首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new test method has been developed to estimate the required release rate of hydrogen peroxide (H2O2) to prevent marine biofouling. The technique exploits a well-defined concentration gradient of biocide across a cellulose acetate membrane. A controlled flux of H2O2, an environmentally friendly biocide, was obtained. Larvae of the barnacle, Balanus improvisus, were subjected to known release rates of H2O2 from a surface, under laboratory conditions. It was found that the distribution of settled larvae was not significantly different from the controls when H2O2 fluxes of 5–8 μg cm?2 day?1 were applied. However, release rates of 40 μg cm?2 day?1 significantly displaced the distribution of settled larvae towards the area of the chamber farthest away from the membrane. Membrane tests in seawater (Jyllinge Harbour, Denmark) for over 16 weeks showed that release rates of H2O2 of approximately 2800 μg cm?2 day?1 deterred biofouling efficiently. A H2O2 release rate of about 224 μg cm?2 day?1 resulted in some slime formation, but it was less than that on the H2O2-free control. It appears that to obtain efficient resistance to biofouling in natural seawater requires much higher membrane release rates of H2O2 (factor of between 5 and 50) than laboratory membrane exposure assays using barnacle larvae.  相似文献   

2.
This study presents a series of experiments carried out in order to elucidate the role of H2O2 in antimicrobial activity of lactobacilli. Vaginal swabs were collected from 60 premenopausal women and checked for pH and Nugent score, and Lactobacillus species were cultured, phenotyped and genotyped. The main outcome measures involved: (1) species of vaginal lactobacilli most effective in liberating H2O2, (2) minimal microbicidal concentrations of added H2O2, (3) kinetics of H2O2 liberation in relation to oxygen tension, (4) antimicrobial activity of pure H2O2 versus one produced by selected vaginal lactobacilli and the total activity of their culture supernatants. Results showed that H2O2 was liberated especially by: Lactobacillus delbrueckii, Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus johnsonii and L. gasseri. Hydrogen peroxide reached concentrations from 0.05 to 1.0 mM, which under intensive aeration increased even up to 1.8 mM. Microorganisms related to vaginal pathologies show varied resistance to the action of pure H2O2. Most potent inhibitory activity against bacteria and yeasts was presented by Lactobacillus culture supernate producing H2O2, followed by the nonproducing strain and pure H2O2. To conclude - the antimicrobial activity of lactobacilli is a summation of various inhibitory mechanisms in which H2O2 plays some but not a crucial role, in addition to other substances.  相似文献   

3.
The present paper describes the development and validation of a simple and sensitive micelle‐enhanced high‐throughput fluorometric method for the determination of niclosamide (NIC) in 96‐microwell plates. The proposed method is based on the reduction of the nitro group of niclosamide to an amino group using Zn/HCl to give a highly fluorescent derivative that was developed simultaneously and measured at λem 444 nm after excitation at λex 275 nm. Tween‐80 and carboxymethylcellulose (CMC) have been used as fluorescence enhancers and greatly enhanced the fluorescence by factors of 100–150%. The different experimental conditions affecting the fluorescence reaction were carefully investigated and optimized. The proposed method showed good linearity (r2≥ 0.9997) over the concentration ranges of 1–5 and 0.5–5 μg/ml with lower detection limits of 0.01 and 0.008 μg/ml and lower quantification limits of 0.04 and 0.03 μg/ml on using Tween‐80 and or CMC, respectively. The developed high‐throughput method was successfully applied for the determination of niclosamide in both tablets and spiked plasma. The capability of the method for measuring microvolume samples made it convenient for handling a very large number of samples simultaneously. In addition, it is considered an environmentally friendly method with lower consumption of chemicals and solvents.  相似文献   

