首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol enhances gamma-aminobutyrate (GABA) signaling in the brain, but its actions are inconsistent at GABA(A) receptors, especially at low concentrations achieved during social drinking. We postulated that the epsilon isoform of protein kinase C (PKCepsilon) regulates the ethanol sensitivity of GABA(A) receptors, as mice lacking PKCepsilon show an increased behavioral response to ethanol. Here we developed an ATP analog-sensitive PKCepsilon mutant to selectively inhibit the catalytic activity of PKCepsilon. We used this mutant and PKCepsilon(-/-) mice to determine that PKCepsilon phosphorylates gamma2 subunits at serine 327 and that reduced phosphorylation of this site enhances the actions of ethanol and benzodiazepines at alpha1beta2gamma2 receptors, which is the most abundant GABA(A) receptor subtype in the brain. Our findings indicate that PKCepsilon phosphorylation of gamma2 regulates the response of GABA(A) receptors to specific allosteric modulators, and, in particular, PKCepsilon inhibition renders these receptors sensitive to low intoxicating concentrations of ethanol.  相似文献   

2.
Previous studies have suggested that protein kinase C (PKC) isoforms differentially influence the sensitivity of gamma-aminobutyric acid(A) (GABA(A) ) receptor responses in brain. Both PKCgamma and PKCepsilon knock-out mice exhibit altered ethanol potentiation of GABA(A) receptor mediated Cl(-) flux. Furthermore, chronic ethanol consumption alters GABA(A) receptor function and receptor subunit peptide expression by mechanisms that are not yet understood. The present study explored the possibility that PKC isoforms are directly associated with GABA(A) receptors, and this association is influenced by chronic ethanol exposure. GABA(A) receptors containing alpha1 or alpha4 subunits were immunoprecipitated from solubilized protein derived from the membrane fraction of rat cerebral cortex using selective antibodies. Immunoprecipitated receptors were screened by western blot analysis for the presence of PKCdelta, gamma and epsilon isoforms. We found pronounced labeling of PKCgamma but not PKCdelta or PKCepsilon in the alpha1 and alpha4 subunit immunoprecipitates. Immunoprecipitation with PKCgamma, but not with IgG antibody also yielded GABA(A) receptor alpha1 and alpha4 subunits in the immunoprecipitate. The association of PKCgamma with alpha1-containing receptors was decreased 44 +/- 11% after chronic ethanol consumption. In contrast, PKCgamma associated with alpha4-containing receptors was increased 32 +/- 7% after chronic ethanol consumption. These results suggest that PKCgamma may be involved in GABA(A) receptor adaptations following chronic ethanol consumption.  相似文献   

3.
GABA(A) receptors have long been implicated in mediating at least part of the actions of ethanol in mammalian brain. However, until very recently, reports of the actions of EtOH on recombinant receptors have required very high doses of ethanol and animals lacking receptor subunits shown to be important for ethanol actions in vitro did not support the view that these subunits are crucial in ethanol actions. Recombinant alpha4beta3delta and alpha6beta3delta GABA(A) receptors are uniquely sensitive to ethanol, with a dose-response relationship mirroring the well known effects of alcohol consumption on the human brain. Receptors containing the delta subunit are thought to be located extrasynaptically and it will be important to determine if these extrasynaptic GABA(A) receptor subunit combinations mediate low dose alcohol effects in vivo.  相似文献   

4.
The actions of ethanol on gamma-aminobutyric acid type A (GABA(A)) receptors are still highly controversial issues but it appears that some of its pharmacological effects may depend on receptor subunit composition. Prolonged ethanol exposure produces tolerance and dependence and its withdrawal alters GABA(A) receptor subunit gene expression and function. Whereas benzodiazepines are clinically effective in ameliorating ethanol withdrawal symptoms, work in our laboratory showed that benzodiazepines also prevent, in vitro, some of the ethanol withdrawal-induced molecular and functional changes of the GABA(A) receptors. In the present work, we investigated the effects, on such changes, of the benzodiazepine receptor antagonist flumazenil that can positively modulate alpha(4)-containing receptors. We here report that flumazenil prevented both the ethanol withdrawal-induced up-regulation of the alpha(4)-subunit and the increase in its own modulatory action. In contrast, flumazenil did not inhibit ethanol withdrawal-induced decrease in alpha(1)- and delta-subunit expression as well as the corresponding decrease in the modulatory action on GABA(A) receptor function of both the alpha(1)-selective ligand zaleplon and the delta-containing receptor preferentially acting steroid allopregnanolone. These observations are the first molecular and functional evidence that show a selective inhibition by flumazenil of the up-regulation of alpha(4)-subunit expression elicited by ethanol withdrawal.  相似文献   

