首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Posttranslational modifications and intracellular transport of the D2- cell adhesion molecule (D2-CAM) were examined in cultured fetal rat neuronal cells. Developmental changes in biosynthesis were studied in rat forebrain explant cultures. Two D2-CAM polypeptides with Mr of 187,000-210,000 (A) and 131,000-158,000 (B) were synthesized using radiolabeled precursors in cultured neurons. A and B were found to contain only N-linked complex oligosaccharides, and both polypeptides appeared to be polysialated as determined by [14C]mannosamine incorporation and precipitation with anti-polysialic acid antibody. The two polypeptides were sulfated in the trans-Golgi compartment and phosphorylated at the plasma membrane. D2-CAM underwent rapid intracellular transport, appearing at the cell surface within 35 min of synthesis. A and B were shown to be integral membrane proteins as seen by radioiodination by photoactivation employing a hydrophobic labeling reagent. In rat forebrain explant cultures, D2-CAM was synthesized as four polypeptides: A (195,000 Mr), B (137,000 Mr), C (115,000 Mr), and a group of polypeptides in the high molecular weight region (HMr) between 250,000 and 350,000. Peptide maps of the four polypeptides yielded similar patterns. Biosynthesis of C and HMr increased with age, relative to A and B. A and B were sulfated in embryonic brain, however, sulfation was not noticeable at postnatal ages. Phosphorylation, on the other hand, of A and B was observed at all ages examined. We suggest that D2-CAM function may be modified during development by changes in the relative synthesis of the different polypeptides, as well as by changes in their glycosylation and sulfation.  相似文献   

2.
During their transport from the endoplasmic reticulum to lysosomes, newly synthesized acid hydrolases are phosphorylated in the Golgi apparatus to generate a common recognition marker, mannose 6-phosphate (Man 6-P). The phosphorylated acid hydrolases then bind to the Man 6-P receptor and are transported by an unknown route to lysosomes. To learn more about the delivery pathway, we examined the fate of the phosphorylated oligosaccharides synthesized by a Man 6-P receptor-positive line of mouse L-cells. In contrast to the rapid degradation of the recognition marker previously observed in mouse lymphoma cells (Gabel, C. A., D. E. Goldberg, and S. Kornfield. 1982. J. Cell Biol., 95:536-542), the number of high mannose oligosaccharides phosphorylated by the L-cells after a 30-min pulse labeling with [2-3H]mannose increased continuously during a subsequent 4-h chase period to a maximum of 9.3% of the total cell-associated structures. After 19 h of chase the absolute number of phosphorylated oligosaccharides declined, but the loss was accompanied by a general loss of cellular oligosaccharides such that 7.4% of the cell-associated high mannose oligosaccharides remained phosphorylated. The longevity of the Man 6-P recognition marker in the L-cells was verified by analyzing the ability of an individual acid hydrolase, beta-glucuronidase, to serve as a ligand for the Man 6-P receptor. At least 60% of the steady state beta-glucuronidase molecules isolated from the L-cells could undergo receptor-mediated endocytosis into enzyme-deficient human fibroblasts. Dense lysosomal granules isolated by metrizamide gradient centrifugation from [3H]mannose-labeled L-cells were found to be highly enriched in their content of phosphomonoester-containing oligosaccharides. The data indicate that acid hydrolases may retain their Man 6-P recognition markers within lysosomes, and suggest the possibility that dephosphorylation occurs at a nonlysosomal location through which the newly synthesized enzymes pass en route to lysosomes.  相似文献   

