首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Semiconductor quantum dots (QDs) are among the most promising emerging fluorescent labels for cellular imaging. However, it is unclear whether QDs, which are nanoparticles rather than small molecules, can specifically and effectively label molecular targets at a subcellular level. Here we have used QDs linked to immunoglobulin G (IgG) and streptavidin to label the breast cancer marker Her2 on the surface of fixed and live cancer cells, to stain actin and microtubule fibers in the cytoplasm, and to detect nuclear antigens inside the nucleus. All labeling signals are specific for the intended targets and are brighter and considerably more photostable than comparable organic dyes. Using QDs with different emission spectra conjugated to IgG and streptavidin, we simultaneously detected two cellular targets with one excitation wavelength. The results indicate that QD-based probes can be very effective in cellular imaging and offer substantial advantages over organic dyes in multiplex target detection.  相似文献   

2.
The uses of multiplex detection methodologies are dramatically increasing as a means to increase sample throughput and to demonstrate quantitative differences between multiple targets in gene or protein expression analysis. In this study, we investigate the application of multiplex fluorescent detection for three proteins on the same Western blot using a laser-scanning imaging system, the Bio-Rad Molecular Imager FX. We show that independent detection and quantitation of multiple targets is achievable with little or no correction for fluorescent crosstalk by using fluorescent tags preferentially excited with different laser lines and detected at wavelengths that minimize fluorescence crosstalk. We demonstrate that the use of fluorescent detection methods can provide a tenfold greater quantifiable range but with two- to fourfold less sensitivity than chemiluminescent detection methodologies. Two examples of three-color multiplex detection using FITC-, Cy3- and Cy5-conjugated probes on Western blots are provided to demonstrate applications of this approach.  相似文献   

3.
4.
Background:  Helicobacter pylori infection is associated with severe gastrointestinal disease including cancer. It induces complex antibody responses that might vary depending on disease state but currently cannot be assessed adequately. The objective of this work was the development of a sensitive and specific H. pylori multiplex serology assay with high-throughput capability that allows simultaneous detection of antibodies to a protein array.
Methods:  Seventeen proteins of up to three H. pylori strains (26695, G27, 151), including CagA, VacA, UreA, Catalase, Omp, and GroEL, were recombinantly expressed as glutathione- S -transferase fusion proteins, affinity-purified, and used as antigens in a fluorescent bead-based antibody-binding assay. Reference sera (n   =   317) characterized by commercial assays (screening ELISA with Western blot confirmation) were used for validation.
Results:  H. pylori seropositivity by multiplex serology defined as reactivity with at least four proteins showed good agreement (kappa: 0.70) with commercial serologic assay classification, and a sensitivity of 89% and specificity of 82%. For individual antigens, agreement with Western blot was good for CagA (kappa: 0.77), moderate for UreA (kappa: 0.53), and weak for VacA (kappa: 0.12). Of the 13 proteins expressed from two strains, only VacA showed serologic strain differences. High antibody reactivity to CagA (Type I infection) was negatively associated with antibodies to GroEL, Cad, CagM, catalase, HcpC, NapA, and UreA, suggesting type-specific differences in protein expression patterns and/or immune response.
Conclusion:  With its high-throughput and simultaneous detection abilities, H. pylori multiplex serology appears suited as tool for large seroepidemiologic studies assessing H. pylori prevalence, antibody patterns, and associations with specific diseases.  相似文献   

5.
量子点在生物医学中的应用   总被引:13,自引:0,他引:13  
半导体量子点是无机纳米结晶,构成于硒化镉核心和硫化锌外壳.这种荧光标记物的发射光强是常用有机荧光染料的20倍,稳定性是其100倍.量子点的发射波长取决于核心粒子的大小,而每一种单色量子点的发射波长窄而对称.这些光学特性使量子点在医学诊断、药物的高速筛选以及基因和蛋白质的高通量分析方面具有广泛的应用前景.基于量子点的稳定性和生物相容性,有可能通过标记不同颜色的量子点到不同的分子,观察它们在活细胞内的运动.  相似文献   