5.
As the contribution of cannabinoid (CB1) receptors in the neuroadaptations following chronic alcohol exposure is unknown, we investigated the neuroadaptations induced by chronic alcohol exposure on both NMDA and GABA(A) receptors in CB1-/- mice. Our results show that basal levels of hippocampal [(3)H]MK-801 ((1)-5-methyl-10,11-dihydro-5Hdibenzo[a,d]cyclohepten-5,10-imine) binding sites were decreased in CB1-/- mice and that these mice were also less sensitive to the locomotor effects of MK-801. Basal level of both hippocampal and cerebellar [(3)H]muscimol binding was lower and sensitivity to the hypothermic effects of diazepam and pentobarbital was increased in CB1-/- mice. GABA(A)alpha1, beta2, and gamma2 and NMDA receptor (NR) 1 and 2B subunit mRNA levels were altered in striatum of CB1-/- mice. Our results also showed that [(3)H]MK-801 binding sites were increased in cerebral cortex and hippocampus after chronic ethanol ingestion only in wild-type mice. Chronic ethanol ingestion did not modify the sensitivity to the locomotor effects of MK-801 in both genotypes. Similarly, chronic ethanol ingestion reduced the number of [(3)H]muscimol binding sites in cerebral cortex, but not in cerebellum, only in CB1+/+ mice. We conclude that lifelong deletion of CB1 receptors impairs neuroadaptations of both NMDA and GABA(A) receptors after chronic ethanol exposure and that the endocannabinoid/CB1 receptor system is involved in alcohol dependence.  相似文献   

6.
Neuronal plasticity is achieved by regulation of the expression of genes for neurotransmitter receptors such as the type A receptor (GABA(A)R) for gamma-aminobutyric acid. We now show that two different rat neuronal populations in culture manifest distinct patterns of GABA(A)R plasticity in response to identical stimuli. Whereas prolonged exposure to ethanol had no effect on expression of the delta subunit of GABA(A)Rs at the mRNA or protein level in cerebellar granule neurons, it increased the abundance of delta subunit mRNA and protein in hippocampal neurons. Subsequent ethanol withdrawal transiently down-regulated delta subunit expression in cerebellar granule neurons and gradually normalized that in hippocampal neurons. These effects of ethanol exposure and withdrawal were accompanied by corresponding functional changes in GABA(A)Rs. GABA(A)Rs containing the delta subunit were also distributed differentially in the cerebellar and hippocampal neurons. These findings reveal complex and distinct mechanisms of regulation of the expression of GABA(A)Rs that contain the delta subunit in different neuronal types.  相似文献   

7.
Toluene is a commonly abused solvent found in many industrial and commercial products. The neurobiological effects of toluene remain unclear, but many of them, like those of ethanol, may be mediated by gamma-aminobutyric acid (GABA) and glutamate receptors. Chronic ethanol administration has been shown to alter levels of specific subunits for GABA type A (GABA(A)), N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. However, little is known about the effects of toluene on subunit levels of these receptors. To examine this, rats were exposed to toluene vapors (8000 ppm) or air for 10 days (30 min/day), and afterwards GABA(A) alpha1, NR1 and NR2B (NMDA) and GluR1 and GluR2/3 (AMPA) receptor subunit levels were determined in discrete brain regions of these animals by Western blotting. Toluene increased GABA(A) alpha1, NR1, NR2B and GluR2/3 subunits in the medial prefrontal cortex and decreased GABA(A) alpha1 and NR1 subunits in the substantia nigra compacta. Toluene inhalation produced modest increases in GABA(A) alpha1 subunits in the striatum, as well as slight decreases in this subunit in the ventral tegmental area. NR2B subunit levels were also slightly increased within the nucleus accumbens by toluene. These studies show that toluene differentially alters the levels of specific GABAergic and glutamatergic receptor subunits in a regionally selective manner.  相似文献   