3.
The synthesis and oligosaccharide processing of the glycoproteins of SA11 rotavirus in infected Ma104 cells was examined. Rotavirus assembles in the rough endoplasmic reticulum (RER) and encodes two glycoproteins: VP7, a component of the outer viral capsid, and NCVP5, a nonstructural protein. A variety of evidence suggests the molecules are limited to the ER, a location consistent with the high mannose N-linked oligosaccharides modifying these proteins. VP7 and NCVP5 were shown to be integral membrane proteins. In an in vitro translation system supplemented with dog pancreas microsomes, they remained membrane associated after high salt treatment and sodium carbonate-mediated release of microsomal contents. In infected cells, the oligosaccharide processing of these molecules proceeded in a time-dependent manner. For VP7, Man8GlcNAc2 and Man6GlcNAc2 were the predominant intracellular species after a 5-min pulse with [3H]mannose and a 90 min chase, while in contrast, trimming of NCVP5 halted at Man8GlcNAc2. VP7 on mature virus was processed to Man5GlcNAc2. It is suggested that the alpha-mannosidase activities responsible for the formation of these structures reside in the ER. In the presence of the energy inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP), processing of VP7 and the vesicular stomatitis virus G protein was blocked at Man8GlcNAc2. After a 20-min chase of [3H]mannose-labeled molecules followed by addition of CCCP, trimming of VP7 could continue while processing of G protein remained blocked. Thus, an energy-sensitive translocation step within the ER may mark the divergence of the processing pathways of these glycoproteins.  相似文献   

4.
The adenosine deaminase-binding protein has previously been localized to the cell surface of human fibroblasts (Andy, R. J., and Kornfeld, R. (1982) J. Biol. Chem. 257, 7922-7925). In this study we examine the biosynthesis of binding protein in human fibroblasts, human hepatoma HepG2 cells, and a human kidney tumor cell line. Binding protein immunoprecipitated from radioiodinated detergent-extracted fibroblast membranes has a molecular weight of 120,000 when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An additional band of Mr 100,000 is also present which we believe is a result of proteolysis of the 120,000 band. Purified soluble kidney binding protein has an Mr of 112,000. Binding protein from fibroblasts pulse-labeled with [35S]methionine for 15 min migrates as a 110-kDa band on sodium dodecyl sulfate-polyacrylamide gels. Within 30-60 min of chase, the intensity of the 110-kDa band is diminished, and a 120-kDa band has appeared. Binding protein reaches the cell surface of fibroblasts within 30-60 min of chase. The same results are obtained with the other cell lines studied. Thus, binding protein is initially synthesized as a precursor of 110 kDa which chases into a 120-kDa mature form. The shift of 10 kDa is probably due to processing of its oligosaccharide chains since soluble kidney-binding protein contains 7-9 complex N-linked chains. Upon endoglycosidase H treatment, the 110,000 precursor shifts to a Mr of 89,000 while the 120,000 mature band shifts to 115,000, consistent with the presence of 7-9 high mannose chains on the precursor and 1-2 high mannose chains on the mature form. These results and the presence of complex N-linked chains on binding protein were confirmed by lectin affinity chromatography of glycopeptides derived from [2-3H]mannose-labeled binding protein. Analysis of [6-3H]glucosamine-labeled binding protein indicates the presence of 1 sialic acid residue per chain.  相似文献   

5.
Rabbit cardiac cathepsin D exists as multiple isomeric forms of Mr = 48,000 within cardiac tissue. Their mechanism of formation and their functional role in cardiac protein degradation are unknown. We have previously demonstrated that cathepsin D is initially synthesized as an Mr = 53,000 precursor that is processed by limited proteolysis within cardiac lysosomes to the Mr = 48,000 active forms of the enzyme. To determine if the multiple forms of active cathepsin D originate from a common precursor, isolated perfused Langendorff rabbit hearts were labeled in pulse (15 or 30 min) and pulse-chase (30 or 150 min) experiments with [35S]methionine. Newly synthesized cathepsin D was isolated by butanol/Triton X-100 extraction and immunoadsorption with anti-cathepsin D IgG-Sepharose, and the isomeric forms were separated by two-dimensional electrophoresis and fluorography. After 15- and 30-min pulse perfusions, 35S-labeled cathepsin D appeared as a single precursor form (Mr = 53,000, pI = 6.6). After 30-min pulse and 30-min chase, the precursor was modified to yield multiple precursor forms, all with molecular weight 53,000, but with differing pI values (6.6-6.0). After 30-min pulse and 150-min chase perfusion, multiple forms of both precursor and proteolytically processed active cathepsin D (Mr = 48,000, pI = 6.2-5.6) were detected. The 35S-labeled, proteolytically processed forms of active cathepsin D co-migrated with the major cathepsin D forms present in cardiac tissue. Subcellular fractionation and perfusions in the presence of chloroquine demonstrated that the multiple precursor forms of cathepsin D originated in a nonlysosomal intracellular compartment. Thus, the multiple forms of active cathepsin D originate from a common high molecular weight precursor, and their synthesis occurs prior to the limited proteolysis of the precursor in cardiac lysosomes.  相似文献   

