首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin V is a two-headed, actin-based molecular motor implicated in organelle transport. Previously, a single myosin V molecule has been shown to move processively along an actin filament in discrete approximately 36 nm steps. However, 36 nm is the helical repeat length of actin, and the geometry of the previous experiments may have forced the heads to bind to, or halt at, sites on one side of actin that are separated by 36 nm. To observe unconstrained motion, we suspended an actin filament in solution and attached a single myosin V molecule carrying a bead duplex. The duplex moved as a left-handed spiral around the filament, disregarding the right-handed actin helix. Our results indicate a stepwise walking mechanism in which myosin V positions and orients the unbound head such that the head will land at the 11th or 13th actin subunit on the opposing strand of the actin double helix.  相似文献   

2.
Among a superfamily of myosin, class VI myosin moves actin filaments backwards. Here we show that myosin VI moves processively on actin filaments backwards with large ( approximately 36 nm) steps, nevertheless it has an extremely short neck domain. Myosin V also moves processively with large ( approximately 36 nm) steps and it is believed that myosin V strides along the actin helical repeat with its elongated neck domain that is critical for its processive movement with large steps. Myosin VI having a short neck cannot take this scenario. We found by electron microscopy that myosin VI cooperatively binds to an actin filament at approximately 36 nm intervals in the presence of ATP, raising a hypothesis that the binding of myosin VI evokes "hot spots" on actin filaments that attract myosin heads. Myosin VI may step on these "hot spots" on actin filaments in every helical pitch, thus producing processive movement with 36 nm steps.  相似文献   

3.
Myosin is an actin-based molecular motor that constitutes a diverse superfamily. In contrast to conventional myosin, which binds to actin for only a short time during cross-bridge cycling, recent studies have demonstrated that class V myosin moves along actin filaments for a long distance without dissociating. This would make it suitable for supporting cargo movement in cells. Because myosin V has a two-headed structure with an expanded neck domain, it has been postulated to 'walk' along the 36-nm helical repeat of the actin filament, with one head attached to the actin and leading the other head to the neighbouring helical pitch. Here, we report that myosin IXb, a single-headed myosin, moves processively on actin filaments. Furthermore, we found that myosin IXb is a minus-end-directed motor. In addition to class VI myosin, this is the first myosin superfamily member identified that moves in the reverse direction. The processive movement of the single-headed myosin IXb cannot be explained by a 'hand-over-hand' mechanism. This suggests that an alternative mechanism must be operating for the processive movement of single-headed myosin IXb.  相似文献   

4.
Myosin VI is an ATP driven molecular motor that normally takes forward and processive steps on actin filaments, but also on occasion stochastic backward steps. While a number of models have attempted to explain the backwards steps, none offer an acceptable mechanism for their existence. We therefore performed single molecule imaging of myosin VI and calculated the stepping rates of forward and backward steps at the single molecule level. The forward stepping rate was proportional to the ATP concentration, whereas the backward stepping rate was independent. Using these data, we proposed that spontaneous detachment of the leading head is uncoupled from ATP binding and is responsible for the backward steps of myosin VI.  相似文献   

5.
Myosin X is a molecular motor that is adapted to select bundled actin filaments over single actin filaments for processive motility. Its unique form of motility suggests that myosin X's stepping mechanism takes advantage of the arrangement of actin filaments and the additional target binding sites found within a bundle. Here we use fluorescence imaging with one-nanometer accuracy to show that myosin X takes steps of ∼18 nm along a fascin-actin bundle. This step-size is well short of the 36-nm step-size observed in myosin V and myosin VI that corresponds to the actin pseudohelical repeat distance. Myosin X is able to walk along bundles with this step-size if it straddles two actin filaments, but would be quickly forced to spiral into the constrained interior of the bundle if it were to use only a single actin filament. We also demonstrate that myosin X takes many sideways steps as it walks along a bundle, suggesting that it can switch actin filament pairs within the bundle as it walks. Sideways steps to the left or the right occur on bundles with equal frequency, suggesting a degree of lateral flexibility such that the motor's working stroke does not bias it to the left or to the right. On single actin filaments, we find a broad mixture of 10-20-nm steps, which again falls short of the 36-nm actin repeat. Moreover, the motor leans to the right as it walks along single filaments, which may require myosin X to adopt strained configurations. As a control, we also tracked myosin V stepping along actin filaments and fascin-actin bundles. We find that myosin V follows a narrower path on both structures, walking primarily along one surface of an actin filament and following a single filament within a bundle while occasionally switching to neighboring filaments. Together, these results delineate some of the structural features of the motor and the track that allow myosin X to recognize actin filament bundles.  相似文献   