8.
Ethanol exposure produces alterations in GABA(A) receptor function and expression associated with CNS hyperexcitability, but the mechanisms of these effects are unknown. Ethanol is known to increase both GABA(A) receptor α4 subunits and protein kinase C (PKC) isozymes in vivo and in vitro. Here, we investigated ethanol regulation of GABA(A) receptor α4 subunit expression in cultured cortical neurons to delineate the role of PKC. Cultured neurons were prepared from rat pups on postnatal day 0-1 and tested after 18?days. GABA(A) receptor α4 subunit surface expression was assessed using P2 fractionation and surface biotinylation following ethanol exposure for 4?h. Miniature inhibitory post-synaptic currents were measured using whole cell patch clamp recordings. Ethanol increased GABA(A) receptor α4 subunit expression in both the P2 and biotinylated fractions, while reducing the decay time constant in miniature inhibitory post-synaptic currents, with no effect on γ2 or δ subunits. PKC activation mimicked ethanol effects, while the PKC inhibitor calphostin C prevented ethanol-induced increases in GABA(A) receptor α4 subunit expression. PKCγ siRNA knockdown prevented ethanol-induced increases in GABA(A) receptor α4 subunit expression, but inhibition of the PKCβ isoform with PKCβ pseudosubstrate had no effect. We conclude that PKCγ regulates ethanol-induced alterations in α4-containing GABA(A) receptors.  相似文献   

9.
gamma-Aminobutyric acid (GABA), an important inhibitory neurotransmitter in both vertebrates and invertebrates, acts on GABA receptors that are ubiquitously expressed in the CNS. GABA(A) receptors also represent a major site of action of clinically relevant drugs, such as benzodiazepines, barbiturates, ethanol, and general anesthetics. It has been shown that the intracellular M3-M4 loop of GABA(A) receptors plays an important role in regulating GABA(A) receptor function. Therefore, studies of the function of receptor intracellular loop associated proteins become important for understanding mechanisms of regulating receptor activity. Recently, several labs have used the yeast two-hybrid assay to identify proteins interacting with GABA(A) receptors, for example, the interaction of GABA(A) receptor associated protein (GABARAP) and Golgi-specific DHHC zinc finger protein (GODZ) with gamma subunits, PRIP, phospholipase C-related, catalytically inactive proteins (PRIP-1) and (PRIP-2) with GABARAP and receptor gamma2 and beta subunits, Plic-1 with some alpha and beta subunits, radixin with the alpha5 subunit, HAP1 with the beta1 subunit, GABA(A) receptor interacting factor-1 (GRIF-1) with the beta2 subunit, and brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2) with the beta3 subunit. These proteins have been shown to play important roles in modulating the activities of GABA(A) receptors ranging from enhancing trafficking, to stabilizing surface and internalized receptors, to regulating modification of GABA(A) receptors. This article reviews the current studies of GABA(A) receptor intracellular loop-associated proteins.  相似文献   