6.
Human complement receptor type 2 (CR2) was biosynthetically labeled by pulsing SB B lymphoblastoid cells for 25 min with [35S]methionine followed by chase in the presence of excess unlabeled methionine. An Mr 134,000 polypeptide represented the major form of the receptor at the end of the pulse period, and within 1 h of chase this disappeared coincident with the appearance of the Mr 145,000 mature form of CR2. Precursor, but not mature, CR2 was sensitive to endoglycosidase H, indicating that maturation of CR2 represented processing of N-linked high mannose oligosaccharides to the complex type. The processing of precursor CR2 was impaired by monensin. In the presence of tunicamycin an Mr 111,000 form of CR2 was synthesized by SB cells, and this did not chase into either precursor or mature CR2. This Mr 111,000 form of CR2 did not incorporate [3H]glucosamine, indicating that it lacked both N- and O-linked oligosaccharide. The half-lives of mature CR2 and nonglycosylated CR2 pulse-labeled in the presence of tunicamycin were 13.8 and 2.8 h, respectively; the turnover rate of B1, a membrane protein normally lacking carbohydrate, was unaffected by the presence of the antibiotic. The percentage of pulse-labeled, nonglycosylated CR2 that was expressed at the cell surface after 1 h of chase in the presence of tunicamycin was 30%, identical to that of mature CR2 in cells chased in the absence of the antibiotic. However, after 6 h of chase there was no additional net accumulation of nonglycosylated CR2 at the plasma membrane, while the proportion of pulse-labeled mature CR2 at this site had risen to 81%. Therefore, N-linked oligosaccharides are essential for the stability of CR2 and have some role in its plasma membrane expression. In contrast, the observation that all three forms of CR2 bound to Sepharose C3 indicates that oligosaccharides are not necessary for the interaction between CR2 and its complement ligand.  相似文献   

7.
The expression of the antigenic determinant identified by the B54.2 rat monoclonal antibody on four populations of mouse mast cells has been quantified, and the epitope-bearing surface antigen and its biosynthesis have been characterized. As assessed by indirect immunofluorescence staining and flow cytometric analysis, B54.2 antibody bound to serosal mast cells (S-MC), bone marrow culture-derived mast cells (BM-MC), fetal liver culture-derived mast cells (FTL-MC), and Abelson murine leukemia virus-transformed FTL-MC (ABFTL-MC). However, the intensity of cell surface fluorescence exhibited by ABFTL-MC was approximately eightfold less per cell compared with nontransformed, culture-derived mast cells. Immunoprecipitation of B54.2 antibody-binding molecules from each population of mast cells labeled intrinsically with [35S]methionine and analysis by SDS-PAGE demonstrated that the B54.2 epitope was expressed in each case on two noncovalently associated proteins of 110,000 Mr and approximately 130,000 Mr, but that the percentage of radiolabel in the latter species was approximately threefold less in ABFTL-MC than in BM-MC. As assessed by pulse-chase analysis with [35S]methionine, the 110,000 Mr protein was a precursor of the 130,000 Mr molecule ("B54.2 antigen") synthesized by BM-MC. Labeling of BM-MC with [35S]methionine in the presence of tunicamycin followed by immunoprecipitation and SDS-PAGE of B54.2 antibody-binding material revealed a single species of 93,000 Mr, indicating that the native molecules contained N-linked carbohydrate. Endoglycosidase H treatment of the glycoproteins precipitated by B54.2 antibody from BM-MC reduced the Mr of the 110,000-Mr molecule to 93,000 Mr without an appreciable change in the 130,000-Mr species. These data indicate that the 110,000-Mr precursor form is a "high mannose" type glycoprotein and the 130,000-Mr membrane surface B54.2 antigen is a "complex" type glycoprotein, and that the epitope recognized by the B54.2 antibody on the surface of the mouse mast cell populations is located on the 93,000-Mr peptide core.  相似文献   