4.
5.
The interpretation of the end points in azole antifungal drug susceptibility testing is challenging, in part due to incomplete growth inhibition of Candida species. Since the reference Clinical and Laboratory Standards Institute (CLSI) broth microdilution method have limitation with azoles, a new modification of the CLSI microdilution protocol was evaluated. We measure the decrease in growth rate (μ) of exponentially growing cultures in accordance to different azole concentrations at time intervals up to 10 h. Using 15 different Candida strains, an overall agreement within ± 2 dilutions by the CLSI method at 24 h in RPMI and the μ-dependent method for three antifungal agents (fluconazole- itraconazole and voriconazole) was achieved. MIC measurement by the new method was less sensitive to the medium used or the inoculum size applied. The presented data suggested that, measuring the in vitro inhibition kinetics at the logarithmic phase could have advantages for addressing susceptibility testing toward azoles.  相似文献   

6.
A promising means of rapid screening of extended‐spectrum‐β‐lactamase (ESBL), AmpC β‐lactamase, and co‐production of ESBL and AmpC that combines resazurin chromogenic agar (RCA) with a combined disc method is here reported. Cefpodoxime (CPD) discs with and without clavulanic acid (CA), cloxacillin (CX) and CA+CX were evaluated against 86 molecularly confirmed β‐lactamase‐producing Enterobacteriaceae , including 15 ESBLs, 32 AmpCs, nine co‐producers of ESBL and AmpC and 30 carbapenemase producers. The CA and CX synergy test successfully detected all ESBL producers (100% sensitivity and 98.6% specificity) and all AmpC producers (100% sensitivity and 96.36% specificity). This assay also performed well in screening for co‐existence of ESBL and AmpC (88.89% sensitivity and 100% specificity). The RCA assay is simple and inexpensive and provides results within 7 hr. It can be performed in any microbiological laboratory, in particular, in geographic regions in which ESBL, AmpC or co‐β‐lactamase‐producing Enterobacteriaceae are endemic.
  相似文献   

7.
The aim of this study was to evaluate the efficacy of hydrogen peroxide vapour (HPV) against spores of Clostridium botulinum, for use as a method for decontaminating environments where this pathogen has been handled. Spores were dried onto stainless steel slides and exposed to HPV in a sealed glovebox enclosure, transferred to a quenching agent at timed intervals during the exposure period, before survivors were cultured and enumerated. D-values were calculated from graphs of log10 survivors plotted against time and were found to range from 1.41 to 4.38 min. HPV was found to be effective at deactivating spores of toxigenic Cl. botulinum, non-toxigenic Clostridium spp. and Geobacillus stearothermophilus dried onto stainless steel surfaces. HPV could be used to decontaminate cabinets and rooms where Cl. botulinum has been handled. The cycle parameters should be based on studies carried out with relevant spores of this organism, rather than based on inactivation data for G. stearothermophilus spores, which have been used in the past as a standard biological challenge for disinfection and sterilisation procedures. HPV could provide an attractive alternative to other decontamination methods, as it was rapid, residue-free and did not give rise to the health and safety concerns associated with other gaseous decontamination systems.  相似文献   

8.
9.
10.
Hydrogen peroxide (H2O2) is a reactive oxygen species that signals between cells, and H2O2 signaling is essential for diverse cellular processes, including stress response, defense against pathogens, and the regulation of programmed cell death in plants. Although plasma membrane intrinsic proteins (PIPs) have been known to transport H2O2 across cell membranes, the permeability of each family member of PIPs toward H2O2 has not yet been determined in most plant species. In a recent study, we showed that certain isoforms of Arabidopsis thaliana AtPIPs, including AtPIP2;2, AtPIP2;4, AtPIP2;5, and AtPIP2;7, are permeable for H2O2 in yeast cells. Since the expression of PIPs is differently modulated in Arabidopsis by abiotic stress or H2O2 treatment, it is important to investigate the integrated regulation of aquaporin expression and their physiological significance in H2O2 transport and plant response to diverse abiotic stresses.  相似文献   

