首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Topical treatment of skin with all-trans-retinoic acid (ATRA), the major biologically active form of vitamin A, results in hyperproliferation of basal keratinocytes, leading to an accelerated turnover of epidermis cells and thickening of the epidermis, probably via induction of production of paracrine growth factors for keratinocytes in epidermal suprabasal keratinocytes and/or dermal fibroblasts. Since hepatocyte growth factor (HGF) is a factor mitogenic to epidermal keratinocytes secreted from dermal fibroblasts, the effect of ATRA on basal and induced HGF production in human dermal fibroblasts in culture was examined. ATRA alone did not induce HGF production, but it significantly enhanced HGF production induced by the cAMP-elevating agent cholera toxin or the membrane-permeable cAMP analog 8-bromo-cAMP. Cholera toxin-induced activation of cAMP responsive element (CRE)-binding protein (CREB) was enhanced by pretreating cells with ATRA for 24 h. In contrast, HGF production induced by epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA) was potently inhibited by ATRA. These modulatory effects of ATRA were different from the effects of transforming growth factor-beta1 (TGF-beta) and dexamethasone, both of which inhibited HGF production induced by all of the four inducers. Up-regulation of HGF gene expression by cholera toxin and EGF was also enhanced and inhibited, respectively, by ATRA. Both 9-cis-retinoic acid (9-cis-RA) and 13-cis-retinoic acid (13-cis-RA), which are stereo-isomers of ATRA, showed a modulatory effect on HGF induction similar to that of ATRA. These results suggest that ATRA augments the induction of HGF production caused by increased intracellular cAMP.  相似文献   

3.
4.
The biological effects of epidermal growth factor receptor (EGFR) activation may differ between epidermal suprabasal and basal keratinocytes, since growth factors are mitogenic in adherent cells only in the presence of cell-extracellular matrix (ECM) interaction. To investigate biological effects of EGFR activation on keratinocytes without cell-ECM interaction, we cultured normal human keratinocytes on polyhydroxyethylmethacrylate-coated plates, which disrupt cell-ECM but not cell-cell interaction. The cells initially expressed keratin 10 (K10) and then profilaggrin, mimicking sequential differentiation of epidermal suprabasal keratinocytes. The addition of EGF or transforming growth factor-alpha promoted late terminal differentiation (profilaggrin expression, type 1 transglutaminase expression and activity, and cornified envelope formation) of the suspended keratinocytes, while suppressing K10 expression, an early differentiation marker. These effects were attenuated by EGFR tyrosine kinase inhibitor PD153035 or an anti-EGFR monoclonal antibody, whereas protein kinase C inhibitors H7 and bisindolylmaleimide I or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD98059 abolished profilaggrin up-regulation but not K10 suppression. Since the antidifferentiative role of EGFR on cell-ECM interaction-conserved keratinocytes has been well documented, our results indicate that the biological effects of EGFR on keratinocytes are influenced by cell-ECM interaction and suggest that EGFR activation promotes rather than inhibits the terminal differentiation of suprabasal epidermal keratinocytes.  相似文献   

5.
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that strongly activates dendritic cells (DC) and can initiate allergic inflammation. The factors inducing the production of human TSLP are not known. In this study, we show that proinflammatory (TNF-alpha or IL-1alpha) and Th2 (IL-4 or IL-13) cytokines synergized to induce the production of TSLP in human skin explants. TSLP production in situ was restricted to epidermal keratinocytes of the suprabasal layer. TSLP production could not be inhibited by factors regulating Th2 inflammation, such as IL-10, TGF-beta, or IFN-gamma. Cytokine-treated skin culture supernatants induced the maturation of blood CD11c(+) DC in a TSLP-dependent manner. Our data provide the first evidence of TSLP induction and subsequent DC activation in human skin. Blocking TSLP-inducing cytokines could represent a novel strategy for the treatment of allergic diseases.  相似文献   

6.
ShcA proteins mediate Erk1/Erk2 activation by integrins and epidermal growth factor (EGF), and are expressed as p46ShcA, p52ShcA, and p66ShcA. Although p52ShcA and p46ShcA mediate Erk1/Erk2 activation, p66ShcA antagonizes Erk activation. p66ShcA is spatially regulated during lung development, leading us to hypothesize that integrin signaling regulates p66ShcA expression and, consequently, EGF signaling. Fetal lung mesenchymal cells were isolated from E16 Swiss-Webster mice, stimulated with oligopeptide extracellular matrix analogs or anti-integrin antibodies, and subjected to ShcA Western analyses and EGF-stimulated Erk1/Erk2 kinase assays. p66ShcA expression was decreased by anti-alpha1 integrin antibody and DGEA collagen analog, and increased by anti-beta1, anti-alpha4, and anti-alpha5 integrin antibodies and RGDS fibronectin analog. Paradoxically, beta1 integrin stimulation increased EGF-induced Erk activation while increasing expression of the inhibitory p66ShcA isoform. This paradox was resolved by demonstrating that Erk inhibition attenuates integrin-mediated p66ShcA induction. These results suggest that p66ShcA is up-regulated as inhibitory feedback on integrin-mediated Erk activation.  相似文献   

