首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ha J  Engler CR  Wild JR 《Bioresource technology》2009,100(3):1138-1142
Calcium-alginate immobilized cell systems were developed for the detoxification and biodegradation of coumaphos, an organophosphate insecticide, and its hydrolysis products, chlorferon and diethlythiophosphate (DETP). Optimum bead loadings for bioreactor operation were found to be 200 g-beads/L for chlorferon degradation and 300 g-beads/L for DETP degradation. Using waste cattle dip (UCD) solution as substrate, the degradation rate for an immobilized consortium of chlorferon-degrading bacteria was five times greater than that for freely suspended cells, and hydrolysis of coumaphos by immobilized OPH(+)Escherichia coli was 2.5 times greater. The enhanced degradation of immobilized cells was due primarily to protection of the cells from inhibitory substances present in the UCD solution. In addition, physiological changes of the cells caused by Ca-alginate immobilization may have contributed to increased reaction rates. Degradation rates for repeated operations increased for successive batches indicating that cells became better adapted to the reaction conditions over time.  相似文献   

2.
3.
Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited.  相似文献   

4.
The effect of light on BPA degradation by an adapted bacterial consortium was investigated. BPA was completely degraded up to 50 mg l−1, and the degradation followed first-order reaction kinetics both in the light and in the dark. The degradation half-life of BPA when the consortium was grown in presence of light was 21.9, 17.2, and 12.6 h for concentrations of 10, 20, and 50 mg l−1, respectively; the degradation half-life of BPA in the dark was 13.1, 10.8, and 10.2 h for concentrations of 10, 20, and 50 mg l−1, respectively. Therefore, light inhibited BPA biodegradation. However, under both conditions, BPA was completely depleted. The bacterial consortium effectively utilised BPA as a growth substrate to sustain a cell yield of 0.95 g g−1 and 0.97 g g−1 in the light and dark, respectively. A total of ten and nine biodegradation intermediates were detected in the light and dark, respectively. Three bacterial metabolic pathways and one photodegradation pathway were proposed to explain their occurrence. This study demonstrated that bacterial consortia may assemble a wide range of catabolic pathways to allow for efficient degradation of BPA, converting BPA to principally bacterial biomass and metabolites exhibiting low or no oestrogenic activity.  相似文献   

5.
4-Chloroaniline has been released into the environment due to extensive use in chemical industries and intensive agriculture; hence, it becomes one of the hazardous pollutants in the priority pollutant list. In this study, three gram-negative bacteria were enriched and isolated from agricultural soil as 4-chloroaniline-degrading bacteria. They were identified as Acinetobacter baumannii CA2, Pseudomonas putida CA16 and Klebsiella sp. CA17. They were able to utilize 4-chloroaniline as a sole carbon and nitrogen source without stimulation or cocultivation with aniline or another cosubstrate. The biodegradation in these bacteria was occurred via a modified ortho-cleavage pathway of which the activity of chlorocatechol 1, 2-dioxygenase was markedly induced. They grew well on 0.2-mM 4-chloroaniline exhibiting a 60-75% degradation efficiency and equimolar liberation of chloride. The isolates were able to survive in the presence of 4-chloroaniline at higher concentrations (up to 1.2 mM). 2-Chloroaniline, 3-chloroaniline and aniline, but not 3, 4-dichloroaniline, were also growth substrates for these isolates. The results of cosubstrate supplementation illustrated the suitable conditions of each isolate to improve growth rate and 4-chloroaniline biodegradation efficiency. These results suggest that these isolates have a potential use for bioremediation of the site contaminated with 4-chloroaniline.  相似文献   

