Sepharose 4B column and named TJA-I. The molecular mass of TJA-I was determined to be 70 kDa by sodium dodecyl sulfate gel electrophoresis. TJA-I is a heterodimer of 38-kDa (36-kDa) and 32-kDa (30-kDa) subunits with disulfide linkage(s), and the difference between 38 and 36 kDa, and between 32 and 30 kDa, is due to secondary degradation of the carboxyl-terminal side. It was determined by equilibrium dialysis that TJA-I has four equal binding sites per molecule, and the association constant toward tritium-labeled Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4GlcOT is Ka = 8.0 x 10(5) M-1. The precise carbohydrate binding specificity was studied using hemagglutinating inhibition assay and immobilized TJA-I. A series of oligosaccharides possessing a Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc or HSO3(-)-->6Gal beta 1-->4GlcNAc group showed tremendously stronger binding ability than oligosaccharides with a Gal beta 1-->4GlcNAc group, indicating that TJA-I basically recognizes an N-acetyllactosamine residue and that the binding strength increases on substitution of the beta-galactosyl residue at the C-6 position with a sialic acid or sulfate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Human blood group O plasma was found to contain an N-acetylgalactosaminyltransferase which catalyzes the transfer of N-acetylgalactosamine from UDP-GalNAc to Gal beta 1-->4Glc, Gal beta 1-->4GlcNAc, asialo-alpha 1-acid glycoprotein, and Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc-ceramide, but not to Gal beta 1-->3GlcNAc. The enzyme required Mn2+ for its activity and showed a pH optimum at 7.0. The reaction products were readily hydrolyzed by beta-N-acetylhexosaminidase and released N-acetylgalactosamine. Apparent Km values for UDP-GalNAc, Mn2+, lactose, N-acetyllactosamine, and terminal N-acetyllactosaminyl residues of asialo-alpha 1-acid glycoprotein were 0.64, 0.28, 69, 20, and 1.5 mM, respectively. Studies on acceptor substrate competition indicated that all the acceptor substrates mentioned above compete for one enzyme, whereas the enzyme can be distinguished from an NeuAc alpha 2-->3Gal beta-1,4-N-acetylgalactosaminyltransferase, which also occurs in human plasma. The methylation study of the product formed by the transfer of N-acetylgalactosamine to lactose revealed that N-acetylgalactosamine had been transferred to the carbon-3 position of the beta-galactosyl residue. Although the GalNAc beta 1-->3Gal structure is known to have the blood group P antigen activity, human plasma showed no detectable activity of Gal alpha 1-->4Gal beta-1,3-N-acetylgalactosaminyltransferase, which is involved in the synthesis of the major P antigen-active glycolipid, GalNAc beta 1-->3Gal alpha 1-->4Gal beta 1-->4Glc-ceramide. Hence, the GalNAc beta 1-->3Gal beta 1-->4GlcNAc/Glc structure is synthesized by the novel Gal beta 1-->4GlcNAc/Glc beta-1,3-N-acetylgalactosaminyltransferase.  相似文献   

4.
Rat liver Golgi apparatus are shown to have a CMP-N-acetylneuraminate: N-acetylglucosaminide (alpha 2----6)-sialyltransferase which catalyzes the conversion of the human milk oligosaccharide LS-tetrasaccharide-a (NeuAc alpha 2----3Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----4Glc) to disialyllacto -N- tetraose containing the terminal sequence: (formula: see text) found in N-linked oligosaccharides of glycoproteins. The N-acetylglucosaminide (alpha 2----6)-sialyltransferase has a marked preference for the sequence NeuAc alpha 2----3-Gal beta 1---- 3GlcNAc as an acceptor substrate. Thus, the order of addition of the two sialic acids in the disialylated structure shown above is proposed to be first the terminal sialic acid in the NeuAc alpha 2----3Gal linkage followed by the internal sialic acid in the NeuAc alpha 2---- 6GlcNAc linkage. Sialylation in vitro of the type 1 branches (Gal beta 1---- 3GlcNAc -) of the N-linked oligosaccharides of asialo prothrombin to produce the same disialylated sequence is also demonstrated.  相似文献   