7.
8.
In many cell types, G-protein-coupled receptor (GPCR)-induced Erk1/2 MAP kinase activation is mediated via receptor tyrosine kinase (RTK) transactivation, in particular via the epidermal growth factor (EGF) receptor. Lysophosphatidic acid (LPA), acting via GPCRs, is a mitogen and MAP kinase activator in many systems, and LPA can regulate adipocyte proliferation. The mechanism by which LPA activates the Erk1/2 MAP kinase is generally accepted to be via EGF receptor transactivation. In primary cultures of brown pre-adipocytes, EGF can induce Erk1/2 activation, which is obligatory and determinant for EGF-induced proliferation of these cells. Therefore, we have here examined whether LPA, via EGF transactivation, can activate Erk1/2 in brown pre-adipocytes. We found that LPA could induce Erk1/2 activation. However, the LPA-induced Erk1/2 activation was independent of transactivation of EGF receptors (or PDGF receptors) in these cells (whereas in transformed HIB-1B brown adipocytes, the LPA-induced Erk1/2 activation indeed proceeded via EGF receptor transactivation). In the brown pre-adipocytes, LPA instead induced Erk1/2 activation via two distinct non-transactivational pathways, one Gi-protein dependent, involving PKC and Src activation, the other, a PTX-insensitive pathway, involving PI3K (but not Akt) activation. Earlier studies showing LPA-induced Erk1/2 activation being fully dependent on RTK transactivation have all been performed in cell lines and transfected cells. The present study implies that in non-transformed systems, RTK transactivation may not be involved in the mediation of GPCR-induced Erk1/2 MAP kinase activation.  相似文献   

9.
10.
11.
Integrins are involved in several ways in keratinocyte physiology, including cell motility. CD9 is a member of the tetraspanin protein family which is found in association with other transmembrane proteins like the integrins. CD9 is expressed in the epidermal tissue, but this expression is not regulated by differentiation. The present work focuses on association of CD9 with the integrin alpha6beta4 in keratinocytes. In vivo, CD9 does not co-localize with alpha6beta4, and is not internalized with the integrin upon basal detachment with dispase. In vitro, CD9 is found partly in co-localization with alpha6beta4 and is internalized with the integrin after keratinocyte detachment with dispase. Using blocking antibodies in a phagokinetic tracks assay, we show that CD9, and to a lesser extent alpha6beta4, but not the tetraspanin CD82, promote motility of subconfluent keratinocytes on collagen I. Our observations also suggest that CD9 is involved in the formation of lamellipodia. We also report that the phorbol ester TPA has no effect on CD9 expression and association with alpha6beta4, but increases keratinocyte motility, possibly through modulation of integrin subunits expression, or through upregulation of collagenase-1 expression. Together, these results confirm that CD9 associates with alpha6beta4 in cultured keratinocytes, possibly in order to regulate the function of the integrin, and that CD9 is involved in keratinocyte motility on collagen. The data suggest that regulation of adhesion characteristics by CD9 in keratinocytes may play a role in epidermal repair.  相似文献   

12.
We investigated whether ectopic expression of CRABPI, a cellular retinoic acid binding protein, influenced the actions of all-trans retinoic acid (ATRA) in transgenic (TG) mice. We targeted CRABPI to the basal vs. suprabasal layers of mouse epidermis by using the keratin 14 (K14) and keratin 10 (K10) promoters, respectively. Greater CRABPI protein levels were detected in the epidermis of adult transgenic(+) mice than in transgenic(-) mice for both transgenes. In adult mouse skin CRABPI overexpression in the basal or suprabasal keratinocytes did not cause morphological abnormalities, but did result in decreased CRABPII mRNA levels. Ectopically overexpressed CRABPI in suprabasal keratinocytes, but not in basal keratinocytes, enhanced the thickening of the epidermis induced by topical ATRA treatments (10 microM, 400 microl for 4 days) by 1.59+/-0.2-fold (p<0.05). ATRA treatment (10 microM) resulted in a 59.9+/-9.8% increase (p<0.05) in the BrdU labeling index in K10/FLAG-CRABPI TG(+) mice vs. TG(-) mice. Retinoid topical treatments reduced p27 and CYP26A1 mRNA levels in TG(+) and TG(-) mouse skin in K14 and K10/FLAG-CRABPI transgenic mice. As epidermal basal keratinocyte proliferation is stimulated by paracrine growth factors secreted by ATRA activated suprabasal keratinocytes, our results indicate that CRABPI overexpression in suprabasal keratinocytes enhances the physiological functions of ATRA.  相似文献   