8.
Glucosidase II is regarded as a resident protein of the endoplasmatic reticulum. The enzyme removes alpha-1-3-linked glucose from high mannose oligosaccharides N-linked to asparagine residues of glycoproteins. Monospecific antibodies raised against the pig kidney enzyme are used to study the metabolism of the enzyme in a rat hepatoma cell line. These antiglucosidase II antibodies specifically immune precipitate glucosidase II as a 100,000-Da species from [35S]methionine-labeled cells. In addition, protein blotting and immune staining of cell extracts from both rat liver and human and rat hepatoma cell lines show identity in apparent Mr (100,000). Glucosidase II synthesized in the presence of tunicamycin is approximately 94,000 Da, indicating the presence of one or more N-linked oligosaccharide chains. Cell-free protein synthesis of rat hepatoma total RNA demonstrates that glucosidase II is synthesized as a slightly higher molecular weight species as compared to the polypeptide synthesized in whole cells in the presence of tunicamycin, indicating that the enzyme has a cleavable signal sequence. Using a pulse-chase protocol, the apparent molecular weight does not change upon longer chase periods. In addition, the 100,000-Da protein remains sensitive to endo-beta-N-acetylglucosaminidase H regardless of prolonged chase periods. The cells incorporate [3H]mannose into the enzyme; after release with endo-beta-N-acetylglucosaminidase H, most of the radioactivity comigrates with Glc1-Man9-GlcNAc on a gel filtration column. Phase separation in Triton X-114 shows a partition between the aqueous and the Triton phase, the major portion being separated in the aqueous phase. In rat hepatoma cells glucosidase II has a half-life of 50 min. This value is not altered if the cells are grown in the presence of monensin nor of methyl-deoxynoijirimycin. However, tunicamycin and low concentrations or primaquine (raising the pH of acidic compartments) causes a 100% increase in half-life of glucosidase II. We conclude that glucosidase II is a hydrophilic, probably not a transmembrane membrane, protein with a short half-life. It is the first example of an oligosaccharide-processing enzyme not being an integral membrane protein.  相似文献   

9.
Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts   总被引:2,自引:0,他引:2  
Biosynthesis and processing of cathepsin B in cultured human skin fibroblasts were investigated using immunological procedures. Upon metabolic labeling with [35S]methionine for 10 min, a precursor form with Mr 44,500 was identified. During an 80-min chase, about 50% of it was converted to an Mr 46,000 form. Further processing yielded mature forms with Mr 33,000 and 27,000, in a final quantitative ratio of about 3:1. Processing of cathepsin B was inhibited by leupeptin, which led to an accumulation of the Mr 33,000 polypeptide. The Mr 33,000 form appeared to be the most active form and showed a half-time of about 12 h. About 5% of newly synthesized enzyme was secreted as precursor, being detectable extracellularly already after 40 min. NH4Cl enhanced the secretion of the precursor about 20-fold. The precursor and the 33-kDa form contained phosphorylated N-linked oligosaccharides. Cleavage by peptide N-glycosidase F or biosynthesis in the presence of tunicamycin yielded a precursor with Mr 39,000. Evidence of a mannose 6-phosphate-dependent transport of cathepsin B in fibroblasts was obtained on the basis of the following results: (i) cathepsin B precursor from NH4Cl-stimulated secretions was internalized in a mannose 6-phosphate inhibitable manner, and (ii) I-cell fibroblasts secreted more than 95% of newly synthesized cathepsin B precursor. In conclusion, cathepsin B from human skin fibroblasts shows an analogous biosynthetic behavior as other lysosomal enzymes.  相似文献   