5.
Streptococcus suis is a common cause of sepsis, meningitis, and other serious infections in young piglets and also causes meningitis in humans. The cell-binding specificity of sialic acid-recognizing strains of Streptococcus suis was investigated. Treatment of human erythrocytes with sialidase or mild periodate abolished hemagglutination. Hemagglutination inhibition experiments with sialyl oligosaccharides indicated that the adhesin preferred the sequence NeuNAc alpha 2-3Gal beta 1-4Glc(NAc). Resialylation of desialylated erythrocytes with Gal beta 1-3(4)GlcNAc alpha 2-3-sialyltransferase induced a strong hemagglutination, whereas no or only weak hemagglutination was obtained with cells resialylated with two other sialyltransferases. Binding of radiolabeled bacteria to blots of erythrocyte membrane proteins revealed binding to the poly-N-acetyllactosamine-containing components Band 3, Band 4.5, and polyglycosyl ceramides and to glycophorin A. The involvement of glycophorin A as a major ligand was excluded by the strong hemagglutination of trypsin-treated erythrocytes and En(a-) erythrocytes defective in glycophorin A. Sensitivity of the hemagglutination toward endo-beta-galactosidase treatment of erythrocytes and inhibition by purified poly-N-acetyllactosaminyl glycopeptides indicated that the adhesin bound to glycans containing the following structure: NeuNAc alpha 2-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-.  相似文献   

6.
Oligosaccharide patterns obtained by gel filtration of the urine of GM1-gangliosidosis Type 1 patients are quite different from those of GM1-gangliosidosis Type 2. By studies of oligosaccharides in the four major peaks obtained from the Type 1 subgroup using sequential exoglycosidase digestion, methylation analysis, and periodate oxidation, the structures of 15 oligosaccharides: Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3Man beta 1 leads to 4GlcNAc, Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6Man beta 1 leads to 4GlcNAc, Man alpha 1 leads to 6(Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc, Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc, Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[Gal beta 1 leads to 4GlcNAc beta 1 leads to 4(Gal beta 1 leads to 4GlcNAc beta 1 leads to 2)Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc, Gal beta 1 leads to 4GlcNAc beta 1 leads to 6(Gal beta 1 leads to 4GlcNAc beta 1 leads to 2)Man alpha 1 leads to 6(Gal beta 1 leads to 4Glc NAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc, Gal beta 1 leads to 4GlcNAc beta 1 leads to 6(Gal beta 1 leads to 4GlcNAc beta 1 leads to 2)Man alpha 1 leads to 6[Gal beta 1 leads to 4GlcNAc beta 1 leads to 4(Gal beta 1 leads to 4GlcNAc beta 1 leads to 2)Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc, Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6, and 3(Gal beta 1 leads to 4GlcNAc beta 1 leads to 3Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3 and 6)Man beta 1 leads to 4GlcNAc, (formula see text) were elucidated. The amounts of total oligosaccharides excreted in the urine of the Type 2 subgroup were approximately one-tenth of those of Type 1. Moreover, the last eight oligosaccharides shown above, which have a Gal beta 1 leads to 4GlcNAc beta 1 leads to 3Gal beta 1 leads to 4GlcNAc beta 1 leads to outer chain, were completely missing in the urine of Type 2.  相似文献   

7.
Four novel oligosaccharide units were isolated from the acetolysis products of the acidic polysaccharide chain derived from the glycoproteins of Fusarium sp. M7-1. Their chemical structures were resolved mainly by 1H-NMR spectrometry in combination with methylation analysis and mass spectrometry. The results indicate that these oligosaccharide units originated from the side chains, GlcNAc alpha 1-->4GlcA alpha 1-->2(GlcNac alpha 1-->4)GlcA alpha 1-->2Gal, GlcNAc alpha 1-->4GlcA alpha 1-->2(GlcNAc alpha 1-->4)GlcA alpha 1-->2(GlcNac alpha 1-->4)GlcA alpha 1-->2Gal, ChN<--P--> 6Man beta 1-->4GlcA alpha 1-->2Gal, and Man beta 1-->2(ChN<--P-->6)Man beta 1-->4GlcA alpha 1-->2Gal linked together with the other units reported previously [Jikibara et al. (1992) J. Biochem. 111, 236-243] through beta 1-->6galactofuranoside linkages in the acidic polysaccharide chain.  相似文献   

