首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Aims:  To investigate the infection biology of Colletotrichum sublineolum (isolate CP2126) and defence responses in leaves of resistant (SC146), intermediately resistant (SC326) and susceptible (BTx623) sorghum genotypes.
Methods and Results:  Infection biology and defence responses were studied quantitatively by light microscopy, H2O2 accumulation by DAB staining and HRGP accumulation by immunological methods. Inhibition of conidial germination and appressorium formation may represent prepenetration defence responses on the leaf surface. Inducible defence responses in the resistant genotypes included decreases in formation of appressoria as well as accumulation of H2O2, HRGPs and phytoalexins. Concomitant with these inducible responses, fungal growth was stopped during or just after penetration in genotypes SC146 and SC326. High levels of H2O2 accumulating at late infection stages (5 days after inoculation) in the susceptible genotype BTx623 correlated with necrosis and tissue degeneration.
Conclusions:  The early accumulation of H2O2 and HRGPs indicates roles in defence whereas the late accumulation in genotype BTx623 correlated with successful pathogenesis.
Significance and Impact of the Study:  The fact that there is a significant correlation between induced accumulation of H2O2, papilla formation and cell wall cross-linking, as evidenced by HRGP accumulation, and cessation of pathogen growth in resistant genotypes may help exploit host resistance in sorghum.  相似文献   

2.
Aims:  Vanadium chloroperoxidase and its directed evolution mutant P395D/L241V/T343A were investigated for their antibacterial and antiviral potential at slightly alkaline pH and at a H2O2 concentration that is low compared to current nonenzymatic formulations.
Methods and Results:  Two bacteria (the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus ) and two viruses (the enveloped Herpes Simplex Virus and the nonenveloped Coxsackievirus B4) were incubated with the P395D/L241V/T343A mutant, 10 mmol l−1 H2O2 and 100 mmol l−1 Br at pH 8. Strong microbial reduction was observed and bactericidal and virucidal activities of the mutant were three to six orders of magnitude higher than for the wild-type enzyme.
Conclusions:  The P395D/L241V/T343A mutant of vanadium chloroperoxidase has a broad antimicrobial activity at alkaline conditions.
Significance and Impact of the Study:  For many disinfection formulations, antimicrobial activity at slightly alkaline pH values is required. To date, only the wild-type vanadium chloroperoxidase has been studied for its antibacterial activity, and only at acidic to neutral pH values. Its antiviral activity (e.g. useful for the cleaning of medical equipment) was not studied before. The observed activity for the alkalophilic P395D/L241V/T343A mutant is an important step forward in the application of this robust enzyme as a component in disinfection formulations.  相似文献   

3.
Aims:  This study evaluated the inactivation of Bacillus anthracis Vollum spores dried on a nonporous surface using a superabsorbent polymer (SAP) gel containing commercially available liquid decontaminants.
Methods and Results:  The first phase determining the availability of the liquid decontaminant within the SAP showed that the SAP gel containing pH-adjusted sodium hypochlorite (NaOCl) inhibited B. anthracis growth while the water control SAP gel had no affect on growth. For testing surface decontamination, B. anthracis spores were dried onto steel coupons painted with chemical agent resistant coating and exposed to SAP containing either pH-adjusted NaOCl, chlorine dioxide (ClO2) or hydrogen peroxide/peracetic acid (H2O2/PA) for 5 and 30 min. At contact times of both 5 and 30 min, all of the SAP gels containing pH-adjusted NaOCl, ClO2 or H2O2/PA inactivated B. anthracis spores at levels ranging from 2·2 to ≥7·6 log reductions.
Conclusions:  Incorporation of three commercially available decontaminant technologies into a SAP gel promotes inactivation of B. anthracis spores without observable physical damage to the test surface.
Significance and Impact of the Study:  This work provides preliminary data for the feasibility of using SAP in inactivating B. anthracis spores on a nonporous surface, supporting the potential use of SAP in surface decontamination.  相似文献   