10.
Biosynthesis of mouse Thy-1 antigen   总被引:7,自引:0,他引:7  
The biosynthesis and the maturation of Thy-1 antigen of mouse thymocytes have been studied by using a xenogeneic rabbit anti-mouse Thy-1 antibody. The earliest form of Thy-1 detected after a 5-min pulse with [35S]methionine and [35S]cysteine had an apparent m.w. of 26,500. During chase, this band converted to a molecular ratio (Mr) = 25,000 polypeptide, probably derived from the latter by trimming of glucose or mannose residues from the three high-mannose glycan units of Thy-1. Mature Thy-1 molecules were detected at the cell surface after a 15-min chase. At least one of the three N-linked oligosaccharide units was shown to be in the high mannose form at the cell surface, as indicated by its susceptibility to endo-beta-N-acetylglucosaminidase H digestion. Treatment of the early and late forms of Thy-1 antigen with endo-beta-N-acetylglucosaminidase F generated a single polypeptide of Mr = 13,500. The same precursor was obtained when cells were labeled in the presence of tunicamycin. This indicates the absence of O-linked glycan in the mature cell surface antigen. Finally, the resistance of Thy-1 antigen to trypsin digestion when associated with membranes confirmed that this molecule has no cytoplasmically oriented portion.  相似文献   

11.
Laminin, a glycoprotein component of basal laminae, is synthesized and secreted in culture by a human malignant cell line (JAR) derived from gestational choriocarcinoma. Biosynthetically labeled human laminin subunits A (Mr approximately 400,000) and B (Mr = 200,000 doublet) are glycoslyated with asparagine-linked high mannose oligosaccharides that are processed to complex oligosaccharides before the laminin molecule is externalized by the cell. The rate-limiting step in the processing of the asparagine-linked glycans of laminin is at the point of action of alpha-mannosidase I since the principal laminin forms that accumulate in JAR cells contain Man9GlcNAc2 and Man8GlcNAc2 oligosaccharide units. The combination of subunits to form the disulfide-linked laminin molecule (Mr approximately 950,000) occurs rapidly within the cell at a time when the subunits contain these high mannose oligosaccharides. The production of laminin is limited by the availability of the A subunit such that excess B subunit forms accumulate intracellularly as uncombined B and a disulfide-linked B dimer. Pulse-chase kinetic studies establish these B forms as intermediates in the assembly of the laminin molecule. The fully assembled laminin undergoes further oligosaccharide processing and translocation to the cell surface, but uncombined B and B dimer are neither processed nor secreted to any significant extent. Therefore, laminin subunit combination appears to be a prerequisite for intracellular translocation, processing, and secretion. The mature laminin that contains complex oligosaccharides does not accumulate intracellularly but is rapidly externalized upon completion, either secreted into the culture medium (25%) or associated with the cell surface (75%) as determined by susceptibility to degradation by trypsin. About one-third of the laminin molecules secreted or shed by JAR cells into the chase medium contain a smaller A subunit form that appears to have been modified by limited proteolytic cleavage. The putative proteolytic event is closely timed to the release of the laminin into the culture medium.  相似文献   

12.
The antibiotic tunicamycin, which blocks the synthesis of glycoproteins, inhibited the production of infectious herpes simplex virus. In the presence of this drug, [14C]glucosamine and [3H]mannose incorporation was reduced in infected cells, whereas total protein synthesis was not affected. Gel electrophoresis of [2-3H]mannose-labeled polypeptides failed to detect glycoprotein D or any of the other herpes simplex virus glycoproteins. By use of specific antisera we demonstrated that in the presence of tunicamycin the normal precursors to viral glycoproteins failed to appear. Instead, lower-molecular-weight polypeptides were found which were antigenically and structurally related to the glycosylated proteins. Evidence is presented to show that blocking the addition of carbohydrate to glycoprotein precursors with tunicamycin results in the disappearance of molecules, possibly due to degradation of the unglycosylated polypeptides. We infer that the added carbohydrate either stabilizes the envelope proteins or provides the proper structure for correct processing of the molecules needed for infectivity.  相似文献   

