首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we designed and applied molecular biosensors for heavy metals, zinc and copper, for use in bioremediation strategies. Bacteria utilize two component systems to sense changes in the environment by multiple signal components including heavy metals and control gene expression in response to changes in signal molecules. zraP and cusC promoters were selected from a genetic circuit of the ZraSR and CusSR two-component system and were fused to a dual-labeling reporter protein as an interactive biological component for zinc and copper to generate a signal from the constructed biosensor. The biosensor efficiently senses zinc and copper with a calculated detection limit of 16 μM and 26 μM, respectively, and was shown to be a sensitive and effective heavy metal monitoring bacterial system. To extend the application of the bacterial biosensor, we assembled a bioadsorption system that can trigger bacteria to sense and adsorb 13 ± 0.3 mg/L of zinc and 11.4 ± 0.42 mg/L of copper per gram of dry cell weight with induction at a concentration of 100 mg/L of the respective metal ion.  相似文献   

2.
The bacterial envelope is the interface with the surrounding environment and is consequently subjected to a barrage of noxious agents including a range of compounds with antimicrobial activity. The ESR (envelope stress response) pathways of enteric bacteria are critical for maintenance of the envelope against these antimicrobial agents. In the present study, we demonstrate that the periplasmic protein ZraP contributes to envelope homoeostasis and assign both chaperone and regulatory function to ZraP from Salmonella Typhimurium. The ZraP chaperone mechanism is catalytic and independent of ATP; the chaperone activity is dependent on the presence of zinc, which is shown to be responsible for the stabilization of an oligomeric ZraP complex. Furthermore, ZraP can act to repress the two-component regulatory system ZraSR, which itself is responsive to zinc concentrations. Through structural homology, ZraP is a member of the bacterial CpxP family of periplasmic proteins, which also consists of CpxP and Spy. We demonstrate environmental co-expression of the CpxP family and identify an important role for these proteins in Salmonella's defence against the cationic antimicrobial peptide polymyxin B.  相似文献   

3.
4.
Engineering of staphylococcal surfaces for biotechnological applications   总被引:3,自引:0,他引:3  
Novel surface proteins can be introduced onto bacterial cell surfaces by recombinant means. Here, we describe various applications of two such display systems for the food-grade bacteria Staphylococcus carnosus and Staphylococcus xylosus, respectively. The achievements in the use of such staphylococci as live bacterial vaccine delivery vehicles will be described. Co-display of proteins and peptides with adhesive properties to enable targeting of the bacteria, have significantly improved the vaccine delivery potential. Recently, protective immunity to respiratory syncytial virus (RSV) could be evoked in mice by intranasal immunization using such 'second generation' vaccine delivery systems. Furthermore, antibody fragments and other 'affinity proteins' with capacity to specifically bind a certain protein, e.g. Staphylococcus aureus protein A-based affibodies, have been surface-displayed on staphylococci as initial efforts to create whole-cell diagnostic devices. Surface display of metal-binding peptides, or protein domains into which metal binding properties has been engineered by combinatorial protein engineering, have been exploited to create staphylococcal bioadsorbents for potential environmental or biosensor applications. The use of these staphylococcal surface display systems as alternatives for display of large protein libraries and subsequent affinity selection of relevant binding proteins by fluorescence-activated cell sorting (FACS) will be discussed.  相似文献   

5.
6.
A significant role of zinc-binding motifs on metal mobility in Escherichia coli was explored using a chimeric metal-binding green fluorescent protein (GFP) as an intracellular zinc indicator. Investigation was initiated by co-transformation and co-expression of two chimeric genes encoding the chimeric GFP carrying hexahistidine (His6GFP) and the zinc-binding motif fused to outer membrane protein A (OmpA) in E. coli strain TG1. The presence of these two genes was confirmed by restriction endonucleases analysis. Co-expression of the two recombinant proteins exhibited cellular fluorescence activity and enhanced metal-binding capability of the engineered cells. Incorporation of the zinc-binding motif onto the membrane resulted in 60-fold more binding capability to zinc ions than those of the control cells. The high affinity to metal ions of the bacterial surface influenced influx of metal ions to the cells. This may affect the essential ions for triggering important cell metabolism. A declining of fluorescent intensity of GFP has been detected on the cell expressed of zinc binding motif. Meanwhile, balancing of metal homeostasis due to the presence of cytoplasmic chimeric His6GFP enhanced the fluorescent emission. These findings provide the first evidence of real-time monitoring of intracellular mobility of zinc by autofluorescent proteins.  相似文献   