6.
Biodegradation of naphthalene by enriched marine denitrifying bacteria   总被引:3,自引:0,他引:3  
Numerous studies have been investigated on the PAHs biodegradation in aerobic and anaerobic environments; however, the biodegradation of PAHs under anoxic conditions, especially denitrifying conditions, has drawn less attention. In this study, four series of batch experiments were conducted to investigate the effect of temperature, pH, naphthalene concentration and nitrate concentration on the naphthalene degradation under denitrification condition. Our results showed that the degradation of naphthalene was most favorable at pH 7 and 25 °C. Results also indicated that 30 mg/l naphthalene inhibited the biodegradation and the removal efficiency was only 20.2%. Significant degradation (91.7% and 96.3%) of naphthalene occurred when nitrate concentrations were 1.0 and 5.0 mM. Moreover, the maximum degradation rates were 0.13 and 0.18 mg-NAP/(l h) depending on the concentration of nitrate. Based on 16S rDNA analysis, the denitrifying enriched culture was mainly composed of ??-Proteobacteria (19 clones out of a total of 23 clones) and Actinobacteria (4 clones). Using a primer set specific for naphthalene degrading functional gene nahAc, two operational taxonomy units were obtained in the clone library of nahAc. Both of them were closely related to nahAc genes of known species of Pseudomonas. Quantitative polymerase chain reaction (qPCR) was employed to quantify the change of naphthalene-degrading population during the degradation of naphthalene using nahAc gene as the biomarker. The maximum degradation rate and removal efficiency were strongly correlated with nahAc gene copy number, with R2 of 0.69 and 0.79, respectively.  相似文献   

7.
Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution.  相似文献   

8.
Linuron-mineralizing cultures were enriched from two linuron-treated agricultural soils in the presence and absence of a solid support. The cultures contained linuron-degrading bacteria, which coexisted with bacteria degrading either 3,4-dichloroaniline (3,4-DCA) or N,O-dimethylhydroxylamine (N,O-DMHA), two common metabolites in the linuron degradation pathway. For one soil, the presence of a solid support enriched for linuron-degrading strains phylogenetically related to but different from those enriched without support. Most linuron-degrading consortium members were identified as Variovorax, but a Hydrogenophaga and an Achromobacter strain capable of linuron degradation were also obtained. Several of the linuron-degrading isolates also degraded 3,4-DCA. Isolates that degraded 3,4-DCA but not linuron belonged to the genera Variovorax, Cupriavidus and Afipia. Hyphomicrobium spp. were involved in the metabolism of N,O-DMHA. Whereas several isolates degraded linuron independently, more efficient degradation was achieved by combining linuron and 3,4-DCA-degraders or by adding casamino acids. These data suggest that (1) linuron degradation is performed by a group of metabolically interacting bacteria rather than by individual strains, (2) there are other genera in addition to Variovorax that degrade linuron beyond 3,4-DCA, (3) linuron-degrading consortia of different origins have a similar composition, and (4) interactions between consortium members can be complex and can involve exchange of both metabolites and other nutrients.  相似文献   

9.
Biodegradation of lignocellulosic waste by Aspergillus terreus is reported for the first time. This isolate produced 250 CMCase (carboxymethyl cellulase or endoglucanase) U.ml-1 and biodegraded hay and straw during 3 days and the biomass production on straw was 5g.L-1dry weight from 0.25 cm2 inoculated mycellium. This strain secreted endocellulases and exocellulases in the culture medium, but some of the enzymes produced, remained cell membrane bound. Cell bound enzymes were released by various treatments. The highest amount of endoglucanase and exoglucanase was released when the cells were treated with sonication. Aspergillus terreus was added to two tanks containing sugar wastewater and pulp manufacturing waste, as a seed for COD removal. This fungus reduced the COD by 40–80 percent, also, ammonia was reduced from 14.5 mM to 5.6 mM in sugar beet wastewater. The effects of crude enzyme of this fungus for COD removal was studied.  相似文献   

10.
Biodegradation of lignocellulosic waste by Aspergillus terreus is reported for the first time. This isolate produced 250 CMCase (carboxymethyl cellulase or endoglucanase) U.ml(-1) and biodegraded hay and straw during 3 days and the biomass production on straw was 5g.L(-1) dry weight from 0.25 cm2 inoculated mycellium. This strain secreted endocellulases and exocellulases in the culture medium, but some of the enzymes produced, remained cell membrane bound. Cell bound enzymes were released by various treatments. The highest amount of endoglucanase and exoglucanase was released when the cells were treated with sonication. Aspergillus terreus was added to two tanks containing sugar wastewater and pulp manufacturing waste, as a seed for COD removal. This fungus reduced the COD by 40-80 percent, also, ammonia was reduced from 14.5 mM to 5.6 mM in sugar beet wastewater. The effects of crude enzyme of this fungus for COD removal was studied.  相似文献   