6.
Gokarna A  Jin LH  Hwang JS  Cho YH  Lim YT  Chung BH  Youn SH  Choi DS  Lim JH 《Proteomics》2008,8(9):1809-1818
In this article, we demonstrate the fabrication and detection of cancer protein biochips consisting of micro- and nanoarrays whereby pegylated quantum dots (QDs) conjugated to antibodies (Abs) of prostate specific antigens (PSA) were used for the detection of clinical biomarkers such as PSA. BSA which acts as an efficient blocking layer in microarrays, tends to show an interaction with QDs. In view of this fact, we investigated two series of samples which were fabricated in the presence and absence of BSA blocking layer. Variation in the incubation time required for the antigen-antibody interaction to take place, different proteins as controls and the effect of bare QDs on these microarrays, were the three main parameters which were studied in these two series. Samples fabricated in the absence of BSA blocking layer exhibited an extremely high specificity in the detection of cancer proteins and were also marked by negligible nonspecific binding effects of QDs, in stark contrast to the samples fabricated using BSA as a blocking layer. Fabrication of nanoarrays of QD-conjugated PSA Abs having a spot size of nearly 900 nm has also been demonstrated. Thus, we show the potential offered by QDs in in vitro analysis of cancer biomarker imaging.  相似文献   

7.
Quantum dots (QDs) have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g. multiplex single molecule sensitivity applications such as single particle tracking (SPT). In order to fully optimize single molecule multiplex application with QDs, we have in this work performed a comprehensive quantitative investigation of the fluorescence intensities, fluorescence intensity fluctuations, and hydrodynamic radii of eight types of commercially available water soluble QDs. In this study, we show that the fluorescence intensity of CdSe core QDs increases as the emission of the QDs shifts towards the red but that hybrid CdSe/CdTe core QDs are less bright than the furthest red-shifted CdSe QDs. We further show that there is only a small size advantage in using blue-shifted QDs in biological applications because of the additional size of the water-stabilizing surface coat. Extending previous work, we finally also show that parallel four color multicolor (MC)-SPT with QDs is possible at an image acquisition rate of at least 25 Hz. We demonstrate the technique by measuring the lateral dynamics of a lipid, biotin-cap-DPPE, in the cellular plasma membrane of live cells using four different colors of QDs; QD565, QD605, QD655, and QD705 as labels.  相似文献   

8.
Long-term multiple color imaging of live cells using quantum dot bioconjugates   总被引:66,自引:0,他引:66  
Luminescent quantum dots (QDs)--semiconductor nanocrystals--are a promising alternative to organic dyes for fluorescence-based applications. We have developed procedures for using QDs to label live cells and have demonstrated their use for long-term multicolor imaging of live cells. The two approaches presented are (i) endocytic uptake of QDs and (ii) selective labeling of cell surface proteins with QDs conjugated to antibodies. Live cells labeled using these approaches were used for long-term multicolor imaging. The cells remained stably labeled for over a week as they grew and developed. These approaches should permit the simultaneous study of multiple cells over long periods of time as they proceed through growth and development.  相似文献   