8.
Control of glycoprotein synthesis   总被引:6,自引:0,他引:6  
Hen oviduct membranes have been shown to catalyze the transfer of GlcNAc from UDP-GlcNAc to GlcNAc-beta 1-2Man alpha 1-6(GlcNAc beta 1-2 Man alpha 1-3) Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn-X (GnGn) to form the triantennary structure GlcNAc beta 1-2Man alpha 1-6[GlcNAc beta 1-2(GlcNAc beta 1-4)Man alpha 1-3]Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn-X. The enzyme has been named UDP-GlcNAc:GnGn (GlcNAc to Man alpha 1-3) beta 4-N-acetylglucosaminyltransferase IV (GlcNAc-transferase IV) to distinguish it from three other hen oviduct GlcNAc-transferases designated I, II, and III. Since GlcNAc-transferases III and IV both act on the same substrate, concanavalin A/Sepharose was used to separate the products of the two enzymes. At pH 7.0 and at a Triton X-100 concentration of 0.125% (v/v), GlcNAc-transferase IV activity in hen oviduct membranes is 7 nmol/mg of protein/h. The product was characterized by high resolution proton NMR spectroscopy at 360 MHz and by methylation analysis. In addition to triantennary oligosaccharide, hen oviduct membranes produced about 20% of bisected triantennary material, GlcNAc beta 1-2Man alpha 1-6[GlcNAc beta 1-2(GlcNAc beta 1-4)Man alpha 1-3] [GlcNAc beta 1-4]Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn-X. Maximal GlcNAc-transferase IV activity requires the presence of both terminal beta 1-2-linked GlcNAc residues in the substrate. Removal of the GlcNAc residue on the Man alpha 1-6 arm or of both GlcNAc residues reduces activity by at least 80%. A Gal beta 1-4GlcNAc disaccharide on the Man alpha 1-6 arm reduces activity by 68% while the presence of this disaccharide on the Man alpha 1-3 arm reduces activity to negligible levels. A similar substrate specificity was found for GlcNAc-transferase III, the enzyme which adds a bisecting GlcNAc in beta 1-4 linkage to the beta-linked Man residue. Since a bisecting GlcNAc was found to prevent GlcNAc-transferase IV action, the bisected triantennary material found in the incubation must have been formed by the sequential action of GlcNAc-transferase IV followed by GlcNAc-transferase III. Activities similar to GlcNAc-transferase IV were also detected in rat liver Golgi-rich membranes (0.4 nmol/mg/h) and pig thyroid microsomes (0.1 nmol/mg/h).  相似文献   