11.
In this study, three feather degrading bacterial strains were isolated from agroindustrial residues from a Brazilian poultry farm. Three Gram-positive, spore-forming, rod-shaped bacteria and were identified as B. subtilis 1271, B. licheniformis 1269 and B. cereus 1268 using biochemical, physiologic and molecular methods. These Bacillus spp. strains grew and produced keratinases and peptidases using chicken feather as the sole source of nitrogen and carbon. B. subtilis 1271 degraded feathers completely after 7 days at room temperature and produced the highest levels of keratinase (446 U ml?1). Feather hydrolysis resulted in the production of serine, glycine, glutamic acid, valine and leucine as the major amino acids. Enzymography and zymography analyses demonstrated that enzymatic extracts from the Bacillus spp. effectively degraded keratin and gelatin substrates as well as, casein, hemoglobin and bovine serum albumin. Zymography showed that B. subtilis 1271 and B. licheniformis 1269 produced peptidases and keratinases in the 15?C140 kDa range, and B. cereus produced a keratinase of ~200 kDa using feathers as the carbon and nitrogen source in culture medium. All peptidases and keratinases observed were inhibited by the serine specific peptidase inhibitor phenylmethylsulfonyl fluoride (PMSF). The optimum assay conditions of temperature and pH for keratinase activity were 40?C50°C and pH 10.0 for all strains. For gelatinases the best temperature and pH ranges were 50?C70°C and pH 7.0?C11. These isolates have potential for the biodegradation of feather wastes and production of proteolytic enzymes using feather as a cheap and eco-friendly substrate.  相似文献   

12.
13.
Microbial consortia were obtained three by sequential enrichment using different oil products. Consortium F1AA was obtained on a heavily saturated fraction of a degraded crude oil; consortium TD, by enrichment on diesel and consortium AM, on a mixture of five polycyclic aromatic hydrocarbons [PAHs]. The three consortia were incubated with a crude oil in order to elucidate their metabolic capabilities and to investigate possible differences in the biodegradation of these complex hydrocarbon mixtures in relation to their origin. The efficiency of the three consortia in removing the saturated fraction was 60% (F1AA), 48% (TD) and 34% (AM), depending on the carbon sources used in the enrichment procedures. Consortia F1AA and TD removed 100% of n-alkanes and branched alkanes, whereas with consortium AM, 91% of branched alkanes remained. Efficiency on the polyaromatic fraction was 19% (AM), 11% (TD) and 7% (F1AA). The increase in aromaticity of the polyaromatic fraction during degradation of the crude oil by consortium F1AA suggested that this consortium metabolized the aromatic compounds primarily by oxidation of the alkylic chains. The 500-fold amplification of the inocula from the consortia by subculturing in rich media, necessary for use of the consortia in bioremediation experiments, showed no significant decrease in their degradation capability. Journal of Industrial Microbiology & Biotechnology (2002) 28, 252–260 DOI: 10.1038/sj/jim/7000236 Received 12 July 2001/ Accepted in revised form 11 November 2001  相似文献   