9.
Comprehension of biological processes in cells, tissues and organisms requires identification and analysis of numerous biological objects, mechanisms of their action and regulation. Microarray (biochips) technology is a rare tool to solve this problem. It is based on high-throughput recognition of a target to the probe and has the potential to measure simultaneously the presence of numerous molecules in multiplexed testes, all contained in a small drop of test fluid. Biochips allow the parallel analysis of genomic or proteomic content in healthy versus disease-affected or altered tissues or cells. The signals read-out from the biochips is done with organic dyes which often suffer from photobleaching, low brightness and background fluorescence. Recent data show that the use of fluorescent nanocrystals "quantum dots" (QDs) allows push away these restrictions. The QDs are sufficiently bright to be detected as individual particles, extremely resistant to photobleaching and provide unique possibilities for multiplexing thus supplying the microarray technology with the novel read-out option enabling the sensitivity of detection reaching the single molecule level. This paper is aimed at the development of the approaches to the QDs application in microarray-based detection. Possibilities of QDs application both in solid state (planar) biochips as well as intensively developing technique of suspension biochips (bead-based assays or liquid biochips) are demonstrated. The latter are more and more applied for simultaneous identification of very large numbers of molecules in proteomics, genomics, drug screening and clinical diagnostics. This assays base on spectral encoded elements (as a rule polymer microbeads). The benefits of using optically encoded microbeads (instead of the solid-state two-dimensional arrays) are derived from the freedom of bead to move in three dimensions. Polymeric beads optically encoded with organic dyes allow for a limited number of unique codes, whereas the use of semiconductor nanocrystals as fluorescent tags improves the beads multiplexed imaging capabilities, photostability and sensitivity of the biological objects detection. Additionally, an employment in suspension biochips of Frster resonance energy transfer (FRET) allows improving detection specificity. The absence of fluorescent background from non-interacting with the beads dye-labelled antibodies additionally increases the sensitivity of detection and further facilitates the multiplexing capabilities of nanocrystals-based detection and diagnostics. So the combination of the biochips and QDs techniques allow increasing detection sensitivity and significantly raising the number of detected objects (multiplexing capacities). Such combination should provide the breakthrough in proteomics, particularly in new drugs development, clinical diagnostics, new disease markers identification, better understanding of intracellular mechanisms.  相似文献   

10.
Fluorescence-based molecular sensing and cellular imaging are commonly carried out with the application of organic dyes. Quantum dots (QDs) are now recognized as better tools because they are brighter, size tunable, and more photostable than dyes. Most of the proposed QD-based biosensing systems involve elements of known toxicity. The present work reports the functionalization of biocompatible InGaP/ZnS core-shell QDs with anti-bovine serum albumin (anti-BSA) to exploit them as fluorescent probes for antigen detection. Successful bioconjugation was characterized with the absorption and emission spectra showing blue shifts of around 40 and 30 nm, respectively. Gel electrophoresis and particle size distribution studies further confirmed the mass increment of QDs after their functionalization with anti-BSA. Surface plasmon resonance spectrometry has been used to study the affinity of QD-(anti-BSA) probes for bovine serum albumin (BSA). Photoluminescence quenching of the developed probe is observed in the presence of BSA.  相似文献   

11.
Fluorescent derivatives are widely used to study the structure and functions of proteins. Quantum dots (QDs), fluorescent semiconductor nanocrystals, have a high quantum yield and are much more resistant to bleaching compared to organic dyes. Conjugates of α-neurotoxins with QDs were used for visualization of human α7 acetylcholine receptors heterologously expressed in GH4C1 pituitary adenoma cells. Specific staining of cells by the conjugated toxins was observed.  相似文献   

12.
In this paper, we describe a simple, rapid, specific, sensitive, and reliable method, the FICP method (Fluorescence Immunoassay for Cellular Protein detection) which is readily applicable to the detection of proteins directly on cells cultured in 96-well plates. In order to illustrate this method, we report on the detection of two different proteins, the cell cycle proteins cyclin D1 and p21CIP1/WAF1, in untreated and 2-cyclopenten-1-one treated breast cancer cells. When the FICP method was compared with Western blot procedure, FICP was found to be superior for many characteristics. By using this method, we were able to quantify biological effects of a specific compound on protein levels in non-lysed cells and perform statistical analysis. Therefore, we believe this screening assay could be very useful for detecting poorly expressed proteins and for drug development.  相似文献   