10.
gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the central nervous system and it acts at the GABA(A) and GABA(B) receptors. A possible role for the GABA(A) receptors in alcohol action has been derived from in vitro cell models, animal studies and human research. GABA(A) subunit mRNA expression in cell models has suggested that the long form of the gamma2 subunit is essential for ethanol enhanced potentiation of GABA(A) receptors, by phosphorylation of a serine contained within the extra eight amino acids. Several animal studies have demonstrated that alterations in drug and alcohol responses may be caused by amino-acid differences at the GABA(A)alpha6 and GABA(A)gamma2 subunits. An Arg(100)/Glu(100) change at the GABA(A)alpha6 subunit conferring altered binding efficacy of the benzodiazepine inverse agonist Ro 15-4513, was found between the AT (alcohol tolerance) and ANT (alcohol non-tolerance) rats. Several loci related to alcohol withdrawal on mouse chromosome 11 which corresponds to the region containing four GABA(A) subunit (beta2, alpha6, alpha1 and gamma2) genes on human chromosome 5q33-34, were also identified. Gene knockout studies of the role of GABA(A)alpha6 and GABA(A)gamma2 subunit genes in mice have demonstrated an essential role in the modulation of other GABA(A) subunit expression and the efficacy of benzodiazepine binding. Absence of the GABA(A)gamma2 subunit gene has more severe effects with many of the mice dying shortly after birth. Disappointingly few studies have examined the effects of response to alcohol in these gene knockout mice. Human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have a role in the development of alcohol dependence, although their contributions may vary between ethnic group and phenotype. In summary, in vitro cell, animal and human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have an important role in alcohol related phenotypes (300 words).  相似文献   

11.
GABA is more than the main inhibitory neurotransmitter found in the adult CNS. Several studies have shown that GABA regulates the proliferation of progenitor and stem cells. This work examined the effects of the GABA(A) receptor system on the proliferation of retinal progenitors and non-pigmented ciliary epithelial (NPE) cells. qRT-PCR and whole-cell patch-clamp electrophysiology were used to characterize the GABA(A) receptor system. To quantify the effects on proliferation by GABA(A) receptor agonists and antagonists, incorporation of thymidine analogues was used. The results showed that the NPE cells express functional extrasynaptic GABA(A) receptors with tonic properties and that low concentration of GABA is required for a baseline level of proliferation. Antagonists of the GABA(A) receptors decreased the proliferation of dissociated E12 NPE cells. Bicuculline also had effects on progenitor cell proliferation in intact E8 and E12 developing retina. The NPE cells had low levels of the Cl-transporter KCC2 compared to the mature retina, suggesting a depolarising role for the GABA(A) receptors. Treatment with KCl, which is known to depolarise membranes, prevented some of the decreased proliferation caused by inhibition of the GABA(A) receptors. This supported the depolarising role for the GABA(A) receptors. Inhibition of L-type voltage-gated Ca(2+) channels (VGCCs) reduced the proliferation in the same way as inhibition of the GABA(A) receptors. Inhibition of the channels increased the expression of the cyclin-dependent kinase inhibitor p27(KIP1), along with the reduced proliferation. These results are consistent with that when the membrane potential indirectly regulates cell proliferation with hyperpolarisation of the membrane potential resulting in decreased cell division. The increased expression of p27(KIP1) after inhibition of either the GABA(A) receptors or the L-type VGCCs suggests a link between the GABA(A) receptors, membrane potential, and intracellular Ca(2+) in regulating the cell cycle.  相似文献   

12.
Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we measured the effect of alcohol on metabolism of [3‐13C]pyruvate in the adult Guinea pig brain cortical tissue slice and compared the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2‐13C]ethanol. Analyses of metabolic profile clusters suggest that the significant reductions in metabolism induced by ethanol (10, 30 and 60 mM) are via action at neurotransmitter receptors, particularly α4β3δ receptors, whereas very low concentrations of ethanol may produce metabolic responses owing to release of GABA via GABA transporter 1 (GAT1) and the subsequent interaction of this GABA with local α5‐ or α1‐containing GABA(A)R. There was no measureable metabolism of [1,2‐13C]ethanol with no significant incorporation of 13C from [1,2‐13C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabelled ethanol.