6.
Myosin V is an unconventional myosin that transports cargo such as vesicles, melanosomes, or mRNA on actin filaments. It is a two-headed myosin with an unusually long neck that has six IQ motifs complexed with calmodulin. In vitro studies have shown that myosin V moves processively on actin, taking multiple 36-nm steps that coincide with the helical repeat of actin. This allows the molecule to "walk" across the top of an actin filament, a feature necessary for moving large vesicles along an actin filament bound to the cytoskeleton. The extended neck length of the two heads is thought to be critical for taking 36-nm steps for processive movements. To test this hypothesis we have expressed myosin V heavy meromyosin-like fragments containing 6IQ motifs, as well as ones that shorten (2IQ, 4IQ) or lengthen (8IQ) the neck region or alter the spacing between 3rd and 4th IQ motifs. The step size was proportional to neck length for the 2IQ, 4IQ, 6IQ, and 8IQ molecules, but the molecule with the altered spacing took shorter than expected steps. Total internal reflection fluorescence microscopy was used to determine whether the heavy meromyosin IQ molecules were capable of processive movements on actin. At saturating ATP concentrations, all molecules except for the 2IQ mutant moved processively on actin. When the ATP concentration was lowered to 10 microm or less, the 2IQ mutant demonstrated some processive movements but with reduced run lengths compared with the other mutants. Its weak processivity was also confirmed by actin landing assays.  相似文献   

7.
Myosin VI is a molecular motor that can walk processively on actin filaments with a 36-nm step size. The walking mechanism of myosin VI is controversial because it takes very large steps without an apparent lever arm of required length. Therefore, myosin VI is argued to be the first exception to the widely established lever arm theory. It is therefore critical to directly demonstrate whether this motor walks hand-over-hand along actin despite its short lever arm. Here, we follow the displacement of a single myosin VI head during the stepping process. A single head is displaced 72 nm during stepping, whereas the center of mass previously has been shown to move 36 nm. The most likely explanation for this result is a hand-over-hand walking mechanism. We hypothesize the existence of a flexible element that would allow the motor to bridge the observed 72-nm distance.  相似文献   

8.
Vilfan A 《Biophysical journal》2008,94(9):3405-3412
Myosin V is a two-headed processive motor protein that walks in a hand-over-hand fashion along actin filaments. When it encounters a filament branch, formed by the Arp2/3 complex, it can either stay on the straight mother filament, or switch to the daughter filament. We study both probabilities using the elastic lever arm model for myosin V. We calculate the shapes and bending energies of all relevant configurations in which the trail head is bound to the actin filament before Arp2/3 and the lead head is bound either to the mother or to the daughter filament. Based on the assumption that the probability for a head to bind to a certain actin subunit is proportional to the Boltzmann factor obtained from the elastic energy, we calculate the mother/daughter filament branching ratio. Our model predicts a value of 27% for the daughter and 73% for the mother filament. This result is in good agreement with recent experimental data.  相似文献   

9.
Myosin VI is a motor protein which is necessary for the morphogenesis of epithelial tissues during Drosophila development. The spatial and temporal expression of Myosin VI was examined by expressing a GFP (Green Fluorescent Protein) tagged Myosin VI molecule (PGM), under the control of a Myosin VI-Gal4 line. PGM was present in tissues that were shown previously to express Myosin VI, such as the ovarian follicle epithelium, and the individualization complex; and in other tissues, including the trachea, the midgut, the salivary glands and the imaginal discs. The GFP-tagged Myosin V1 rescued the male sterile phenotype of Jaguar showing it is functional in vivo. Within individual cells, the role of the head and neck domain and the tail domain in targeting of the Myosin V1 molecule was examined by investigating the localisation of the separate domains tagged to GFP. In salivary glands and follicle cells the head and neck domains were concentrated in the cell nucleus, where the minus end of each actin filament is located. We found that the tail domain anchors the whole molecule outside of the nucleus. Similarly, in the individualization complex in the testes, the tail anchors the whole molecule to the base of the complex while the separated head with neck domain becomes scattered along the entire actin molecule suggesting the cellular location may be determined by cargo proteins that bind to the tail domain rather than by the movement of Myosin VI along the actin filaments.  相似文献   

10.
Myosin VI is an unconventional motor protein with unusual motility properties such as its direction of motion and path on actin and a large stride relative to its short lever arms. To understand these features, the rotational dynamics of the lever arm were studied by single-molecule polarized total internal reflection fluorescence (polTIRF) microscopy during processive motility of myosin VI along actin. The axial angle is distributed in two peaks, consistent with the hand-over-hand model. The changes in lever arm angles during discrete steps suggest that it exhibits large and variable tilting in the plane of actin and to the sides. These motions imply that, in addition to the previously suggested flexible tail domain, there is a compliant region between the motor domain and lever arm that allows myosin VI to accommodate the helical position of binding sites while taking variable step sizes along the actin filament.  相似文献   