4.
Aims:  To investigate the effects of salicylates in Saccharomyces cerevisiae exposed to oxidative stress induced by hydrogen peroxide (H2O2).
Methods and Results:  Saccharomyces cerevisiae was cultured through to the postlogarithmic phase of growth. Stress was induced by the addition of 1·5 mmol l−1 H2O2 for 1 h, while N-acetyl-l-cysteine (NAC) and glutathione (GSSG) were used as control agents that affect the redox balance. Sodium salicylate, at 0·01–10 mmol l−1or acetylsalicylic acid, at 0·02–2·5 mmol l−1 was administered at various times before hydrogen peroxide stress. Both agents conferred resistance to a subsequent hydrogen peroxide stress, similarly to the induction of the adaptive response observed upon pretreatment with NAC and GSSG. Sodium salicylate was more potent as a short-term, but not as a long-term pretreatment agent, compared to acetylsalicylic acid.
Conclusions:  Pharmacological pretreatment with salicylates resulted in dose related increases in cell survival, indicating the induction of the protective response in yeast.
Significance and Impact of the study:  The possible role of salicylates in the modulation of the hydrogen peroxide stress response in eukaryotic cells address questions on the effects of these commonly used therapeutic agents in a number of disorders exhibiting an oxidative stress component.  相似文献   

5.
Aims:  The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H2) producers from digested household solid wastes.
Methods and Results:  A strict anaerobic extreme thermophilic H2 producing bacterial culture was enriched from a lab-scale digester treating household wastes at 70°C. The enriched mixed culture consisted of two rod-shaped bacterial members growing at an optimal temperature of 80°C and an optimal pH 8·1. The culture was able to utilize glucose, galactose, mannose, xylose, arabinose, maltose, sucrose, pyruvate and glycerol as carbon sources. Growth on glucose produced acetate, H2 and carbon dioxide. Maximal H2 production rate on glucose was 1·1 mmol l−1 h−1 with a maximum H2 yield of 1·9 mole H2 per mole glucose. 16S ribosomal DNA clone library analyses showed that the culture members were phylogenetically affiliated to the genera Bacillus and Clostridium. Relative abundance of the culture members, assessed by fluorescence in situ hybridization, were 87 ± 5% and 13 ± 5% for Bacillus and Clostridium , respectively.
Conclusions:  An extreme thermophilic, strict anaerobic, mixed microbial culture with H2-producing potential was enriched from digested household wastes.
Significance and Impact of the Study:  This study provided a culture with a potential to be applied in reactor systems for extreme thermophilic H2 production from complex organic wastes.  相似文献   

6.
Abstract: We studied the action of H2O2 on the exocytosis of glutamate by cerebrocortical synaptosomes. The treatment of synaptosomes with H2O2 (50–150 µ M ) for a few minutes results in a long-lasting depression of the Ca2+-dependent exocytosis of glutamate, induced by KCl or by the K+-channel inhibitor 4-aminopyridine. The energy state of synaptosomes, as judged by the level of phosphocreatine and the ATP/ADP ratio, was not affected by H2O2, although a transient decrease was observed after the treatment. H2O2 did not promote peroxidation, as judged by the formation of malondialdehyde. In indo-1-loaded synaptosomes, the treatment with H2O2 did not modify significantly the KCl-induced increase of [Ca2+]i. H2O2 inhibited exocytosis also when the latter was induced by increasing [Ca2+]i with the Ca2+ ionophore ionomycin. The effects of H2O2 were unchanged in the presence of superoxide dismutase and the presence of the Fe3+ chelator deferoxamine. These results appear to indicate that H2O2, apparently without damaging the synaptosomes, induces a long-lasting inhibition of the exocytosis of glutamate by acting directly on the exocytotic process.  相似文献   