13.
Phosphomannosyl residues on lysosomal enzymes serve as an essential component of the recognition marker necessary for binding to the mannose 6-phosphate (Man 6-P) receptor and translocation to lysosomes. The high mannose-type oligosaccharide units of lysosomal enzymes are phosphorylated by the following mechanism: N-acetylglucosamine 1-phosphate is transferred to the 6 position of a mannose residue to form a phosphodiester; then N- acetylglucosamine is removed to expose a phosphomonoester. We examined the kinetics of this phosphorylation pathway in the murine lymphoma BW5147.3 cell line to determine the state of oligosaccharide phosphorylation at the time the newly synthesized lysosomal enzymes bind to the receptor. Cells were labeled with [2-(3)H]mannose for 20 min and then chased for various times up to 4 h. The binding of newly synthesized glycoproteins to the Man 6-P receptor was followed by eluting the bound ligand with Man 6-P. Receptor-bound material was first detected at 30 min of chase and reached a maximum at 60 min of chase, at which time approximately 10 percent of the total phosphorylated oligosaccharides were associated with the receptor. During longer chase times, the total quantity of cellular phosphorylated oligosaccharides decreased with a half-time of 1.4 h, suggesting that the lysosomal enzymes had reached their destination and had been dephosphorylated. The structures of the phosphorylated aligosaccharides of the eluted ligand were then determined and compared with the phosphorylated oligosaccharides of molecules which were not bond to the receptor. The major phosphorylated oligosaccharide species present in the nonreceptor-bound material contained a single phosphosphodiester at all time examined. In contrast, receptor-bound oligosaccharides were greatly enriched in species possessing one and two phosphomonoesters. These results indicate that binding of newly synthesized lysosomal enzymes to the Man 6-P receptor occurs only after removal of the covering N- acetylglucosamine residues.  相似文献   

14.
Sulphation causes heterogeneity of gastric mucins   总被引:2,自引:0,他引:2  
The synthesis of mucus glycoprotein in rat stomach was studied in stomach segments, which were pulse-labelled with both [3H]galactose and [35S]sulphate and chased for various times. The radioactive glycoproteins were analyzed by CsCl centrifugation and by agarose gel electrophoresis. After a pulse-labelling for 15 min with [3H]galactose, a possible intermediate with an Mr of 200,000 and a buoyant density of 1.60 g/ml could be demonstrated. Following chase periods of 1 and 4 h, [3H]galactose and [35S]sulphate were present in glycoproteins with a mean buoyant density of 1.50 g/ml. This is clearly different from the main density of glycoproteins isolated from mucosal scrapings (1.46 g/ml). Another difference is the high electrophoretic mobility on gel electrophoretic analysis of newly synthesized glycoproteins compared to that of the major portion of the glycoproteins from mucosal scrapings. When sulphation of glycoproteins was inhibited by sodium chlorate, electrophoretic mobility and buoyant density both decreased. Sodium chlorate had no effect on glycoprotein synthesis nor on glycoprotein secretion. We conclude from our data that the heterogeneity in electrophoretic mobility and buoyant density can be attributed to a different degree of sulphation of the same glycoprotein.  相似文献   

15.
We have developed an efficient method for labeling the Asn-linked oligosaccharides of recombinant glycoproteins synthesized in Xenopus laevis oocytes. By coinjecting GDP-[3,4-(3)H]mannose with mRNA for human cathepsin D, it was possible to incorporate as much as 1800 cpm per oocyte into each of the two Asn-linked oligosaccharides of this glycoprotein. Overall, about 50% of the microinjected GDP-[3,4-(3)H]mannose was incorporated into Asn-linked oligosaccharides, a 10-fold greater value than that obtained when [2-(3)H]mannose was microinjected. Less than 10% of the injected GDP-[3,4-(3)H]mannose was metabolized to water or converted to amino acids. This technique should facilitate studies of Asn-linked oligosaccharide biosynthesis, processing, and structure in recombinant proteins synthesized in Xenopus oocytes.  相似文献   