13.
In this study we used a dominant-negative FGF receptor mutant to block FGF function in a specific tissue of transgenic mice. The mutant receptor, which is known to block signal transduction in cells when co-expressed with wild-type receptors, was targeted to suprabasal keratinocytes using a keratin 10 promoter. The transgene was expressed specifically in the skin and highest expression levels were found in the tail. Expression of the mutant receptor disrupted the organization of epidermal keratinocytes, induced epidermal hyperthickening and resulted in an aberrant expression of keratin 6. This suggests that FGF is essential for the morphogenesis of suprabasal keratinocytes and for the establishment of the normal program of keratinocyte differentiation. Our study demonstrates that dominant-negative growth factor receptors can be used to block selectively the action of a growth factor in specific tissues of transgenic mice.  相似文献   

14.
Ovarian cancer typically disseminates widely in the abdomen, a characteristic that limits curative therapy. The mechanisms that promote ovarian cancer cell migration are incompletely understood. We studied model SK-OV-3 ovarian cancer cells and observed robust expression of the alpha chemokine receptors CXCR-1 and CXCR-2. Interleukin-8 (IL-8) treatment caused shape changes in the cells, with membrane ruffling and formation/retraction of thin actin-like projections, as detected by time-lapse microscopy. Stimulation of the CXCR-1/2 receptors by human interleukin 8 (IL-8) rapidly activated the p44/42 mitogen-activated protein (extracellular signal-regulated kinase (Erk1/2)) kinase pathway. Treatment of SK-OV-3 cells with the inhibitors genestein and herbimycin A indicated that tyrosine kinases were involved in the IL-8 activation of Erk1 and Erk2. Of note, IL-8 induced transient phosphorylation of the epidermal growth factor (EGF) receptor and its association with the adaptor molecules Shc and Grb2. This transactivation of the EGF receptor was dependent on intracellular Ca(2+) mobilization. Furthermore AG1478, a specific inhibitor of the EGF receptor kinase, blocked Erk1 and Erk2 activation. c-Src kinase was not involved in the IL-8-mediated phosphorylation of the EGF receptor, but was critical for Shc phosphorylation and downstream Erk1/2 kinase activation. These results suggest important "cross-talk" between chemokine and growth factor pathways that may link signals of cell migration and proliferation in ovarian cancer.  相似文献   

15.
16.
EphA2 is a receptor tyrosine kinase that is engaged and activated by membrane-linked ephrin-A ligands residing on adjacent cell surfaces. Ligand targeting of EphA2 has been implicated in epithelial growth regulation by inhibiting the extracellular signal-regulated kinase 1/2 (Erk1/2)-mitogen activated protein kinase (MAPK) pathway. Although contact-dependent EphA2 activation was required for dampening Erk1/2-MAPK signaling after a calcium switch in primary human epidermal keratinocytes, the loss of this receptor did not prevent exit from the cell cycle. Incubating keratinocytes with a soluble ephrin-A1-Fc peptide mimetic to target EphA2 further increased receptor activation leading to its down-regulation. Moreover, soluble ligand targeting of EphA2 restricted the lateral expansion of epidermal cell colonies without limiting proliferation in these primary cultures. Rather, ephrin-A1-Fc peptide treatment promoted epidermal cell colony compaction and stratification in a manner that was associated with increased keratinocyte differentiation. The ligand-dependent increase in keratinocyte adhesion and differentiation relied largely upon the up-regulation of desmoglein 1, a desmosomal cadherin that maintains the integrity and differentiated state of suprabasal keratinocytes in the epidermis. These data suggest that keratinocytes expressing EphA2 in the basal layer may respond to ephrin-A1–based cues from their neighbors to facilitate entry into a terminal differentiation pathway.  相似文献   