7.
The role of a recently identified K+ATP channel in preventing H2O2 formation was examined in isolated pea stem mitochondria. The succinate-dependent H2O2 formation was progressively inhibited, when mitochondria were resuspended in media containing increasing concentration of KCl (from 0.05 to 0.15  M ). This inhibition was linked to a partial dissipation of the transmembrane electrical potential (ΔΨ) induced by KCl. Conversely, the malate plus glutamate-dependent H2O2 formation was not influenced. The succinate-sustained H2O2 generation was also unaffected by nigericin (a H+/K+ exchanger), but completely prevented by valinomycin (a K+ ionophore). In addition, cyclosporin A (a K+ATP channel opener) inhibited this H2O2 formation, while ATP (an inhibitor of the channel opening) slightly increased it. The inhibitory effect of ATP was strongly stimulated in the presence of atractylate (an inhibitor of the adenine nucleotide translocase), thus suggesting that the receptor for ATP on the K+ channel faces the intermembrane space. Finally, the succinate-dependent H2O2 formation was partially prevented by phenylarsine oxide (a thiol oxidant).  相似文献   

8.
The hydrogen peroxide (H2O2) stress response in Enterococcus faecalis ATCC19433 was investigated. A 2·4 mmol l−1 H2O2 pretreatment conferred protection against a lethal concentration (45 mmol l−1) of this agent. The relatively high concentrations of H2O2 used for adaptation and challenge treatments in Ent. faecalis emphasised the strong resistance towards oxidative stress in this species. Various stresses (NaCl, heat, ethanol, acidity and alkalinity) induced weak or strong H2O2 cross-protection. This paper describes the involvement of protein synthesis in the active response to lethal dose of H2O2, in addition to the impressive enhancement of synthesis of five H2O2 stress proteins. Combined results suggest that these proteins might play an important role in the H2O2 tolerance response.  相似文献   

9.
Aims:  The objective of this study is to develop kinetic models based on batch experiments describing the growth, CO2 consumption, and H2 production of Anabaena variabilis ATCC 29413-UTM as functions of irradiance and CO2 concentration.
Methods and Results:  A parametric experimental study is performed for irradiances from 1120 to 16100 lux and for initial CO2 mole fractions from 0·03 to 0·20 in argon at pH 7·0 ± 0·4 with nitrate in the medium. Kinetic models are successfully developed based on the Monod model and on a novel scaling analysis employing the CO2 consumption half-time as the time scale.
Conclusions:  Monod models predict the growth, CO2 consumption and O2 production within 30%. Moreover, the CO2 consumption half-time is an appropriate time scale for analysing all experimental data. In addition, the optimum initial CO2 mole fraction is 0·05 for maximum growth and CO2 consumption rates. Finally, the saturation irradiance is determined to be 5170 lux for CO2 consumption and growth whereas, the maximum H2 production rate occurs around 10 000 lux.
Significance and Impact of the Study:  The study presents kinetic models predicting the growth, CO2 consumption and H2 production of A. variabilis . The experimental and scaling analysis methods can be generalized to other micro-organisms.  相似文献   

10.
Abstract Bacteroides fragilis Bf-2 cells were more sensitive to far-UV radiation, N -methyl- N '-nitrosoguanidine, ethylmethane sulphonate, acriflavine and mitomycin C under aerobic conditions than under anaerobic conditions. The opposite effect was observed with H2O2-treated cells and exposure to O2 enhanced the survival of H2O2-treated cells. Pretreatment of cells with sublethal concentrations of H2O2 also increased the survival of H2O2-treated cells. Reactivation of UV- and X-irradiated and methylmethane sulphonate and H2O2-treated phage b-1 was induced by O2 and H2O2 in B. fragilis .  相似文献   

11.
Detection of hydrogen peroxide produced by meat lactic starter cultures   总被引:1,自引:1,他引:0  
Twelve strains of meat lactic starter cultures (Pediococcus spp. and Lactobacillus plantarum) were found to produce hydrogen peroxide in vitro. The (cumulative) amounts of H2O2 produced were measured through the peroxidative action of catalase on H2O2 and oxidation of added formate to CO2 by the H2O2-catalase complex formed. There was a problem in building a calibration curve for converting values of formate oxidation into amounts of H2O2, either by adding H2O2 directly to the assay mixture or having it produced via a glucose-glucose oxidase system.  相似文献   