11.
《Free radical research》2013,47(12):1496-1513
In endothelial cell dysfunction, the uncoupling of eNOS results in higher superoxide (O2??) and lower NO production and a reduction in NO availability. Superoxide reacts with NO to form a potent oxidizing agent peroxynitrite (ONOO?) resulting in nitrosative and nitroxidative stresses and dismutates to form hydrogen peroxide. Studies have shown superoxide dismutase (SOD) plays an important role in reduction of O2?? and ONOO? during eNOS uncoupling. However, the administration or over-expression of SOD was ineffective or displayed deleterious effects in some cases. An understanding of interactions of the two enzyme systems eNOS and SOD is important in determining endothelial cell function. We analyzed complex biochemical interactions involving eNOS and SOD in eNOS uncoupling. A computational model of biochemical pathway of the eNOS-related NO and O2?? production and downstream reactions involving NO, O2??, ONOO?, H2O2 and SOD was developed. The effects of SOD concentration on the concentration profiles of NO, O2??, ONOO? and H2O2 in eNOS coupling/uncoupling were investigated. The results include (i) SOD moderately improves NO production and concentration during eNOS uncoupling, (ii) O2?? production rate is independent of SOD concentration, (iii) Increase in SOD concentration from 0.1 to 100 μM reduces O2?? concentration by 90% at all [BH4]/[TBP] ratios, (iv) SOD reduces ONOO? concentration and increases H2O2 concentration during eNOS uncoupling, (v) Catalase can reduce H2O2 concentration and (vi) Dismutation rate by SOD is the most sensitive parameter during eNOS uncoupling. Thus, SOD plays a dual role in eNOS uncoupling as an attenuator of nitrosative/nitroxidative stress and an augmenter of oxidative stress.  相似文献   

12.
A simple colorimetric method for determination of hydrogen peroxide in plant materials is described. The method is based on hydrogen peroxide producing a stable red product in reaction with 4-aminoantipyrine and phenol in the presence of peroxidase. Plant tissues was ground with trichloroacetic acid (5% w/v) and extracts were adjusted to pH 8.4 with ammonia solution. Activated charcoal was added to the homogenate to remove pigments, antioxidants and other interfering substances. The colorimetric reagent (pH 5.6) consisted of 4-aminoantipyrine, phenol, and peroxidase. With this method, we have determined the hydrogen peroxide concentration in leaves of eight species which ranged from 0.2 to 0.8 μmol g−1 FW. Changes in hydrogen peroxide concentration of Stylosanthes guianensis in response to heat stress are also analyzed using this method.  相似文献   

13.
Studying the implication of hydrogen peroxide in biological processes in plants remains a challenge due to the current shortcomings of H2O2-responsive probes. The use of ContPY1, a new fluorescent probe, which is highly selective and sensitive for H2O2, was investigated. To validate the use of ContPY1 on plants, we have generated protocols employing cells suspensions and leaves, and measured specifically H2O2 production by plants using spectrofluorometry and microscopy.  相似文献   

14.
15.
Age‐related muscle atrophy and weakness, or sarcopenia, are significant contributors to compromised health and quality of life in the elderly. While the mechanisms driving this pathology are not fully defined, reactive oxygen species, neuromuscular junction (NMJ) disruption, and loss of innervation are important risk factors. The goal of this study is to determine the impact of mitochondrial hydrogen peroxide on neurogenic atrophy and contractile dysfunction. Mice with muscle‐specific overexpression of the mitochondrial H2O2 scavenger peroxiredoxin3 (mPRDX3) were crossed to Sod1KO mice, an established mouse model of sarcopenia, to determine whether reduced mitochondrial H2O2 can prevent or delay the redox‐dependent sarcopenia. Basal rates of H2O2 generation were elevated in isolated muscle mitochondria from Sod1KO, but normalized by mPRDX3 overexpression. The mPRDX3 overexpression prevented the declines in maximum mitochondrial oxygen consumption rate and calcium retention capacity in Sod1KO. Muscle atrophy in Sod1KO was mitigated by ~20% by mPRDX3 overexpression, which was associated with an increase in myofiber cross‐sectional area. With direct muscle stimulation, maximum isometric specific force was reduced by ~20% in Sod1KO mice, and mPRDX3 overexpression preserved specific force at wild‐type levels. The force deficit with nerve stimulation was exacerbated in Sod1KO compared to direct muscle stimulation, suggesting NMJ disruption in Sod1KO. Notably, this defect was not resolved by overexpression of mPRDX3. Our findings demonstrate that muscle‐specific PRDX3 overexpression reduces mitochondrial H2O2 generation, improves mitochondrial function, and mitigates loss of muscle quantity and quality, despite persisting NMJ impairment in a murine model of redox‐dependent sarcopenia.  相似文献   