11.
Myosin-V is a two-headed molecular motor taking multiple ATP-dependent steps toward the plus end (forward) of actin filaments. At high mechanical loads, the motor processively steps toward the minus end (backward) even in the absence of ATP, whereas analogous forward steps cannot be induced. The detailed mechanism underlying this mechanical asymmetry is not known. We investigate the effect of force on individual single headed myosin-V constructs bound to actin in the absence of ATP. If pulled forward, the myosin-V head dissociates at forces twice as high than if pulled backward. Moreover, backward but not forward distances to the unbinding barrier are dependent on the lever arm length. This asymmetry of unbinding force distributions in a single headed myosin forms the basis of the two-headed asymmetry. Under load, the lever arm functions as a true lever in a mechanical sense.  相似文献   

12.
DOC-2/DAB2 is the binding partner of myosin VI   总被引:6,自引:0,他引:6  
Myosin VI is a molecular motor that moves processively along actin filaments and is believed to play a role in cargo movement in cells. Here we found that DOC-2/DAB2, a signaling molecule inhibiting the Ras cascade, binds to myosin VI at the globular tail domain. DOC-2/DAB2 binds stoichiometrically to myosin VI with one molecule per one myosin VI heavy chain. The C-terminal 122 amino acid residues of DOC-2/DAB2, containing the Grb2 binding site, is identified to be critical for the binding to myosin VI. Actin gliding assay revealed that the binding of DOC-2/DAB2 to myosin VI can support the actin filament gliding by myosin VI, suggesting that it can function as a myosin VI anchoring molecule. The C-terminal domain but not the N-terminal domain of DOC-2/DAB2 functions as a myosin VI anchoring site. The present findings suggest that myosin VI plays a role in transporting DOC-2/DAB2, a Ras cascade signaling molecule, thus involved in Ras signaling pathways.  相似文献   

13.
Masuda T 《Bio Systems》2008,93(3):172-180
There is a large superfamily of myosins, which play various fundamental roles in cellular motility. In this superfamily, most of myosins, including myosins II and V, move to the barbed end of an actin filament, whereas myosin VI was found to move in the opposite direction to the pointed end. Although myosin VI has structural differences compared with the other myosins, the mechanism for the reversal of the directionality has not been satisfactorily explained by conventional theories for myosin motility, including the widely accepted lever-arm hypothesis. In this paper, a simple mechanism for determining the directionality is proposed. The mechanism assumes that the driving force for the power stroke is caused by elastic energy stored within a myosin molecule at the joint between the head and the neck. The elastic energy originates from the attractive force between myosin and actin, and accumulates during the docking process. The energy of ATP is used to reduce the attractive force between myosin and actin and to facilitate the dissociation of these molecules. Therefore, it is not directly engaged in the power stroke. With this mechanism, the directionality of the myosin motility is simply determined by the direction of the neck with respect to the head in the dissociated configuration. This structural difference is actually observed in myosin VI. The same mechanism also explains the behavior of a backward moving engineered myosin. Computer simulations demonstrated the feasibility of this working mechanism.  相似文献   

14.
Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed "strokes"; the "power stroke" is the force-generating swinging of the myosin light chain-binding "neck" domain relative to the motor domain "head" while bound to actin; the "recovery stroke" is the necessary initial motion that primes, or "cocks," myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a "hand over hand" mechanism in which the trailing head detaches and steps forward ~72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s) attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for ~40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥ 5 k(B)T of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery stroke contributes to unidirectional stepping of myosin Va.  相似文献   

15.
Myosin VI is the only pointed end-directed myosin identified and is likely regulated by heavy chain phosphorylation (HCP) at the actin-binding site in vivo. We undertook a detailed kinetic analysis of the actomyosin VI ATPase cycle to determine whether there are unique adaptations to support reverse directionality and to determine the molecular basis of regulation by HCP. ADP release is the rate-limiting step in the cycle. ATP binds slowly and with low affinity. At physiological nucleotide concentrations, myosin VI is strongly bound to actin and populates the nucleotide-free (rigor) and ADP-bound states. Therefore, myosin VI is a high duty ratio motor adapted for maintaining tension and has potential to be processive. A mutant mimicking HCP increases the rate of P(i) release, which lowers the K(ATPase) but does not affect ADP release. These measurements are the first to directly measure the steps regulated by HCP for any myosin. Measurements with double-headed myosin VI demonstrate that the heads are not independent, and the native dimer hydrolyzes multiple ATPs per diffusional encounter with an actin filament. We propose an alternating site model for the stepping and processivity of two-headed high duty ratio myosins.  相似文献   