16.
The biosynthesis of the major human red cell sialoglycoprotein, glycophorin A, was studied in the erythroleukemia cell line K562 with emphasis on O-glycosylation. The cells were pulse-chase labeled with [35S] methionine, and either directly immune precipitated with anti-glycophorin A antiserum or detergent-solubilized extracts first passed through columns containing the N-acetylgalactosamine-specific lectin from Helix pomatia or the glucose/mannose specific lectin from lentil beans. From the sugar-eluted fractions anti-glycophorin A antiserum was used to identify precursor molecules. After 5 min of labeling the first glycophorin A precursors were seen. The largest had an apparent molecular weight of 37,000, and bound to lentil lectin-Sepharose, but not to H. pomatia lectin-Sepharose. The lentil lectin-reactive glycophorin A molecules increased to Mr = 39,000 during chase and obtained sialic acids after 9 min of chase reflecting terminal N- and O-glycosylation. After 5-6 min of labeling two H. pomatia-interacting glycophorin A precursors with apparent molecular weights of 24,000 and 30,000 were obtained. These did not bind to lentil lectin-Sepharose. During chase also these molecules increased in size to Mr = 39,000. The immune precipitation of all antiglycophorin A-reactive precursor molecules was inhibited by purified red cell glycophorin A. The carboxylic ionophore, monensin, caused the accumulation of incompletely O-glycosylated glycophorin A molecules, which bound to H. pomatia lectin-Sepharose. These were degraded by treatment with endo-beta-N-acetylglucosaminidase H reflecting incomplete processing of the N-glycosidic oligosaccharide.  相似文献   

17.
The biosynthesis and carbohydrate processing of the insulin receptor were studied in cultured human lymphocytes by means of metabolic and cell surface labeling, immunoprecipitation with anti-receptor autoantibodies, and analysis on sodium dodecyl sulfate-polyacrylamide gels under reducing conditions. In addition to the two major subunits of Mr = 135,000 and Mr = 95,000, two higher molecular weight bands were detected of Mr = 210,000 and Mr = 190,000. The Mr = 210,000 band and the two major subunits were labeled by [3H]mannose, [3H]glucosamine, [3H]galactose, and [3H]fucose, and were bound by immobilized lentil, wheat germ, and ricin I lectins. On the other hand, the Mr = 190,000 band was labeled only by [3H]mannose and [3H]glucosamine and was bound only by lentil lectin. All four components could be labeled with [35S] methionine; however, in contrast with the other three polypeptides, the Mr = 190,000 band was not labeled by cell surface iodination with lactoperoxidase, suggesting that it is not exposed at the outer surface of the plasma membrane. Pulse-chase studies with [3H]mannose showed that the Mr = 190,000 was the earliest labeled component of the receptor; radioactivity in this band reached a maximum 1 h after the pulse, clearly preceded the appearance of the other components, and had a very brief half-life (t1/2 = 2.5 h). The Mr = 210,000, Mr = 135,000, and Mr = 95,000 bands were next in appearance and reached a maximum 6 h in the chase period. Monensin, an ionophore which interferes with maturation of some proteins, blocked both the disappearance of the Mr = 190,000 protein and the appearance of the Mr = 135,000 and Mr = 95,000 subunits. The mannose incorporated in the Mr = 190,000 component was fully sensitive to treatment with endoglycosidase H while that in the Mr = 210,000 band and the two major subunits was only partially sensitive. Tryptic fingerprints of the 125I-labeled Mr = 210,000 band suggested that this component contains peptides of both the Mr = 135,000 and Mr = 95,000 subunits. In conclusion, the Mr = 190,000 component appears to represent the high mannose precursor form of the insulin receptor that undergoes carbohydrate processing and proteolytic cleavage to generate the two major subunits. In addition, the Mr = 210,000 band is probably the fully glycosylated form of the precursor that escapes cleavage and is expressed in the plasma membrane.  相似文献   

18.
Biosynthesis of alpha-galactosidase A in cultured Chang liver cells   总被引:4,自引:0,他引:4  
An investigation of the structure and biosynthesis of alpha-galactosidase A (alpha-D-galactoside glycohydrolase, EC 3.2.1.22) and its N-linked oligosaccharide chains was undertaken by metabolic labeling of Chang liver cells with [2-3H]mannose, immunoprecipitation of the activity, and examination of the resulting immunoprecipitates. From cells pulse labeled for 3 h, two radioactive bands with Mr = 58,000 and 49,000 were detected by SDS-gel electrophoresis; following a 20-h chase, only the Mr = 49,000 band was observed. Examination of the oligosaccharide fraction derived from pulse-labeled enzyme revealed that 18% of the asparagine-linked oligosaccharides were complex and 82% were high-mannose type. After a 20-h chase, 48% of the oligosaccharides were complex and 52% were high mannose. The high-mannose oligosaccharides of alpha-galactosidase A immunoprecipitated from both pulsed and pulse-chased cells had the same mobilities as Man8-9GlcNAc on thin-layer chromatography and Bio-Gel P-4. Two fractions of complex glycopeptides derived from the alpha-galactosidase A of pulsed and pulse-chased cells had the same migration on Bio-Gel P-4 as glucose oligomers containing 14 and 19-39 glucose units. Based on their apparent size and their behavior on concanavalin A-Sepharose, the complex oligosaccharides are believed to be composed of tri- and/or tetraantennary structures.  相似文献   