14.
Thermophilic methane production from cattle waste   总被引:6,自引:0,他引:6  
Methane production from waste of cattle fed a finishing diet was investigated, using four 3-liter-working volume anaerobic digestors at 60 degrees C. At 55 degrees C a start-up culture, in which waste was the only source of bacteria, was generated within 8 days and readily adapted to 60 degrees C, where efficiency of methanogenesis was greater. Increasing the temperature from 60 to 65 degrees C tended to drastically lower efficiency. When feed concentrations of volatile solids (VS, organic matter) were increased in steps of 2% after holding for 1 months at a given concentration, the maximum concentrations for efficient fermentation were 8.2, 10.0, 11.6, and 11.6% for the retention times (RT) of 3, 6, 9, and 12 days, respectively. The VS destructions for these and lower feed concentrations were 31 to 37, 36 to 40, 47 to 49 and 51 to 53% for the 3-, 6-, 9-, and 12-day RT digestors, respectively, and the corresponding methane production rates were about 0.16, 0.18, 0.20, and 0.22 liters/day per g of VS in the feed. Gas contained 52 to 57% methane. At the above RT and feed concentrations, alkalinity rose to 5,000 to 7,700 mg of CaCo3 per liter (pH to 7.5 to 7.8), NH3 plus NH4+ to 64 to 90 mM, and total volatile acids to 850 to 2,050 mg/liter as acetate. The 3-day RT digestor was quite stable up to 8.2% feed VS and at this feed concentration produced methane at the very high rate of 4.5 liters/day per liter of digestor. Increasing the percentage of feed VS beyond those values indicated above resulted in greatly decreased organic matter destruction and methane production, variable decrease in pH, and increased alkalinity, ammonia, and total volatile acid concentrations, with propionate being the first to accumulate in large amounts. In a second experiment with another lot of waste, the results were similar. These studies indicate that loading rates can be much higher than those previously thought useful for maximizing methanogenesis from cattle waste.  相似文献   

15.
Biodegradation of the synthetic pyrethroid cypermethrin in used sheep dip   总被引:9,自引:0,他引:9  
AIMS: To investigate the breakdown of cypermethrin synthetic pyrethroid (SP) insecticide-based used sheep dip (USD), with its indigenous microbial community and two previously isolated SP-degrading microorganisms. METHODS AND RESULTS: Cultures of USD (50 ml) containing 250 ml l(-1) cypermethrin were inoculated with the SP-degrading organisms and incubated at 25 degrees C with agitation at 80 rev min(-1) for 14 days. The viable cell counts and concentration of cypermethrin were monitored. A non-stimulated control was also carried out. The previously isolated bacteria were the most effective at degrading cypermethrin, leaving approximately two-thirds the concentration of SP as was found in the control. The non-stimulated cultures showed negligible breakdown of SP over the experimental period. CONCLUSIONS: The previously isolated SP-degrading bacteria could have a use in the treatment of SP USD. SIGNIFICANCE AND IMPACT OF STUDY: In situ treatment of SP-based USDs to detoxify the active ingredient before disposal could be very useful in helping to deal with agricultural pesticide waste. Such an approach, or by ex situ treatment would be more preferable to current methods, such as those of incineration and disposal to land.  相似文献   

16.
Keratinase are proteolytic enzymes which have gained much attention to convert keratinous wastes that cause huge environmental pollution problems. Ten microbial isolates were screened for their keratinase production. The most potent isolate produce 25.2?U/ml under static condition and was primarily identified by partial 16s rRNA gene sequence as Bacillus licheniformis ALW1. Optimization studies for the fermentation conditions increased the keratinase biosynthesis to 72.2?U/ml (2.9-fold). The crude extracellular keratinase was optimally active at pH 8.0 and temperature 65?°C with 0.7% soluble keratin as substrate. The produced B. licheniformis ALW1 keratinase exhibited a good stability over pH range from 7 to 9 and over a temperature range 50–60?°C for almost 90?min. The crude enzyme solution was able to degrade native feather up to 63% in redox free system.  相似文献   