7.
8.
9.
Microorganisms have adapted intricate signal transduction mechanisms to coordinate tolerance to toxic levels of metals, including two-component regulatory systems (TCRS). In particular, both cop and czc operons are regulated by TCRS; the cop operon plays a key role in bacterial tolerance to copper, whereas the czc operon is involved in the efflux of cadmium, zinc, and cobalt from the cell. Although the molecular physiology of heavy metal tolerance genes has been extensively studied, their evolutionary relationships are not well-understood. Phylogenetic relationships among heavy-metal efflux proteins and their corresponding two-component regulatory proteins revealed orthologous and paralogous relationships from species divergences and ancient gene duplications. The presence of heavy metal tolerance genes on bacterial plasmids suggests these genes may be prone to spread through horizontal gene transfer. Phylogenetic inferences revealed nine potential examples of lateral gene transfer associated with metal efflux proteins and two examples for regulatory proteins. Notably, four of the examples suggest lateral transfer across major evolutionary domains. In most cases, differences in GC content in metal tolerance genes and their corresponding host genomes confirmed lateral gene transfer events. Three-dimensional protein structures predicted for the response regulators encoded by cop and czc operons showed a high degree of structural similarity with other known proteins involved in TCRS signal transduction, which suggests common evolutionary origins of functional phenotypes and similar mechanisms of action for these response regulators.  相似文献   

10.
Studies have indicated that specific heme delivery to apocytochrome c is a critical feature of the cytochrome c biogenesis pathways called system I and II. To determine directly the heme requirements of each system, including whether other metal porphyrins can be incorporated into cytochromes c, we engineered Escherichia coli so that the natural system I (ccmABCDEFGH) was deleted and exogenous porphyrins were the sole source of porphyrins (Delta hemA). The engineered E. coli strains that produced recombinant system I (from E. coli) or system II (from Helicobacter) facilitated studies of the heme concentration dependence of each system. Using this exogenous porphyrin approach, it was shown that in system I the levels of heme used are at least fivefold lower than the levels used in system II, providing an important advantage for system I. Neither system could assemble holocytochromes c with other metal porphyrins, suggesting that the attachment mechanism is specific for Fe protoporphyrin. Surprisingly, Zn and Sn protoporphyrins are potent inhibitors of the pathways, and exogenous heme competes with this inhibition. We propose that the targets are the heme binding proteins in the pathways (CcmC, CcmE, and CcmF for system I and CcsA for system II).  相似文献   

11.
12.
13.
Culture growth and recombinant protein yield of the Pichia pastoris GS115 methanol utilization positive system were studied in response to the types and levels of metals present in the growth medium and the supplemental salts typically used for these fermentations. Magnesium and zinc were both required to support cell growth but at significantly reduced levels compared to the control. However, supplementation with calcium, cobalt, iron, manganese, iodine, boron, and molybdenum were not required to sustain cell mass. When the medium was reformulated with only zinc and magnesium, the cells grew to 12-15 generations, which are expected for high cell density fed-batch fermentations. Product yields of the recombinant protein beta-galactosidase were significantly influenced by the trace metal concentrations. By using response surface and full factorial designs, maximum protein yield occurred when the concentration of zinc salt was limited to the level necessary only to support cell mass while protein yield positively correlated to increasing levels of the remaining trace metal salts. These studies are the first to show that excess trace metals must be optimized when developing P. pastoris based fed-batch fermentations.  相似文献   