16.
It has been puzzled that in spite of its single-headed structure, myosin-IX shows the typical character of processive motor in multi-molecule in vitro motility assay, because this cannot be explained by hand-over-hand mechanism of the two-headed processive myosins. Here, we show direct evidence of the processive movement of myosin-IX using two different single molecule techniques. Using optical trap nanometry, we found that myosin-IX takes several large ( approximately 20nm) steps before detaching from an actin filament. Furthermore, we directly visualized the single myosin-IX molecules moving on actin filaments for several hundred nanometers without dissociating from actin filament. Since myosin-IX processively moves without anchoring the neck domain, the result suggests that the neck tilting is not involved for the processive movement of myosin-IX. We propose that the myosin-IX head moves processively along an actin filament like an inchworm via a unique long and positively charged insertion in the loop 2 region of the head.  相似文献   

17.
Myosin motors drive muscle contraction, cytokinesis and cell locomotion, and members of the myosin superfamily have been implicated in an increasingly diverse range of cell functions. Myosin can displace a bound actin filament several nanometers in a single interaction. Crystallographic studies suggest that this 'working stroke' involves bending of the myosin head between its light chain and catalytic domains. Here we used X-ray fiber diffraction to test the crystallographic model and measure the interdomain bending during force generation in an intact single muscle fiber. The observed bending has two components: an elastic distortion and an active rotation that generates force. The average bend of the force-generating myosin heads in a muscle fiber is intermediate between those in crystal structures with different bound nucleotides, and the C-terminus of the head is displaced by 7 nm along the actin filament axis compared with the in vitro conformation seen in the absence of nucleotide.  相似文献   

18.
Kinesins are molecular motors that unidirectionally move along microtubules using the chemical energy of ATP. Although the core structure of kinesins is similar to that of myosins, the lever-arm hypothesis, which is widely accepted as a plausible mechanism to explain the behaviors of myosins, cannot be directly applied to kinesins. Masuda has proposed a mechanochemical process called the ‘Driven-by-Detachment (DbD)’ mechanism to explain the characteristic behaviors of myosins, including the backward movement of myosin VI and the loose coupling phenomenon of myosin II. The DbD mechanism assumes that the energy of ATP is mainly used to detach a myosin head from an actin filament by temporarily reducing the affinity of the myosin against the actin. After the affinity is recovered, the detached head has potential energy originating from the attractive force between the myosin and the actin. During the docking process, the potential energy is converted into elastic energy within the myosin molecule, and the intramolecular elastic energy is finally used to produce the power strokes. In the present paper, the DbD mechanism was used to explain the hand-over-hand motion of the conventional kinesin. The neck linker of the kinesin is known to determine the directionality of the motility but, in this paper, it was assumed that the neck linker was not directly engaged in the power strokes, which were driven by the attractive force between the kinesin head and the microtubule. Based on this assumption, simple mechanical simulations showed that the model of a kinesin dimer processively moved along a microtubule protofilament, if the affinity of the kinesin against the microtubule is appropriately controlled. Moreover, if an external force was applied to the center of the kinesin dimer, the dimer moved backward along a microtubule, as observed in experimental motility assays.  相似文献   

19.
Myosin V moves cargoes along actin filaments by walking hand over hand. Although numerous studies support the basic hand-over-hand model, little is known about the fleeting intermediate that occurs when the rear head detaches from the filament. Here we use submillisecond dark-field imaging of gold nanoparticle-labeled myosin V to directly observe the free head as it releases from the actin filament, diffuses forward and rebinds. We find that the unbound head rotates freely about the lever-arm junction, a trait that likely facilitates travel through crowded actin meshworks.  相似文献   

20.
According to the cross-bridge theory (Huxley, 1957) [1], the interaction between myosin and actin is governed by a deterministic process where the myosin molecule pulls the actin filament in one specific direction only. However, studies on single myosin-actin interactions produced displacements of actin not only in the preferred but also in the opposite direction. This phenomenon is typically referred to as backward steps by the myosin head. Molloy et al. (1995) [2] speculated that these backward steps are not caused by the molecular interactions of actin with myosin but are an artifact of the Brownian motion associated with these molecular level experiments. The aim of this study was to investigate, whether a theoretical model can support Molloy’s speculation. We therefore developed a theoretical model of actin-myosin based muscle contraction that was strictly based on Huxley’s assumption of one stepping direction only, but incorporated Brownian motion, as observed in single cross-bridge-actin interactions. The mathematical model is based on Langevin equations describing the classical three-bead laser trap setup and uses a novel semi-analytical approach to study the percentage of backward steps. We analyzed the effects of different initial actin attachment site distribution and laser trap stiffness on the ratio of forward to backward steps. Our results demonstrate that backward steps and the classical cross-bridge theory are perfectly compatible in a three-bead laser trap setup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号