17.
Thermophilic methane production from cattle waste.   总被引:1,自引:9,他引:1       下载免费PDF全文
Methane production from waste of cattle fed a finishing diet was investigated, using four 3-liter-working volume anaerobic digestors at 60 degrees C. At 55 degrees C a start-up culture, in which waste was the only source of bacteria, was generated within 8 days and readily adapted to 60 degrees C, where efficiency of methanogenesis was greater. Increasing the temperature from 60 to 65 degrees C tended to drastically lower efficiency. When feed concentrations of volatile solids (VS, organic matter) were increased in steps of 2% after holding for 1 months at a given concentration, the maximum concentrations for efficient fermentation were 8.2, 10.0, 11.6, and 11.6% for the retention times (RT) of 3, 6, 9, and 12 days, respectively. The VS destructions for these and lower feed concentrations were 31 to 37, 36 to 40, 47 to 49 and 51 to 53% for the 3-, 6-, 9-, and 12-day RT digestors, respectively, and the corresponding methane production rates were about 0.16, 0.18, 0.20, and 0.22 liters/day per g of VS in the feed. Gas contained 52 to 57% methane. At the above RT and feed concentrations, alkalinity rose to 5,000 to 7,700 mg of CaCo3 per liter (pH to 7.5 to 7.8), NH3 plus NH4+ to 64 to 90 mM, and total volatile acids to 850 to 2,050 mg/liter as acetate. The 3-day RT digestor was quite stable up to 8.2% feed VS and at this feed concentration produced methane at the very high rate of 4.5 liters/day per liter of digestor. Increasing the percentage of feed VS beyond those values indicated above resulted in greatly decreased organic matter destruction and methane production, variable decrease in pH, and increased alkalinity, ammonia, and total volatile acid concentrations, with propionate being the first to accumulate in large amounts. In a second experiment with another lot of waste, the results were similar. These studies indicate that loading rates can be much higher than those previously thought useful for maximizing methanogenesis from cattle waste.  相似文献   

18.
The main purpose of this paper is to study naphthalene (NAP) biodegradation by acclimated activated sludge, employing the culture-enrichment method in a continuous flow bioreactor of the wastewater treatment process. The effects of various COD loadings and influent flow rates of an artificial wastewater containing 15 mg l−1 NAP on the biodegradation rates of the activated sludge will be investigated, in order to determine the biodegradation kinetics and minimum mean cell residence time of the activated sludge. From the experimental results, it was found that the resulting enriched activated sludge follows the growth rate of the Monod type and can biodegrade those COD and NAP loadings in the influents efficiently, and its bio-treatment efficiency on NAPs increases with the decrease of influent flow rate. The sludge volume index (SVI) of the resulting enriched activated sludge meets the design value required by the convectional activated sludge process for the treatment of wastewater.  相似文献   

19.
Oily residues that are generated in normal ship operation are considered hazardous wastes. A biodegradation assay with autochthonous microbiota of Bilge Waste Oily Phase (BWOP) was performed in a bioreactor under controlled conditions. Petroleum, diesel oil, and PAH degraders were isolated from bilge wastes. These bacteria belong to the genus Pseudomonas and are closely related to Pseudomonas stutzeri as shown by 16S rDNA phylogenetic analysis. The indigenous microbial community of the bilge waste was capable of biodegrading the BWOP (1% v/v) with biodegradation efficiencies of 70% for hexane extractable material (HEM), 68% for total hydrocarbons (TH) and 90% for total aromatics hydrocarbons (TA) in 14 days. Solid phase microextraction (SPME) was successfully applied to evaluate hydrocarbon evaporation in a control experiment and demonstrated a mass balance closure of 88%. The SPME and biodegradation results give useful information to improve and scale up the process for BWOP treatment.  相似文献   

20.
This study investigates the hydrolysis of cellulose by a mixed culture enriched from landfill waste in a continuous reactor operated under prolonged residence times to accommodate methanogenic conditions. Chemostat studies of hydrolysis under balance methanogenic conditions are rarely reported, despite the importance of hydrolysis under these conditions in waste management and renewable energy industries. Continuous digestion was studied in a 1.25l digester, fed with a 1% (w/v) slurry of 50mum cellulose in sterilized leachate drawn from a 220l digester operated on a feedstock of mixed municipal solid waste. Unsterilized leachate was used as the inoculum. Stable and rapid hydrolytic conditions were established at residence time of 2.5, 3.5 and 5d with a 1st order hydrolysis rate 0.45+/-0.07d(-1) and high methane yields ranging from 57% to 62% of solubilised cellulose on a COD basis. Biomass yields were between 32% and 35% of solubilised cellulose on a COD basis, over three times that observed with fermentative cultures. This is attributed to the diversity of the microbial population which fully converted solubilised COD to methane, as evident by VFA yields of less than 8% on a COD basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号