9.
Glycopeptides representing individual N-glycosylation sites of the heterodimeric glycoprotein hormone human chorionic gonadotrophin (hCG) were obtained from subunits hCG alpha (N-glycosylated at Asn-52 and Asn-78) and hCG beta (N-glycosylated at Asn-13 and Asn-30) by digestion with trypsin and chymotrypsin, respectively. Following purification by reverse-phase HPLC and identification by amino acid sequencing, the glycopeptides were analysed by one- and two-dimensional 1H NMR spectroscopy. The results are summarized as follows: (i) oligosaccharides attached to Asn-52 of hCG alpha comprised monosialylated 'monoantenary' NeuAc alpha 2-3Gal beta 1-4GlcNAc beta 1-2Man alpha 1-3[Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc (N1-4'), disialylated diantennary NeuAc alpha 2-3Gal beta 1-4GlcNAc beta 1-2Man alpha 1-3[NeuAc alpha 2-3-Gal beta 1-4GlcNAc beta 1-2Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc (N2), and the monosialylated hybrid-type structures NeuAc alpha 2-3Gal beta 1-4GlcNAc beta 1-2Man alpha 1-3[Man alpha 1-3Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc (N1-A) and NeuAc alpha 2-3Gal-beta 1-4GlcNAc beta 1-2Man alpha 1-3[Man alpha 1-3(Man alpha 1-6)Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc (N1-AB) in a ratio approaching 5:2:2:1; (ii) Asn-78 of hCG alpha carried N2 and N1-4' almost exclusively (ratio approximately 3:2); (iii) both N-glycosylation sites of hCG beta contained predominantly component N2, partially (approximately 25%) and completely alpha 1-6-fucosylated at the N-acetylglucosamine linked to Asn-13 and Asn-30, respectively. The distinct site-specific distribution of the oligosaccharide structures among individual N-glycosylation sites of hCG appears to reflect primarily the influence of the surrounding protein structure on the substrate accessibility of the Golgi processing enzymes alpha-mannosidase II, GlcNAc transferase II and alpha 1,6-fucosyltransferase.  相似文献   

10.
A UDP-Gal:Gal beta 1----4GlcNAc-R alpha 1----3- and a UDP-Gal:GlcNAc-R beta 1----4-galactosyltransferase have been purified 44,000- and 101,000-fold, respectively, from a Triton X-100 extract of calf thymus by affinity chromatography on UDP-hexanolamine-Sepharose and alpha-lactalbumin-Sepharose in a yield of 25-40%. Sodium dodecyl sulfate gel electrophoresis under reducing conditions revealed a major polypeptide species with a molecular weight of 40,000 and a minor form at Mr 42,000 for the alpha 1----3-galactosyltransferase and a major polypeptide with Mr 51,000 for the beta 1----4-galactosyltransferase. Analytical gel filtration on Sephadex G-100 yielded a monomeric form for each of the galactosyltransferases with Mr 43,000 and 59,000 respectively, in addition to peaks of activity at higher molecular weights. Isoelectric focussing of the alpha 1----3-galactosyltransferase revealed a significant charge heterogeneity with forms varying in pI values between 5.0 and 6.5. Acceptor specificity studies indicated that the purified alpha 1----3-galactosyltransferase was free from contaminating galactosyltransferase activities such as those involved in the synthesis of Gal beta 1----4GlcNAc-R and Gal beta 1----3GalNAc-R sequences, the blood group B determinant, the Pk antigen, trihexosylceramide, and ganglioside GM1. The alpha 1----3-galactosyltransferase appeared to be highly active with glycoproteins, oligosaccharides, and glycolipids having a terminal Gal beta 1----4GlcNAc beta 1----unit such as asialo-alpha 1-acid glycoprotein (Km = 1.25 mM), Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3Man beta 1----4GlcNAc (Km = 0.57 mM), and paragloboside. The action of the alpha 1----3-galactosyltransferase was found to be mutually exclusive with that of the NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase from bovine colostrum. In addition alpha 1----3-fucosylation of the N-acetylglucosamine residue in the preferred disaccharide acceptor structure completely blocked galactosylation of the alpha 1----3-galactosyltransferase.  相似文献   

11.
Cold-insoluble globulin isolated from bovine plasma contains six asparagine-linked sugar chains in 1 molecule (a dimeric form). These sugar chains were released from the polypeptide backbone by hydrazinolysis and labeled by reduction with NaB[3H]4. Most of these sugar chains contain N-acetylneuraminic acid and can be separated by paper electrophoresis. By combination of sequential exoglycosidase digestion and methylation study, their structures were elucidated as Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc, NeuAc alpha 2 leads to 6 or 4Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(NeuAc alpha 2 leads to 4 or 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc, NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 4Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]-Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc and NeuAc alpha 2 leads to 4Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 4Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc.  相似文献   