16.
17.
The small GTPases of Rop/Rho family is central regulators of important cellular processes in plants. Tobacco small G protein gene NtRop1 has been isolated; however, its roles in stress responses were unknown. In the present study, the genomic sequence of NtRop1 was cloned, which has seven exons and six introns, similar to the Rop gene structure from Arabidopsis. The NtRop1 gene was constitutively expressed in the different organs whereas the other six Rop genes from tobacco had differential expression patterns. The expression of the NtRop1 gene was moderately induced by methyl viologen, NaCl, and ACC treatments, but slightly inhibited by ABA treatment, with no significant induction by NAA treatment. The transgenic Arabidopsis plants overexpressing the NtRop1 showed increased salt sensitivity as can be seen from the reduced root growth and elevated relative electrolyte leakage. The hydrogen peroxide production was also promoted in the NtRop1-trangenic plants in comparison with wild type plants. These results imply that the NtRop1 may confer salt sensitivity through activation of H2O2 production during plant response to salt stress.  相似文献   

18.
19.
Purified mitochondria from germinating castor bean (Ricinus communis L.) endosperm was treated with hydrogen peroxide (H2O2), active oxygen form, in order to investigate the extent of membrane degradation. Incubation of mitochondria with micromolar concentrations (50–200 μM) of H2O2 resulted in a concentration-dependent loss of membrane proteins. During this process extensive loss of lipid-phosphate content was also observed in mitochondrial membranes. When L-3-phosphatidyl[2-14C]ethanolamine was added to the mitochondrial membranes as an exogenous substrate, the level of radioactivity in the water-soluble fraction was markedly enhanced with increasing concentration of H2O2. Analysis of the water-soluble products formed during the metabolism of ethanolamine-labelled phosphatidylethanolamine by mitochondrial membranes from castor bean indicates that this loss of lipid-phosphate is attributable to action of phospholipase D. Direct measurement of mitochondrial phospholipase D indicated that the activity of enzyme was remarkably stimulated by calcium ion or sodium dodecylsulfate (SDS). The optimum concentrations for enzyme stimulation were 25 and 0.5 mM for calcium ion and SDS in the reaction mixture, respectively. The substrate specificity of phospholipase D was determined by comparing various classes of exogenous phospholipids, added in the form of sonicated vesicles, as substrates. The phospholipase D exhibited preference for phosphatidylethanolamine. Taken together, our results suggest that increase of mitochondrial phospholipase D activity may be a key event leading to accelerated membrane deterioration following active oxygen attack.  相似文献   

20.
A new method based on protein fragmentation and directly coupled microbore high-performance liquid chromatography-fast atom bombardment mass spectrometry (HPLC-FABMS) is described for determining the rates at which peptide amide hydrogens in proteins undergo isotopic exchange. Horse heart cytochrome c was incubated in D2O as a function of time and temperature to effect isotopic exchange, transferred into slow exchange conditions (pH 2-3, 0 degrees C), and fragmented with pepsin. The number of peptide amide deuterons present in the proteolytic peptides was deduced from their molecular weights, which were determined following analysis of the digest by HPLC-FABMS. The present results demonstrate that the exchange rates of amide hydrogens in cytochrome c range from very rapid (k > 140 h-1) to very slow (k < 0.002 h-1). The deuterium content of specific segments of the protein was determined as a function of incubation temperature and used to indicate participation of these segments in conformational changes associated with heating of cytochrome c. For the present HPLC-FABMS system, approximately 5 nmol of protein were used for each determination. Results of this investigation indicate that the combination of protein fragmentation and HPLC-FABMS is relatively free of constraints associated with other analytical methods used for this purpose and may be a general method for determining hydrogen exchange rates in specific segments of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号