  相似文献   


13.
The mechanism by which ethanol affects the gamma-aminobutyric acid (GABA)/benzodiazepine complex is not clear. It is known that ethanol enhances the Cl- influx mediated by the GABAA receptor complex, and although chronic ethanol administration does not change the KD or Bmax for [3H]flunitrazepam binding, some reports have suggested that it could modify the modulation of benzodiazepine binding produced by GABA. In the present work, we studied the effect of chronic ethanol treatment on the modulation by GABA of [3H]flunitrazepam binding, using light microscopic autoradiography. This technique allows the measurement of densities of benzodiazepine receptors in different brain areas, the visual cortex and hippocampus, which appear to constitute the anatomical support for the behavioral and physiological responses affected by ethanol. We found enhancement of benzodiazepine binding by GABA at concentrations of greater than 10(-6) M for the various cortical and hippocampal areas studied from both control and ethanol-treated animals; this enhancement peaked at 10(-4) M GABA but decreased at 10(-3) M GABA. We found a clear effect of ethanol treatment on the modulatory properties of GABAA receptor, in both cortex and hippocampus, although only in cortex were the differences statistically significant between control and ethanol-treated animals.  相似文献   

14.
Extrasynaptic GABAA receptors in the crosshairs of hormones and ethanol   总被引:1,自引:1,他引:0  
Gamma-aminobutyric acid (GABA) is the main chemical inhibitory neurotransmitter in the brain. In the central nervous system (CNS) it acts on two distinct types of receptor: an ion channel, i.e., an "ionotropic" receptor permeable to Cl- and HCO3- (GABAA receptors) and a G-protein coupled "metabotropic" receptor that is linked to various effector mechanisms (GABAB receptors). This review will summarize novel developments in the physiology and pharmacology of GABAA receptors (GABAARs), specifically those found outside synapses. The focus will be on a particular combination of GABAAR subunits sensitive to ovarian and adrenal cortical steroid hormone metabolites that are synthesized in the brain (neurosteroids) and to sobriety impairing concentrations of ethanol. These receptors may be the final common pathway for interactions between ethanol and ovarian and stress-related neurosteroids.  相似文献   

15.
Inhibitory neurotransmission ensures normal brain function by counteracting and integrating excitatory activity.-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system,and mediates its effects via two classes of receptors:the GABA A and GABA B receptors.GABA A receptors are heteropentameric GABA-gated chloride channels and responsible for fast inhibitory neurotransmission.GABA B receptors are heterodimeric G protein coupled receptors (GPCR) that mediate slow and prolonged inhibitory transmission.The extent of inhibitory neurotransmission is determined by a variety of factors,such as the degree of transmitter release and changes in receptor activity by posttranslational modifications (e.g.,phosphorylation),as well as by the number of receptors present in the plasma membrane available for signal transduction.The level of GABA B receptors at the cell surface critically depends on the residence time at the cell surface and finally the rates of endocytosis and degradation.In this review we focus primarily on recent advances in the understanding of trafficking mechanisms that determine the expression level of GABA B receptors in the plasma membrane,and thereby signaling strength.  相似文献   

16.
The influence of ethanol and of GABA receptors blocker bicuculline on recovery cycles of primary response of the sensorimotor cortex was studied in rats with strong and weak inclination to development of experimental alcoholism. It is found that in rats of the first group, inhibition in the cerebral cortex was weakened in comparison with the rats of the second group. Ethanol in non-narcotic doses intensified the inhibitory processes and its effects could be prevented or suppressed by bicuculline. The conclusion is made about GABA participation in mediation of ethanol effects on inhibitory processes in the cerebral cortex.  相似文献   

17.
The regulation of pre-synaptic glutamate release is important in the maintenance and fidelity of excitatory transmission in the nervous system. In this study, we report a novel interaction between a ligand-gated ion channel and a G-protein coupled receptor which regulates glutamate release from parallel fiber axon terminals. Immunocytochemical analysis revealed that GABA(A) receptors and the high affinity group III metabotropic glutamate receptor subtype 4 (mGlu4) are co-localized on glutamatergic parallel fiber axon terminals in the cerebellum. GABA(A) and mGlu4 receptors were also found to co-immunoprecipitate from cerebellar membranes. Independently, these two receptors have opposing roles on glutamate release: pre-synaptic GABA(A) receptors promote, while mGlu4 receptors inhibit, glutamate release. However, coincident activation of GABA(A) receptors with muscimol and mGlu4 with the agonist (2S)-S-2-amino-4-phosphonobutanoic acid , increased glutamate release from [(3) H]glutamate-loaded cerebellar synaptosomes above that observed with muscimol alone. Further support for an interaction between GABA(A) and mGlu4 receptors was obtained in the mGlu4 knockout mouse which displayed reduced binding of the GABA(A) ligand [(35) S]tert-butylbicyclophosphorothionate, and decreased expression of the α1, α6, β2 GABA(A) receptor subunits in the cerebellum. Taken together, our data suggest a new role for mGlu4 whereby simultaneous activation with GABA(A) receptors acts to amplify glutamate release at parallel fiber-Purkinje cell synapses.  相似文献   