12.
Bovine prothrombin contains three asparagine-linked sugar chains in 1 molecule. The sugar chains were quantitatively released from the polypeptide backbone by hydrazinolysis. All of the oligosaccharides thus obtained contain N-acetylneuraminic acid. Sialidase treatment of these acidic oligosaccharides released three isomeric oligosaccharides, N-1, N-2 and N-3. N-3 was a typical complex type asparagine-linked sugar chain widely found in other glycoprotein, while N-1 and N-2 were unique, because they contain Gal beta 1 leads to 3GlcNAc grouping in the outer chain moiety. By comparing the data of methylation analysis of the acidic oligosaccharides before and after sialidase treatment, the structures of the sugar chains of bovine prothrombin were confirmed as a mixture of NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn, NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn, NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn and their partially desialized forms.  相似文献   

13.
S Takasaki  A Kobata 《Biochemistry》1986,25(19):5709-5715
Asparagine-linked sugar chains were quantitatively released from fetuin by hydrazinolysis. Structural analysis of the sugar chains by sequential exoglycosidase digestion in combination with methylation analysis and Smith degradation revealed that most of them have typical biantennary (8%) and triantennary (74%) structures containing different amounts of N-acetylneuraminic acid residues. In addition, an unusual tetrasialyl triantennary sugar chain (17%) containing the Gal beta 1----3GlcNAc sequence in the outer chain moiety was detected, and its structure was elucidated as NeuAc alpha 2----3Gal beta 1----3(NeuAc alpha 2----6)-GlcNAc beta 1----4(NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----2)Man alpha 1----3(NeuAc alpha 2----3Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6)Man beta 1----4GlcNAc beta 1----4GlcNAc.  相似文献   

14.
The asparagine-linked sugar chains of human chorionic gonadotropin were released from the polypeptide moiety by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. More than 90% of the released radioactive oligosaccharides contained N-acetylneuraminic acid residues. After removal of N-acetylneuraminic acid residues by sialidase treatment, two neutral oligosaccharide fractions were obtained by paper chromatography. Sequential exoglycosidase digestion revealed that one of them was a mixture of two neutral oligosaccharides. The complete structures of the three oligosaccharides were elucidated by methylation analysis. It was confirmed that all the N-acetylneuraminic acid residues of the asparagine-linked sugar chains of human chorionic gonadotropin occur as NeuAc alpha 2 leads to 3Gal groupings by comparing the methylation analysis data for the acidic oligosaccharide mixture before and after sialidase treatment. Based on these results, the structures of the asparagine-linked sugar chains of human chorionic gonadotropin were confirmed to be +/- NeuAc alpha 2 leads to 3Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(NeuAc alpha 2 leads to 3Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4(+/- Fuc alpha 1 leads to 6)GlcNAc and Man alpha 1 leads to 6(NeuAc alpha 2 leads to 3 Gal beta 1 leads to 4 GlcNAc beta 1 leads to Man alpha 1 leads to 3)Man beta 1 leads to 4 GlcNAc beta 1 leads to 4GlcNAc.  相似文献   

15.
A prominent lectin in the root tubers of Trichosanthes japonica was purified by affinity chromatography on a porcine stomach mucin-Sepharose column and termed TJA-II. The molecular mass of the native lectin was determined to be 64 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and TJA-II was separated into two different subunits of 33 and 29 kDa in the presence of 2-mercaptoethanol. The respective subunits contained mannose, N-acetylglucosamine, fucose, and xylose. It was determined by equilibrium dialysis to have two equal binding sites per molecule, the association constant toward tritium-labeled Fuc alpha 1-->2Gal beta 1-->3GlcNAc beta 1-->3Gal beta 1-->4GlcOT being K alpha = 3.05 x 10(5) M-1. The precise carbohydrate binding specificity of immobilized TJA-II was studied using various tritium-labeled oligosaccharides. A series of oligosaccharides possessing Fuc alpha 1-->2Gal beta 1--> or GalNAc beta 1--> groups at their nonreducing terminals showed stronger binding ability than ones with Gal beta 1-->GlcNAc (Glc) groups, indicating that TJA-II fundamentally recognizes a beta-galactosyl residue and the binding strength increases on substitution of the hydroxyl group at the C-2 position with a fucosyl or acetylamino group. This lectin column is useful for fractionating oligosaccharides or glycoproteins containing blood group type 1H, type 2H, and Sd antigenic determinants.  相似文献   