13.
Specific antibodies are essential tools for studying proteins. P66 is a chicken polyclonal antibody raised against bovine lipoprotein lipase (LPL) that has been used in earlier studies. Here, we developed a two-dimensional (2D) Western blot with reducing gels, using commercial bovine LPL (53 kDa) as a standard and P66 for detection. Our results revealed incomplete purification of commercial LPL and nonspecificity of P66, both undetectable in one-dimensional analysis. Antithrombin III (ATIII) was identified as both a major contaminant in commercial LPL and a cross-reacting protein with P66. Although LPL purification methods were presumably designed to eliminate ATIII, here we demonstrate that some procedures fell short of this objective and thus led to the production of a nonspecific antibody. Our results define 2D electrophoresis/Western blot and mass spectrometric protein identification as the most reliable procedure for validating LPL purity and the specificity of antibodies against this enzyme.  相似文献   

14.
Semiconductor quantum dots (QDs) are a new class of fluorescent labels with broad applications in biomedical imaging, disease diagnostics, and molecular and cell biology. In comparison with organic dyes and fluorescent proteins, quantum dots have unique optical and electronic properties such as size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. Recent advances have led to multifunctional nanoparticle probes that are highly bright and stable under complex in vitro and in vivo conditions. New designs involve encapsulating luminescent QDs with amphiphilic block copolymers, and linking the polymer coating to tumor-targeting ligands and drug-delivery functionalities. These improved QDs have opened new possibilities for real-time imaging and tracking of molecular targets in living cells, for multiplexed analysis of biomolecular markers in clinical tissue specimens, and for ultrasensitive imaging of malignant tumors in living animal models. In this article, we briefly discuss recent developments in bioaffinity QD probes and their applications in molecular profiling of individual cancer cells and clinical tissue specimens.  相似文献   

15.
We propose an approach for the detection of proteins by Western blot that takes advantage of the high-affinity interaction occurring between two de novo designed peptides, the E and K coils. As a model system, K coil-tagged epidermal growth factor (EGF) was revealed with secreted alkaline phosphatase (SeAP) tagged with E coil (SeAP-Ecoil) as well as with biotinylated E coil. In that respect, we first produced purified SeAP-Ecoil and verified its ability to interact with K coil peptides by surface plasmon resonance biosensing. We demonstrated that protein detection with Ecoil-biotin was more specific than with SeAP-Ecoil. We then showed that our approach is as sensitive as conventional detection strategies relying on nickel-nitrilotriacetic acid-horseradish peroxidase (Ni-NTA-HRP), anti-His-HRP, or anti-EGF. Altogether, our results indicate that the E/K coiled-coil system is a good alternative for protein detection by Western blot.  相似文献   

16.
Analysis of complex biochemical processes at the level of the proteome requires methods that quantitatively solubilize cytosolic and membrane bound proteins yet are compatible with isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition, it is often necessary to employ several highly sensitive detection methods to identify key proteins that are modified or exhibit a change in expression levels in response to a given experimental stimulus or condition. Methods were developed that efficiently extract tissues or lyse cultured cells and quantitatively solubilize proteins in a single step without the need to shear nucleic acids. These approaches utilize urea, thiourea, a mixture of detergents, low levels of an ampholyte blend, reductant and a combination of alcohols. To aid in the detection of low abundance proteins and the accurate identification of specific proteins of interest in these samples, two approaches were pursued. In one, proteins are transferred from two-dimensional (2-D) gels to blot membranes. Proteins are then detected by staining with SYPRO Ruby and the resulting 2-D protein pattern is captured using a charge-coupled device (CCD) camera. The blots are then probed with antibodies directed against the protein(s) or functionalities of interest. The resulting chemiluminescent blot image is also generated with the CCD camera and the fluorescent SYPRO Ruby image is recaptured again without moving the membrane. It is thereby possible to generate a direct image overlay of the blot pattern on that of the stained protein pattern. This approach significantly aids in the accurate identification of the dye-stained protein that is detected by the specific antibody. In addition to detecting protein post-gel transfer, a second approach utilizes protein samples labeled with fluorescent dyes prior to 2-D electrophoresis in an effort to increase the sensitivity of protein detection and to facilitate protein quantitation. It is also possible to stain the blots with different dyes and overlay these images as well. Using these approaches, it is possible to perform more rapid and accurate comparative analyses and proteomic, post-gel characterization of proteins of interest than using comparative image analysis of multiple gels.  相似文献   