18.
Marine plants have been reported to possess various pharmacological properties; however, there have been few reports on their neuropharmacological effects. Terrestrial plants have depressive effects on the central nervous system (CNS) because of their polyphenols which make them effective as anticonvulsants and sleep inducers. We investigated in this study the depressive effects of the polyphenol-rich brown seaweed, Ecklonia cava (EC), on CNS. An EC enzymatic extract (ECEE) showed significant anticonvulsive (>500 mg/kg) and sleep-inducing (>500 mg/kg) effects on the respective mice seizure induced by picrotoxin and on the mice sleep induced by pentobarbital. The phlorotannin-rich fraction (PTRF) from ECEE significantly potentiated the pentobarbital-induced sleep at >50 mg/kg. PTRF had binding activity to the gamma aminobutyric acid type A (GABA(A))-benzodiazepine (BZD) receptors. The sleep-inducing effects of diazepam (DZP, a well-known GABA(A)-BZD agonist), ECEE, and PTRF were completely blocked by flumazenil, a well-known antagonist of GABA(A)-BZD receptors. These results imply that ECEE produced depressive effects on CNS by positive allosteric modulation of its phlorotannins on GABA(A)-BZD receptors like DZP. Our study proposes EC as a candidate for the effective treatment of neuropsychiatric disorders such as anxiety and insomnia.  相似文献   

19.
Abstract— The effects of acute and chronic ethanol intoxication on the GAGA system of rats have been investigated. Under the terminal conditions provoked. by ethanol (6–8 g/kg, i.p.) the brain GABA content sharply increased. There was a simultaneous decrease of 35–40% in the glutamate decarboxylase (GAD) activity of the cerebellum and cerebral hemispheres. In contrast, the transaminase, GABA-T was either unchanged, or it increased: by 28% only in cerebellum and by 1.5–2.0–fold in liver and kidney. It is suggested that effects of acute ethanol intoxication at different doses (2–8 g/kg) on the brain GABA system is connected with the phases of the functional condition of the CNS and a disturbance of homeostatic function. Chronic ethanol consumption caused a decrease in brain GABA. an increase of GAD activity in cerebellum and cerebral hemispheres, and no change in GABA-T activity. The activity of this last enzyme was increased 1.5–2.0-fold in liver and kidneys of rats consuming a diet containing 10% ethanol daily. A 50-fold purified preparation of GABA-T obtained from pig brain was inhibited by butanol-l and propanol-1 (0.03–0.6m) with no effect of ethanol. It is suggested that the mechanisms involved in the ethanol effect on nervous cells are linked with the GABA system and the phases of the functional condition of the CNS.  相似文献   

20.
Enz R 《Biological chemistry》2001,382(8):1111-1122
In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacological and electrophysiological properties. The predominant type, termed GABA(A), and a recently identified GABA(C) type, form ligand-gated chloride channels, whereas GABA(B) receptors activate separate cation channels via G proteins. Based on their homology to nicotinic acetylcholine receptors, GABA(C) receptors are believed to be oligomeric protein complexes composed of five subunits in a pentameric arrangement. To date up to five different GABA(C) receptors subunits have been identified in various species. Recent studies have shed new light on the biological characteristics of GABA(C) receptors, including the chromosomal localization of its subunit genes and resulting links to deseases, the cloning of new splice variants, the identification of GABA(C) receptor-associated proteins, the identification of domains involved in subunit assembly, and finally structure/function studies examining functional consequences of introduced mutations. This review summarizes recent data in view of the molecular structure of GABA(C) receptors and presents new insights into the biological function of this protein in the retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号