14.
Efficient response to environmental cues is crucial to successful infection by plant-pathogenic bacteria such as Erwinia carotovora ssp. carotovora. The expression of the main virulence genes of this pathogen, encoding extracellular enzymes that degrade the plant-cell wall, is subject to complex regulatory machinery where two-component systems play an important role. In this paper, we describe for the first time the involvement of the PmrA-PmrB two-component system in regulation of virulence in a plant-pathogenic bacterium. Disruption of pmrB resulted in reduced virulence both in potato and in Arabidopsis. This is apparently due to reduced production of the extracellular enzymes. In contrast, a pmrA mutant exhibited increased levels of these enzymes implying negative regulation of the corresponding genes by PmrA. Furthermore, the pmrB but not pmrA mutant exhibited highly increased resistance to the cationic antimicrobial peptide polymyxin B suggesting alterations in cell surface properties of the mutant. A similar increase of polymyxin resistance was detected in the wild type at mildly acidic pH with low Mg2+. Functional pmrA is essential for bacterial survival on excess iron at acidic pH, regardless of the Mg2+ concentration. We propose that PmrA-PmrB TCS is involved in controlling of bacterial response to external pH and iron and is crucial for bacterial virulence and survival in planta.  相似文献   

15.
16.
Efficient enrichment of staphylococcal cells displaying specific heterologous affinity ligands on their cell surfaces was demonstrated by using fluorescence-activated cell sorting. Using bacterial surface display of peptide or protein libraries for the purpose of combinatorial protein engineering has previously been investigated by using gram-negative bacteria. Here, the potential for using a gram-positive bacterium was evaluated by employing the well-established surface expression system for Staphylococcus carnosus. Staphylococcus aureus protein A domains with binding specificity to immunoglobulin G or engineered specificity for the G protein of human respiratory syncytial virus were expressed as surface display on S. carnosus cells. The surface accessibility and retained binding specificity of expressed proteins were demonstrated in whole-cell enzyme and flow cytometry assays. Also, affibody-expressing target cells could be sorted essentially quantitatively from a moderate excess of background cells in a single step by using a high-stringency sorting mode. Furthermore, in a simulated library selection experiment, a more-than-25,000-fold enrichment of target cells could be achieved through only two rounds of cell sorting and regrowth. The results obtained indicate that staphylococcal surface display of affibody libraries combined with fluoresence-activated cell sorting might indeed constitute an attractive alternative to existing technology platforms for affinity-based selections.  相似文献   

17.
18.
19.
Porins form trimers in the outer membrane and help transport nutrients and waste products across the bacterial cell membrane. Porin loops are suitable candidates as display systems due to their high immunogenicity and presentation at the bacterial cell surface. In this study, Salmonella typhi porins (OmpC and OmpF) engineered with the Kennedy peptide from gp41 of HIV were characterised. The chimeric OmpC carrying the Kennedy peptide in loop7 did not trimerise, whereas the chimeric OmpF with the epitope in loop5 formed trimers and also was recognised by the antibodies in the HIV patient serum. The results suggest that chimeric S. typhi OmpF may be taken further as a potential candidate to develop as an epitope display system. Proteins 2017; 85:657–664. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
纤维素是来源广泛且储量较大的低成本可再生资源,但其结构致密难以利用。目前降解纤维素需要多种纤维素酶协作,而游离纤维素酶成本高、难以重复利用等问题限制了其广泛应用。利用酵母表面展示技术,可以将多个纤维素酶分别与锚定蛋白融合后共展示在细胞表面,从而构建酵母表面展示纤维素酶体系。这一体系可高效降解纤维素,一方面可以充分发挥表面展示的优点,如易回收、稳定性好、操作简单、成本低;另一方面可以将纤维素有效地降解为葡萄糖,并具有代谢产生物乙醇的潜力。阐述了酵母表面展示体系的构建原则,总结了影响展示体系效率的因素,介绍了这一技术在降解纤维素中的应用,为构建高效酵母表面展示纤维素酶体系及其他多酶体系提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号