17.
This protocol describes a sensitive approach to tracking the motion of membrane molecules such as lipids and proteins with molecular resolution in live cells. This technique makes use of fluorescent semiconductor nanocrystals, quantum dots (QDs), as a probe to detect membrane molecules of interest. The photostability and brightness of QDs allow them to be tracked at a single particle level for longer periods than previous fluorophores, such as fluorescent proteins and organic dyes. QDs are bound to the extracellular part of the object to be followed, and their movements can be recorded with a fluorescence microscope equipped with a spectral lamp and a sensitive cooled charge-coupled device camera. The experimental procedure described for neurons below takes about 45 min. This technique is applicable to various cultured cells.  相似文献   

18.
Riederer IM  Riederer BM 《Proteomics》2007,7(11):1753-1756
Differential protein labeling with 2-DE separation is an effective method for distinguishing differences in the protein composition of two or more protein samples. Here, we report on a sensitive infrared-based labeling procedure, adding a novel tool to the many labeling possibilities. Defined amounts of newborn and adult mouse brain proteins and tubulin were exposed to maleimide-conjugated infrared dyes DY-680 and DY-780 followed by 1- and 2-DE. The procedure allows amounts of less than 5 microg of cysteine-labeled protein mixtures to be detected (together with unlabeled proteins) in a single 2-DE step with an LOD of individual proteins in the femtogram range; however, co-migration of unlabeled proteins and subsequent general protein stains are necessary for a precise comparison. Nevertheless, the most abundant thiol-labeled proteins, such as tubulin, were identified by MS, with cysteine-containing peptides influencing the accuracy of the identification score. Unfortunately, some infrared-labeled proteins were no longer detectable by Western blots. In conclusion, differential thiol labeling with infrared dyes provides an additional tool for detection of low-abundant cysteine-containing proteins and for rapid identification of differences in the protein composition of two sets of protein samples.  相似文献   

19.
We describe a reversible staining technique, using MemCode, a reversible protein stain by which proteins can be visualized on nitrocellulose and polyvinylidine fluoride (PVDF) membranes without being permanently fixed to the membrane itself. This allows subsequent immunoblot analysis of the proteins to be performed. The procedure is applicable only to protein blots on nitrocellulose and PVDF membranes. MemCode is a reversible protein stain composed of copper as a part of an organic complex that interacts noncovalently with proteins. MemCode shows rapid protein staining, taking 30s to 1 min for completion. The method is simple and utilizes convenient application conditions that are compatible with the matrix materials and the protein. The stain is more sensitive than any previously described dye-based universal protein staining system. The turquoise-blue-stained protein bands do not fade with time and are easy to photograph compared to those stained with Ponceau S. Absorbance in the blue region of the spectrum offers good properties for photo documentation and avoids interference from common biological chromophores. The stain on the protein is easily reversible in 2 min for nitrocellulose membrane and in 10 min for PVDF membrane with MemCode stain eraser. The stain is compatible with general Western blot detection systems, and membrane treatment with MemCode stain does not interfere with conventional chemiluminescent or chromogenic detection using horseradish peroxide and alkaline phosphatase substrates. The stain is also compatible with N-terminal sequence analysis of proteins.  相似文献   

20.
Previous work has demonstrated that Gardnerella vaginalis can utilize catalase as a sole source of iron. In this study, the interaction between G. vaginalis cells and catalase was investigated. G. vaginalis cells were shown to bind digoxigenin (DIG)-labeled catalase using a solid phase dot blot assay. An increase in catalase binding was observed from cells grown under iron-restrictive conditions. Western blot analysis of G. vaginalis proteins resulted in the detection of a putative catalase-binding protein with an estimated molecular mass of 128 kDa. The 128-kDa catalase-binding protein was not detected from intact G. vaginalis cells treated with trypsin prior to Western blot analysis suggesting this protein may be surface-exposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号