19.
During transit through the epididymis, spermatozoa acquire fertilizing the cell surface exhibits an altered glycoprotein pattern. Epididymal cells and their secretions contribute to these sperm-surface changes. To examine this process, epithelial cells from rat caput and cauda epididymidis were cultured and examined for the synthesis, processing and secretion of two glycoprotein-modifying enzymes, beta-galactosidase and beta-glucuronidase. Cells were cultured four days, incubated with D-2-[3H] mannose and L-[35S] methionine, and placed in isotope-free media. Levels of both cellular and secreted beta-galactosidase and beta-glucuronidase were determined by immunoprecipitation of cell homogenates or medium, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and scintillation counting of bands. During a 1-h pulse, both caput and cauda cells synthesize two precursor forms of beta-galactosidase (Mr = 84,000 and 87,000), which are processed to the mature (Mr = 63,000) enzyme during a 24-h chase. Caput cells release a high molecular weight (HMW) form (Mr = 90-100,000) and mature beta-galactosidase into the media, but not the Mr = 84-87,000 precursor. On the other hand, cauda cells release mostly mature beta-galactosidase. Ratios of radiolabeled mannose/methionine demonstrate a 7-fold greater mannose content in the cellular precursor of beta-galactosidase than in total protein. Another glycosidase, beta-glucuronidase, is synthesized as a Mr = 78,000-precursor which is processed to the mature Mr = 72,000 form. Medium in which caput and cauda cells were cultured contains both mature enzyme and a Mr = 94,000 form, but no 78,000-precursor form. Ratios of radiolabeled mannose/methionine in the cellular precursor of beta-glucuronidase are 2-fold greater than ratios in the total glycoprotein. Secretion is the major pathway of turnover for several epididymal glycosidases, since more than 50% of the total is secreted/day. These results indicate that cultured epithelial cells from the epididymis synthesize glycosidases and that processing and release differ, depending on the enzyme and the epididymal segment from which the epithelial cells were isolated.  相似文献   

20.
We have investigated the post-translational modification of carcinoembryonic antigen (CEA) for membrane-anchoring in QGP-1 cells derived from a human pancreatic carcinoma. Pulse-chase experiments with [3H]leucine demonstrated that CEA was initially synthesized as a precursor form with Mr 150,000 having N-linked high-mannose-type oligosaccharides, which was then converted to a mature form with Mr 200,000 containing the complex type sugar chains. The mature protein thus labeled was found to be released from the cell surface by treatment with phosphatidylinositol-specific phospholipase C, suggesting that CEA is a phosphatidylinositol-linked membrane protein. This was confirmed by metabolic incorporation into CEA of 3H-labeled compounds such as ethanolamine, myo-inositol, palmitic acid, and stearic acid. The 3H-labeled fatty acids incorporated were specifically removed from the protein by nitrous acid deamination as well as by phosphatidylinositol-specific phospholipase C treatment. Since the available cDNA sequence predicts that CEA contains a single methionine residue only in its carboxyl-terminal hydrophobic domain, processing of the carboxyl terminus was examined by pulse-chase experiments with [35S]methionine. It was found that CEA with Mr 150,000 was initially labeled with [35S]methionine but its radioactivity was immediately lost with chase. Taken together, these results suggest that CEA is anchored to the membrane by simultaneously occurring proteolysis of the carboxyl terminus and replacement by the glycophospholipid immediately after the synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号