17.
Previously, we reported that, in hepatocyte growth factor (HGF)-induced HepG2 cells, protein kinase C (PKC) decreased the duration of intensive Erk1/Erk2 MAP kinase activation. This study shows that the inhibition of PKC enhanced significantly the HGF-induced integrin expression. Beside the prolonged activation of Erk1/Erk2, the activity of phosphatidylinositol 3-kinase (PI 3K) was required for growth factor-induced integrin expression. PI 3-kinase was activated to a higher extent in response to HGF than to epidermal growth factor (EGF), though the activation was transient in both cases. In EGF-induced cells, PI 3K activation was terminated by the loss of phosphotyrosine docking sites for PI 3K. To the contrary, the decrease of PI 3K activation, which followed the HGF-induced increase was not accompanied by the loss of phosphotyrosine docking sites and was prevented by the inhibition of PKC. The negative modulator effects of PKC on integrin expression and PI 3-kinase activation correlated with its ability to limit the HGF-induced motogen response.  相似文献   

18.
Psoriasis is one of the most common human inflammatory skin diseases characterised by hyperproliferation and aberrant differentiation of keratinocytes. The trigger of the typical epidermal changes seen in psoriasis was considered to be a dysregulated immune response with Th-1/Tc1 cells playing a central role. Recent studies have provided new insights into psoriasis pathogenesis in defining intraepidermal α1β1+ T cells as key effectors driving keratinocyte changes. Critical roles for IFN-α secreted by plasmacytoid dendritic cells and the IL-23/Th-17 axis were postulated. Initially, these subsequent stages are at least partially driven by the endogenous antimicrobial peptide LL37 that converts inert self-DNA into a potent trigger of interferon production by binding and delivering the DNA into plasmacytoid dendritic cells to trigger toll-like receptor 9. As LL37 is expressed by keratinocytes upon various stimuli, keratinocytes might regain momentum as instigators of an aberrant immune response which then precedes the characteristic changes in the epidermis. Data from these new studies indicate a complex interplay between keratinocytes overexpressing antimicrobial peptides and immune cells driving epidermal hyperproliferation and aberrant keratinocyte differentiation in the pathogenesis of psoriasis.  相似文献   

19.
The motility of keratinocytes is an essential component of wound closure and the development of epidermal tumors. In vitro, the specific motile behavior of keratinocytes is dictated by the assembly of laminin-332 tracks, a process that is dependent upon alpha6beta4 integrin signaling to Rac1 and the actin-severing protein cofilin. Here we have analyzed how cofilin phosphorylation is regulated by phosphatases (slingshot (SSH) or chronophin (CIN)) downstream of signaling by alpha6beta4 integrin/Rac1 in human keratinocytes. Keratinocytes express all members of the SSH family (SSH1, SSH2, and SSH3) and CIN. However, expression of phosphatase-dead versions of all three SSH proteins, but not dominant inactive CIN, results in phosphorylation/inactivation of cofilin, changes in actin cytoskeleton organization, loss of cell polarity, and assembly of aberrant arrays of laminin-332 in human keratinocytes. SSH activity is regulated by 14-3-3 protein binding, and intriguingly, 14-3-3/alpha6beta4 integrin protein interaction is required for keratinocyte migration. We wondered whether 14-3-3 proteins function as regulators of Rac1-mediated keratinocyte migration patterns. In support of this hypothesis, inhibition of Rac1 results in an increase in 14-3-3 protein association with SSH. Thus, we propose a novel mechanism in which alpha6beta4 integrin signaling via Rac1, 14-3-3 proteins, and SSH family members regulates cofilin activation, cell polarity, and matrix assembly, leading to specific epidermal cell migration behavior.  相似文献   

20.
It has been shown that the E5 protein of the human papillomavirus type 16 modulates epidermal growth factor receptor downregulation in monolayer cultures of human keratinocytes and mouse fibroblasts. We have now analysed the effect of this protein on the expression, the distribution and the activation of EGF receptors in raft cultures derived from an E5-transfected human keratinocyte cell line. The epithelia generated in these cultures were stratified and exhibited suprabasal expression of cytokeratins 1 and 10, which are known markers of early epidermal differentiation. In situ hybridization with an antisense riboprobe to the human papilloma virus type 16 E5 protein revealed a homogeneous gene expression within the entire epithelium of E5-transfected but not empty vector-transfected control cultures. Treatment of serum-starved rafts with EGF for 48 hours led to a strong decrease of suprabasal EGF receptors in control cultures, but not in rafts of E5-expressing cells. Under these conditions, no activated receptors were observed in control cultures, but activated receptors were still present in E5-raft cultures. Our results indicate that human papilloma virus type 16 E5-mediated modulation of EGF receptor expression occurs in a time- and structure-dependent manner in epithelial equivalents of human keratinocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号