16.
The primary structural analysis of O- and N-linked carbohydrate chains of the C-1-esterase inhibitor purified from normal serum was carried out by 400-MHz 1H-NMR spectroscopy. C-1-esterase inhibitor protein of a molecular weight of 116,000 daltons contains 24 O-glycans: NeuAc (alpha 2-3) Gal (beta 1-3) GalNAc, 4 N-glycans: NeuAc (alpha 2-6) Gal (beta 1-4) (GlcNAc (beta 1-2) Man (alpha 1-3) [NeuAc (alpha 2-6) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-6)] Man (beta 1-4) GlcNAc (beta 1-4) GlcNAc and 2 N-glycans: NeuAc (alpha 2-3) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-3) [NeuAc (alpha 2-3) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-6)] Man (beta 1-4) GlcNAc (beta 1-4) GlcNAc. 30% of the N-glycans are fucosylated.  相似文献   

17.
We previously reported that zebrafishalpha1-3fucosyltrasferase 1 (zFT1) was expressed in embryos at the segmentation period, and was capable of synthesizing the Lewis x epitope [Gal beta1-4(Fuc alpha1-3)GlcNAc] [Kageyama et.al, J. Biochem., 125, 838-845 (1999)]. In the current study, we attempted to detect the enzyme products of zFT1 in zebrafish embryos. Oligosaccharides were prepared from the zebrafish embryos at 12, 18 and 48 h after fertilization and labelled with a fluorophore, 2-aminopyridine, for highly sensitive detections. Pyridylamino (PA)-oligosaccharides that were alpha1-3/4fucosidase sensitive and time-dependently expressed at 18 h after fertilization were identified as candidates for the in vivo products synthesized by zFT1. Structures of these oligosaccharides were determined by a combination of exoglycosidase digestions and two-dimensional HPLC sugar mapping to be the biantennary complex-type structures with two Lewis x epitopes: (Gal beta1-4)(0,1,2)-{Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-6[Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-3]}Man beta1-4GlcNAc, and (Gal beta1-4)(0,1)-{Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-6[Gal beta1-4(Fuc alpha1-3)GlcNAc beta1-2Man alpha1-3]} Man beta1-4GlcNAc beta1-4GlcNAc. The presence of Lewis x structure of these oligosaccharides together with their expression time suggests that they are products of zFT1. Remarkably, most of these oligosaccharides were free form. Furthermore, we detected an endo-beta-N-acetylglucosaminidase activity in the 18 h embryo. These results suggest that the oligosaccharides synthesized by zFT1 are present in the embryo at the segmentation period in free form, owing to the liberation from glycoproteins with endo-beta-N-acetylglucosaminidase(s) and/or glycoamidase(s).  相似文献   