12.
Elevated levels of salicylic acid (SA) are required for the induction of systemic acquired resistance (SAR) in plants. Recently, a salicylic acid-binding protein (SABP) isolated from tobacco was shown to have catalase activity. Based on this finding elevated levels of hydrogen peroxide (H2O2) were postulated to act as a second messenger of SA in the SAR signal transduction pathway. A series of experiments have been carried out to clarify the role of H2O2 in SAR-signaling. No increase of H2O2 was found during the onset of SAR. Induction of the SAR gene, PR-1, by H2O2 and H2O2-inducing chemicals is strongly suppressed in transgenic tobacco plants that express the bacterial salicylate hydroxylase gene, indicating that H2O2 induction of SAR genes is dependent on SA accumulation. Following treatment of plants with increasing concentrations of H2O2, a dose-dependent accumulation of total SA species was found, suggesting that H2O2 may induce PR-1 gene expression through SA accumulation. While the results do not support a role for H2O2 in SAR signaling, it is suggested that SA inhibition of catalase activity may be important in tissues undergoing a hypersensitive response.  相似文献   

13.
Abstract: Mitochondrial complexes I, II, and III were studied in isolated brain mitochondrial preparations with the goal of determining their relative abilities to reduce O2 to hydrogen peroxide (H2O2) or to reduce the alternative electron acceptors nitroblue tetrazolium (NBT) and diphenyliodonium (DPI). Complex I and II stimulation caused H2O2 formation and reduced NBT and DPI as indicated by dichlorodihydrofluorescein oxidation, nitroformazan precipitation, and DPI-mediated enzyme inactivation. The O2 consumption rate was more rapid under complex II (succinate) stimulation than under complex I (NADH) stimulation. In contrast, H2O2 generation and NBT and DPI reduction kinetics were favored by NADH addition but were virtually unobservable during succinate-linked respiration. NADH oxidation was strongly suppressed by rotenone, but NADH-coupled H2O2 flux was accelerated by rotenone. α-Phenyl- N-tert -butyl nitrone (PBN), a compound documented to inhibit oxidative stress in models of stroke, sepsis, and parkinsonism, partially inhibited complex I-stimulated H2O2 flux and NBT reduction and also protected complex I from DPI-mediated inactivation while trapping the phenyl radical product of DPI reduction. The results suggest that complex I may be the principal source of brain mitochondrial H2O2 synthesis, possessing an "electron leak" site upstream from the rotenone binding site (i.e., on the NADH side of the enzyme). The inhibition of H2O2 production by PBN suggests a novel explanation for the broad-spectrum antioxidant and antiinflammatory activity of this nitrone spin trap.  相似文献   

14.
15.
16.
Suspension-cultured rose ( Rosa damascena Mill. cv. Gloire de Guilan) cells irradiated with UV-C (254 nm. 558 J m−2) showed a transient production of H2O2 as measured by chemiluminescence of luminol in the presence of peroxidase (EC 1.1 1.1.7). The peak concentration of H2O2, which occurred at about 60–90 min after irradiation, was 8–9 μ M . The time course for the appearance of H2O2 matched that for UV–induced K+ efflux. Treatments that inhibited the UV-induced efflux of K+, including heat and overnight incubation with cycloheximide and diethylmaleate, also inhibited the appearance of H2O2. The converse was not always true, since catalase (EC 1.11.1.6. and salicylhydroxamic acid, which inhibited luminescence, did not stop K+ efflux. We conclude that H2O2 synthesis depends on K+ efflux. Because H2.O2 in the extracellular space is required for lignin synthesis in many plant tissues, we suggest that the UV–stimulated production of H2O2 is an integral part of a defensive lignin synthesis.  相似文献   