18.
Hen oviduct membranes were shown to contain high activity of a novel enzyme, UDP-GlcNac:GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-R (GlcNAc to Man) beta 4-GlcNAc-transferase VI. The enzyme was shown to transfer GlcNAc in beta 1-4 linkage to the D-mannose residue of GlcNAc beta 1-6 (GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or methyl. Radioactive enzyme products were purified by several chromatographic steps, including high performance liquid chromatography, and structures were determined by proton nmr, fast atom bombardment-mass spectrometry, and methylation analysis to be GlcNAc beta 1-6 ([14C]GlcNAc beta 1-4) (GlcNAc beta 1-2) Man alpha-R. The enzyme is stimulated by Triton X-100 and has optimum activity at a relatively high MnCl2 concentration of about 100 mM; Co2+, Mg2+, and Ca2+ could partially substitute for Mn2+. A tissue survey demonstrated high GlcNAc-transferase VI activity in hen oviduct and lower activity in chicken liver and colon, duck colon, and turkey intestine. No activity was found in mammalian tissues. Hen oviduct membranes cannot act on GlcNAc beta 1-6Man alpha-R but have a beta 4-GlcNAc-transferase activity that converts GlcNAc beta 1-2Man alpha-R to GlcNAc beta 1-4(GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or 1-6Man beta methyl. The latter activity is probably due to GlcNAc-transferase IV which preferentially adds GlcNAc in beta 1-4 linkage to the Man alpha 1-3 arm of the GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn core structure of asparagine-linked glycans. The minimum structural requirement for a substrate of beta 4-GlcNAc-transferase VI is therefore the trisaccharide GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-; this trisaccharide is found on the Man alpha 6 arm of many branched complex asparagine-linked oligosaccharides. The data suggest that GlcNAc-transferase VI acts after the synthesis of the GlcNAc beta 1-2Man alpha 1-3-, GlcNAc beta 1-2Man alpha 1-6-, and GlcNAc beta 1-6 Man alpha 1-6-branches by GlcNAc-transferases I, II, and V, respectively, and is responsible for the synthesis of branched oligosaccharides containing the GlcNAc beta 1-6(GlcNAc beta 1-4)(GlcNAc beta 1-2)Man alpha 1-6Man beta moiety.  相似文献   

19.
Bovine blood coagulation factor X contains both asparagine-linked and threonine-linked oligosaccharides. The asparagine-linked chain is a mixture of a tridecasaccharide NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc and a dodecasaccharide NeuAc alpha 2 leads to 6 Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc and their partial desialylation products. The threonine-linked chain is a mixture of NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GalNAc, NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuGly alpha 2 leads to 6)GalNAc, NeuGly alpha 2 leads to 3Gal beta 1 leads to 3 (NeuAc alpha 2 leads to 6)GalNAc, and NeuGly alpha 2 leads to 3Gal beta 1 leads to 3(NeuGly alpha 2 leads to 6)GalNAc, and their partial desialized forms. The carbohydrate moieties of the factor X subgroups, factors X1 and X2, are identical.  相似文献   

20.
Glycoprotein 71 from Friend murine leukemia virus was digested with proteases and the glycopeptides obtained were isolated and assigned, by amino acid sequencing, to the eight N-glycosylated asparagines in the molecule; only Asn334 and Asn341 could not be separated. The oligosaccharides liberated from each glycopeptide by endo-beta-N-acetylglucosaminidase H, or by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F, were fractionated and subjected to structural analysis by one- and two-dimensional 1H NMR, as well as by methylation/gas-liquid-chromatography/mass-fragmentography. At each glycosylation site, the substituents were found to be heterogeneous including, at Asn334/341 and Asn410, substitution by different classes of N-glycans: oligomannosidic oligosaccharides, mainly Man alpha 1----6(Man alpha 1----3)Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAc beta 1----, were detected at Asn168, Asn334/341 and Asn410. Hybrid species, partially sialylated, intersected and (proximally) funcosylated Man alpha 1----6(Man alpha 1----3)Man alpha 1----6 and Man alpha 1----3Man alpha 1----6 and Man alpha 1----3Man alpha 1----6(Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAc beta 1----, were found at Asn12, as previously published [Schlüter, M., Linder, D., Geyer, R., Hunsmann, H., Schneider, J. & Stirm, S. (1984) FEBS Lett. 169, 194-198] and at Asn334/341. N-Acetyllactosaminic glycans, mainly partially intersected and fucosylated NeuAc alpha 2----3 or Gal alpha 1----3Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(NeuAc alpha 2----6 or NeuAc alpha 2----3Gal-beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNac beta 1----4GlcNAc beta 1---- with some bifurcation at ----6Man alpha 1----6, were obtained from Asn266, Asn302, Asn334/341, Asn374 and Asn410. In addition, Thr268, Thr277, Thr279, Thr304/309, as well as Ser273 and Ser275, were found to be O-glycosidically substituted by Gal beta 1----3GalNAc alpha 1----, monosialylated or desialylated at position 3 of Gal or/and position 6 of GalNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号