17.
Active oxygen species (AOS) are believed to have important roles in plants in general and in plant—pathogen interactions in particular. They are believed to be involved in signal transduction, cell wall reinforcement, hypersensitive response (HR) and phytoalexin production, and to have direct antimicrobial effects. Since current methods are inadequate for localizing AOS in intact plant tissue, most studies have been conducted using cell suspension culture/elicitors systems. 3,3-diaminobenzidine (DAB) polymerizes instantly and locally as soon as it comes into contact with H2O2 in the presence of peroxidase, and it was found that, by allowing the leaf to take up this substrate, in-vivo and in-situ detection of H2O2 can be made at subcellular levels. This method was successfully used to detect H2O2 in developing papillae and surrounding haloes (cell wall appositions) and whole cells of barley leaves interacting with the powdery mildew fungus. Thus, H2O2 can be detected in the epidermal cell wall subjacent to the primary germ tube from 6 h after inoculation, and subjacent to the appressorium from 15 h. The earliest time point for observation of H2O2 in relation to epidermal cells undergoing HR is 15 h after inoculation, first appearing in the zones of attachment to the mesophyll cells underneath, and eventually in the entire epidermal cell. Furthermore, it was observed that proteins in papillae and HR cells are cross-linked, a process believed to be fuelled by H2O2. This cross-linking reinforces the apposition, presumably assisting the arrest of the pathogen.  相似文献   

18.
Abstract Reactivation of UV-irradiated phage b-1 was induced by H2O2 and UV in Bacteroides fragilis . The characteristics of H2O2 and UV induced phage reactivation differ from a previously reported oxygen induced reactivation system. The survival of B. fragilis cells after UV irradiation was also increased by pretreatment with H2O2. DNA synthesis was not inhibited in the host cells exposed to H2O2 concentrations which induced phage reactivation. The pattern of DNA degradation and synthesis after UV irradiation with and without H2O2 differed from the effect of O2 on DNA synthesis in irradiated B. fragilis cells.  相似文献   

19.
Aims:  To find out the cumulative effect of the nutritional parameters and to enhance the production of jasmonic acid (JA) in static fermentation by Lasiodiplodia theobromae using response surface methodology (RSM).
Method and Results:  Malt extract, sucrose, NaNO3 and MgSO4.7H2O were analysed by a 30-trial central composite design using RSM for optimizing their concentrations in the medium and the effect of their mutual interaction on JA production. Sucrose and NaNO3 were found highly significant in influencing the JA production. Malt extract and MgSO4.7H2O showed an effect on the JA production in interaction with other variables. When the optimum values of the parameters obtained through RSM (19·95 g l−1 malt extract, 50 g l−1 sucrose, 7·5 g l−1 NaNO3 and 3·51 g l−1 MgSO4.7H2O) were applied, 32% increase in JA production (299 mg l−1) was observed in comparison with 225 mg l−1 of JA produced with same media components not analysed by RSM and subsequently validated the statistical model.
Conclusions:  Increase in JA production was achieved by optimizing the nutritional parameters.
Significance and Impact of the Study:  This is the first report of using RSM for optimizing a medium for JA production. It resulted in an increase in JA production without augmentation of costly additives.  相似文献   

20.
Abstract: Involvement of reactive oxygen species has been implicated in plant defence against pathogens. We report here a novel pathway of H2O2 generation induced by the addition of phosphate in soybean ( Glycine max L.) cell suspension cultures. This H2O2 generation was initiated shortly after the addition of phosphate, and lasted only approximately one hour, as opposed to several hours observed during an attack by an avirulent strain of the bacterial pathogen Pseudomonas syringae pv. glycinea (Psg). In addition, when cell cultures were treated with both phosphate and the avirulent pathogen, two distinct oxidative burst events were observed. In contrast to DPI-sensitive Psg -induced H2O2 generation, phosphate-induced H2O2 generation was insensitive to this NADPH oxidase inhibitor. This suggests that an NADPH oxidase-independent pathway may be involved in the phosphate-induced H2O2 accumulation, which could be involved in sensing of phosphate availability in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号